首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The phosphate metabolism of Platymonas subcordiformis was investigated by 31P-NMR spectroscopy with special attention on the effect of external pH. Glycolyzing cells and cells energized by respiration or photosynthesis gave spectra dependent upon their metabolic state. The transition from deenergized to energized states is accompanied by a shift of cytoplasmic pH from 7.1–7.4, an increase of ATP level and-in well energized cells-the appearance of a new signal tentatively assigned to phosphoarginine.The spectra remain stable over a wide range of external pH. Cytoplasmic pH is well regulated in respiring cells for external pH in the range 5.3–12.3. The typical 0.4 units difference of internal pH in energized as compared to deenergized cells is not affected by external pH in the range 6–12. The intensity of a signal attributed to PEP is markedly increased at high external pH. pH regulation is less efficient below external pH of 6 in deenergized cells. Below pH 3.8 oxidative phosphorylation ceases. Upon raising cytoplasmic pH to 7.4 in deenergized cells polyphosphate chains start to disintegrate.Abbreviations PEP Phosphoenolpyruyate - P i inorganic phosphate - PP i inorganic pyrophosphate - poly P polyphosphates - PP-1, PP-2, PP-3 terminal, second, and third phosphate residue of polyphosphates - PP-4 core phosphate residues of polyphosphates - pH i , pH o internal (cytoplasmic) and external pH - NTP/NDP nucleotide triphosphate/-diphosphate - S/N signal to noise ratio  相似文献   

2.
In suspensions of the green alga Chlorella fusca the influence of high pH and high ethylene-diamine-tetraacetic acid concentrations in the external medium, of French-press and perchloric acid extraction of the cells and of alkalization of the intracellular pH on the polyphosphate signal in 31P-nuclear magnetic resonance (31P NMR) spectra was investigated.The results show that part of the polyphosphates of asynchronous Chlorella cells are located outside the cytoplasmic membrane and complexed with divalent metal-ions. These polyphosphates are tightly bound to the cell wall and/or the cytoplasmic membrane and are not susceptible to hydrolyzation by strong acid at room temperature, in contrast to the intracytoplasmic polyphosphates.Upon alkalization of the internal pH of Chlorella cells, polyphosphates, previously not visible in the spectra become detectable by 31P-NMR-spectroscopy. 31P-NMR spectroscopic monitoring of polyphosphates during gradual alkalization of the extra-and intracellular space is proposed as a quick method for the estimation of the cellular polyphosphate content and distribution.Abbreviations CCCP Carbonylcyanide-m-chlorophenyl-hydrazone - NTP/NDP Nucleotide triphosphate/-diphosphate - PCA Perchloric acid - 31P-NMR 31P-nuclear magnetic resonance - PolyP polyphosphates - PP1, PP2, PP3 terminal, second and third phosphate residue of polyphosphates, respectively - PP4 core phosphate residues of polyphosphates  相似文献   

3.
Electron microscopy showed that electron-dense granules accumulated in Propionibacterium acnes in larger amounts when the bacteria were grown on a phosphate-rich medium. X-ray microanalysis demonstrated that the granules contained mostly phosphorus and potassium, indicating that the cells contained polyphosphate granules. When cells were grown on a complex Bacto-agar medium, the amount and the size of the polyphosphate granules were reduced. Polyphosphate was also detected with 31P nuclear magnetic resonance (31P-NMR). Of the polyphosphates observed with 31P-NMR, 20% seemed to be located outside the cell membrane. Broad-band near-ultraviolet irradiation (emission maximum 366 nm) corresponding to doses that killed 37% of the cells increased the amount of polyphosphate in cells grown on the phosphate-rich medium. The fluorescent chromophore 4',6-diamidino-2-phenylindole (DAPI) shifted the fluorescence emission from 478 to 538 nm when bound to polyphosphate and excited at 340 nm. DAPI was used to detect polyphosphates generated after near-ultraviolet irradiation of the cells. Nonirradiated cells showed no increased fluorescence at 538 nm, indicating no polyphosphate is presented in the cells. We conclude that DAPI did not have "access" to the intracellular polyphosphate as long as the cells were not light damaged. This observation is important for the interpretation of near-UV damage to cells.  相似文献   

4.
The intracellular phosphorus and carbon metabolites in the halotolerant alga Dunaliella salina adapted to different salinities were monitored in living cells by 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy. The 13C-NMR studies showed that the composition of the visible intracellular carbon metabolites other than glycerol is not significantly affected by the salinity of the growth medium. The T1 relaxation rates of the 13C-glycerol signals in intact cells were enhanced with increasing salinity of the growth medium, in parallel to the expected increase in the intracellular viscosity due to the increase in intracellular glycerol. The 31P-NMR studies showed that cells adapted to the various salinities contained inorganic phosphate, phosphomonoesters, high energy phosphate compounds, and long chain polyphosphates. In addition, cells grown in media containing up to 1 molar NaCl contained tripolyphosphates. The tripolyphosphate content was also controlled by the availability of inorganic phosphate during cell growth. Phosphate-depleted D. salina contained no detectable tripolyphosphate signal. Excess phosphate, however, did not result in the appearance of tripolyphosphate in 31P-NMR spectra of cells adapted to high (>1.5 molar NaCl) salinites.  相似文献   

5.
We now report a mouse model system of brain tumor for 31P-NMR spectroscopic study of in vivo cerebral metabolism. In vivo 31P-NMR (109 MHz) spectra were taken on the 9th day by the Faraday shield method of the brain of mice (3-week-old) transplanted intracerebrally with mKS X A tumor cells. In tumor-bearing mice, the amount of creatine phosphate decreased markedly and that of inorganic phosphate plus sugar phosphate increased accordingly. Furthermore, the broadening and splitting of individual signals were also noted with tumor-bearing mice; this is interpreted as indicating a variety of changes in chemical shift occurring in the brain of the animals due to heterogeneous distribution of pH. Binding or detaching of divalent cations to and from phosphometabolites may also be responsible for these changes.  相似文献   

6.
Intracellular pH control in Dictyostelium discoideum: a 31P-NMR analysis   总被引:2,自引:0,他引:2  
M Satre  G Klein  J B Martin 《Biochimie》1986,68(12):1253-1261
Phosphorus metabolites and intracellular pH have been examined in the slime mold Dictyostelium discoideum by non-destructive 31P-NMR measurements. In a spectrum from a suspension of aerobic amoebae, the major peaks are inorganic phosphate, nucleotide di- and triphosphates. In the corresponding perchloric acid extract, resonances originating from purine and pyrimidine nucleotides are resolved. Adenine nucleotides are the most abundant components, but the other nucleotides are present in significant amounts. In a spectrum from intact spores in a dormant state, only inorganic phosphate and polyphosphates are detected and nucleotides are no longer present in large amounts. Of particular importance is the ability to observe separately in aerobic amoebae the resonance of inorganic phosphate localized in two different cell compartments: the cytosol and the mitochondria. The cytosolic pH and mitochondrial pH have been measured as 6.7 and 7.7, respectively, on the basis of intracellular inorganic phosphate chemical shifts. They are essentially unaffected over a large range of external pH and they are not modified transiently or permanently during the initiation of the developmental program of the organism. A weak acid, such as propionate, which modifies the progression of differentiation by favoring prestalk cells, perturbs intracellular pH gradients by selectively decreasing mitochondrial pH without any effect on cytosolic pH.  相似文献   

7.
Comparative in vivo 31P-NMR studies of mycorrhized and nonmycorrhized roots of Fagus sylvatica and Pinus sylvestris and of the fungus Suillus bovinus in pure culture have produced interesting new data. With respect to intracellular compartments and pH, 31P-NMR spectroscopy showed that the spectrum of the mycorrhiza results from simple superimposition of the spectra of its symbionts. A special method of cyclic phosphate supply followed by block averaging of the NMR spectra was used to determine the kinetic behaviour of phosphate uptake and storage and its incorporation into polyphosphate at a constant external pH of 5.5. Mycorrhized roots and pure fungus showed transformation of accumulated inorganic phosphate into mobile polyphosphate with a medium chain length. Transformation of mobile into immobile polyphosphate either with a long chain length or in a granular state was also observed. Thus, two different types of fungal polyphosphate could be verified. Deficiency of external phosphate initiated the mobilization of internal phosphate, transforming stored polyphosphate into phosphate. It could be shown that a high fungal mass renders mycorrhizal phosphate metabolism less sensitive to external variation in nutrient concentration. The central role of the fungus in regulating mycorrhizal phosphate metabolism is discussed.  相似文献   

8.
We have used 23Na and 31P nuclear magnetic resonance (NMR) spectroscopy to elucidate some of the bioenergetic changes that occur in the freshwater cyanobacterium Synechococcus 6311 after a transition from growth medium (Na concentration 0.01 M) to medium containing 0.5 M NaCl. 23Na NMR analysis showed Na rapidly penetrates the cells under dark aerobic conditions; cells grown for several days in high salt medium, however, reestablish a low internal sodium content, comparable to control cells. For 31P NMR analysis, a system was devised to aerate and illuminate cell suspensions during spectral acquisition. The NMR spectra showed that when cells are presented with 0.5 M NaCl (final concentration), nucleotide triphosphate peaks decrease, the inorganic phosphate peak increases, and the cytoplasmic pH transiently increases from 7.4 to 7.9. Pyrophosphate added to cell suspensions is hydrolyzed to inorganic phosphate apparently by an extracellular phosphatase, allowing external and internal pools of inorganic phosphate to be distinguished. Nucleotide triphosphate levels fall almost as much when cells are incubated in darkness as under anoxia, indicating that both respiration and photosynthesis contribute to the maintenance of intracellular ATP levels. Cells grown in high salt medium for several generations exhibited a pattern of 31P metabolites similar to control cells, except that they produced more (and more intense) peaks in the monoester phosphate region, presumably signals from sugar phosphates.  相似文献   

9.
Phosphorus metabolites and intracellular pH have been examined in the slime mold Dictyostelium discoideum by non-destructive 31P-NMR measurements. In a spectrum from a suspension of aerobic amoebae, the major peaks are inorganic phosphate, nucleotide di- and triphosphates. In the corresponding perchloric acid extract, resonances originating from purine and pyrimidine nucleotides are resolved. Adenine nucleotides are the most abundant components, but the other nucleotides are present in significant amounts. In a spectrum from intact spores in a dormant state, only inorganic phosphate and polyphosphates are detected and nucleotides are no longer present in large amounts.Of particular importance is the ability to observe separately in aerobic amoebae the resonance of inorganic phosphate localized in two different cell compartments: the cytosol and the mitochondria. The cytosolic pH and mitochondrial pH have been measured as 6.7 and 7.7, respectively, on the basis of intracellular inorganic phosphate chemical shifts. They are essentially unaffected over a large range of external pH and they are not modified transiently or permanently during the initiation of the developmental program of the organism. A weak acid, such as propionate, which modifies the progression of differentiation by favoring prestalk cells, perturbs intracellular pH gradients by selectively decreasing mitochondrial pH without any effect on cytosolic pH.  相似文献   

10.
31P NMR spectra were obtained from suspensions of Candida utilis, Saccharomyces cerevisiae and Zygosaccharomyces bailii grown aerobically on glucose. Direct introduction of substrate into the cell suspension, without interruption of the measurements, revealed rapid changes in pH upon addition of the energy source. All 31P NMR spectra of the yeasts studied indicated the presence of two major intracellular inorganic phosphate pools at different pH environments. The pool at the higher pH was assigned to cytoplasmic phosphate from its response to glucose addition and iodoacetate inhibition of glycolysis. After addition of substrate the pH in the compartment containing the second phosphate pool decreased. A parallel response was observed for a significant fraction of the terminal and penultimate phosphates of the polyphosphate observed by 31P NMR. This suggested that the inorganic phosphate fraction at the lower pH and the polyphosphates originated from the same intracellular compartment, most probably the vacuole. In this vacuolar compartment, pH is sensitive to metabolic conditions. In the presence of energy source a pH gradient as large as 0.8 to 1.5 units could be generated across the vacuolar membrane. Under certain conditions net transport of inorganic phosphate across the vacuolar membrane was observed during glycolysis: to the cytoplasm when the cytoplasmic phosphate concentration had become very low due to sugar phosphorylation, and into the vacuole when the former concentration had become high again after glucose exhaustion.Non-Standard Abbreviations NMR nuclear magnetic resonance - ppm parts per million - PP polyphosphate - Pi,c cytoplasmic inorganic phosphate - Pi,v vacuolar inorganic phosphate - pHin,c cytoplasmic pH - pHin,v vacuolar pH - FCCP carbonyl p-trifluoromethoxyphenylhydrazone  相似文献   

11.
W Egan  M Barile  S Rottem 《FEBS letters》1986,204(2):373-376
31P-NMR studies of Mycoplasma gallisepticum cells have been carried out using a continuous perfusion technique; these are the first such studies with this organism. Using this technique, glucose metabolism was monitored in the intact organisms, and cell extracts were prepared to identify the intermediates. Under glycolytic conditions, high levels of fructose-1,6-diphosphate were observed, indicating that this sugar may play a key role in the regulation of metabolism. The level of phosphoenolpyruvate was low under normal glycolytic conditions, and did not increase during starvation. From the position of the internal inorganic phosphate peak, the intracellular pH was estimated. The cells were found to maintain an intracellular pH of approximately 7.1 over an investigated external pH range of 6.6-8.6.  相似文献   

12.
Cytoplasmic phosphomonoesters and inorganic phosphate, as well as vacuolar inorganic phosphate and polyphosphates, gave rise to the major peaks in 31P nuclear magnetic resonance (NMR) spectra of the marine macroalgae Enteromorpha sp., Ceramium sp., and Ulva lactuca which were collected from the sea. In contrast, NMR-visible polyphosphates were lacking in Pylaiella sp. and intracellular vacuolar phosphate seemed to act as the main phosphorus store in this organism. In laboratory experiments, polyphosphates decreased in growing U. lactuca which was cultivated in continuous light under phosphate-deficient conditions. In contrast, the same organism cultivated in seawater with added phosphate and ammonium, accumulated phosphate mainly in the form of polyphosphates. When nitrate was provided as the only nitrogen source, accumulation of polyphosphates in the algae decreased with increasing external nitrate concentration. From the chemical shift of the cytoplasmic Pi peak, the cytoplasmic pH of superfused preparations of Ulva was estimated at 7.2. The vacuolar pH, determined from the chemical shifts of the vacuolar Pi and the terminal polyphosphate peaks, was between 5.5 and 6.0. The intracellular nitrate and ammonium levels in U. lactuca were determined by 14N NMR. Both nitrogen sources were taken up and stored intracellularly; however, the uptake of ammonium was much faster than that of nitrate.  相似文献   

13.
31P nuclear magnetic resonance (NMR) spectroscopy of intact Cosmarium sp. cells is presented as a suitable tool for the differentiation of intracellular accumulation pools of polyphosphates. The cold trichloroacetic acid (TCA) insoluble fraction is shown to contain most of the total cellular phosphate in the phosphate rich Cosmarium cells. Moreover, evidence from a 31 P-NMR study and electron microscopic observations of cold TCA treated Cosmarium cells indicate that this fraction consists mostly of polyphosphates which seem to retain the native morphological structure observed in the untreated cells. The determination of orthophosphate in the hot water extract of Cosmarium cells did not measure the polyphosphate pools. Determination of total phosphorus content in the hot water extract rendered a value three times higher than the frequently used orthophosphate determination procedure. However, as revealed by the 31P-NMR spectra and the chemical analyses of the extract and of the treated cells, even total phosphorus in the extract measured only 30% of the total cellular phosphorus. 31P-NMR enabled the unequivocal chemical identification of the major phosphate compounds in the hot water extract (“Surplus P”) as orthophosphate and polyphosphates of about 10 phosphate units chainlength. More than 70% of the accumulation pool of polyphosphates was still in the cells after extraction. However, the electron microscopy study revealed that the native granular structure of polyphosphates had been destroyed by the hot water extraction procedure.  相似文献   

14.
Acidic inorganic phosphate (Pi) pool (pH around 6) was detected besides the cytoplasmic pool in intact cells of Chlorella vulgaris 11h by 31P-in vivo nuclear magnetic resonance (NMR) spectroscopy. It was characterized as acidic compartments (vacuoles) in combination with the cytochemical technique; staining the cells with neutral red and chloroquine which are known as basic reagents specifically accumulated in acidic compartments. Under various conditions, the results obtained with the cytochemical methods were well correlated with those obtained from in vivo NMR spectra; the vacuoles were well developed in the cells at the stationary growth phase where the acidic Pi signal was detected. In contrast, cells at the logarithmic phase in which no acidic Pi signal was detected contained only smaller vesicles that accumulated these basic reagents. No acidic compartment was detected by both cytochemical technique and 31P-NMR spectroscopy when the cells were treated with NH4OH. The vacuolar pH was lowered by the anaerobic treatment of the cells in the presence of glucose, while it was not affected by the external pH during the preincubation ranging from 3 to 10. Possible vacuolar functions in unicellular algae especially with respect to intracellular pH regulation are discussed.Non-standard abbreviations EDTA ethylenediaminetetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MDP methylene diphosphonic acid - NMR nuelear magnetic resonance - PCA perchloric acid - PCV packed cell volume - Pi inorganic phosphate - Pic sytoplasmic inorganic phosphate - Piv vacuolar inorganic phosphate - ppm parts per million - SP sugar phosphates - TCA trichloroacetic acid  相似文献   

15.
31P-NMR spectra of intact larvae and pupae of Drosophila melanogaster have been obtained at 109.3 MHz. A major resonance in these samples has been identified as tyrosine-O-phosphate. Its chemical shift reflects the hemolymph plasma pH. Upon disruption of the organisms (necessary for chemical analyses of tyrosine-O-phosphate), phosphatases rapidly hydrolyze this phosphate ester, generating inorganic phosphate and free tyrosine.  相似文献   

16.
High-field 31P-NMR spectroscopy has been used to study the metabolic activities of coupled bovine adrenocortical mitochondria in vitro. These differentiated organelles use oxygen as a substrate to support both oxidative phosphorylation and specific steroid hydroxylation reactions. The NMR technique allowed the resolution of two inorganic phosphate signals, attributed to the matrix and external medium phosphate pools, at low and high field, respectively. These signals were used to calculate the respective Pi concentrations and to obtain the pH of the two corresponding compartments. In addition, the NMR spectra displayed resonance signals corresponding to ADP added to the medium and to ATP synthesized during oxidative phosphorylation. NMR analysis of the mitochondrial perchloric acid extracts identified the major phosphate-containing metabolites, namely NADP+, NAD+, phosphocholine, phosphoethanolamine, sn-glycero-(3)phosphocholine, AMP, ADP, ATP and Pi. Upon addition of ADP and malate to the oxygenated suspension, the kinetics of mitochondrial external Pi consumption and of ATP synthesis, along with the intra- and extraorganelle pH variations could be monitored over time periods of approximately 30 min, in the absence and presence of different steroid hydroxylation substrates. A major observation was that oxidative phosphorylation, which takes place in the absence of steroid, was markedly inhibited as soon as steroid hydroxylation was operating. These observations show the potential of 31P-NMR spectroscopy in the study of metabolic activities of isolated intact mitochondrial organelles. Such an approach appears promising for further determination of the underlying mechanisms in the balance between vital oxidative phosphorylation and differentiated steroid hydroxylation which are under hormonal control in adrenocortical mitochondria as well as in other steroidogenic cell systems.  相似文献   

17.
 Comparative in vivo 31P-NMR analyses of mycorrhizal and nonmycorrhizal roots of Pinus sylvestris and the fungus of Suillus bovinus in pure culture were used to investigate alterations in phosphate metabolism due to changes in external pH in the range 3.5–8.5. All control samples maintained a constant pH in both cytoplasm and vacuole. Mycorrhizal roots and pure fungus, but not nonmycorrhizal roots, transformed accumulated inorganic phosphate into mobile polyphosphate with a medium chain length. Phosphate uptake rates and polyphosphate accumulation responded differently to external pH. In all cases, maximal phosphate uptake occurred at an external pH close to 5.5. At an external pH of 8.5, both roots and fungus showed a distinct lag in phosphate uptake, which was abolished when the external pH was lowered to 7.5. An irreversible effect on phosphate uptake as a consequence of variation in external pH was also observed. The central role of the fungus in regulating mycorrhizal phosphate metabolism is discussed. Accepted: 15 April 1997  相似文献   

18.
A hollow-fiber membrane reactor was designed and constructed to allow perfusion of entrapped, dense Escherichia coli cells with nutrient medium during examination of cell metabolism using nuclear magnetic resonance (NMR) spectroscopy. Phosphorus-31 NMR spectra of the perfused cells included peaks for nucleoside di- and triphosphates, sugar phosphates, and pH-sensitive peaks for inorganic phosphate. The observed intensity of the lumenal inorganic phosphate peak was found to depend on flow rate, ruling out the use of this peak as a concentration reference. Absolute intracellular pH values obtained from NMR measurements were found to be accurate to 0.2 pH units due to uncertainties in intracellular ionic concentrations. Relative pH values, however, were found to be sensitive to cell energetic status. The response of E. coli intracellular pH following a shift to carbon starvation medium was monitored with a resolution of 3 min. Use of a hollow-fiber reactor for cell containment and perfusion during NMR spectroscopy enables metabolic experiments of longer duration and of greater variety than is possible using standard, nonperfused sample tubes.  相似文献   

19.
T Kallas  F W Dahlquist 《Biochemistry》1981,20(20):5900-5907
Phosphorus-31 nuclear magnetic resonance (31P NMR) spectra were obtained from actively photosynthesizing and darkened suspensions of the unicellular cyanobacterium Synechococcus. These spectra show intracellular resonances belonging to inorganic phosphate (Pi), a sugar phosphate (sugar-P), nucleotide di- and triphosphates, and poly-phosphates. The pH-dependent chemical shifts of Pi and sugar-P allowed the estimation of intracellular pH. When irradiated with high-intensity tungsten-halogen light (100 x 10(4) ergs . cm-2 . s-1, measured in the visible range), concentrated cell suspensions in the NMR spectrometer incorporated NaH14CO3 at approximately two-thirds the rate shown by a dilute suspension of cells at saturating light intensity. On the basis of NaH14CO3 incorporation, the effective light intensity obtained under NMR conditions would support growth at approximately one-fourth the maximum rate in dilute suspensions of cells. Irradiated cells maintained a cytoplasmic pH of 7.1--7.3 when exposed to an external pH from 6.4 to 8.3. At an external pH of 6.7, a darkness to light shift caused a 0.4 pH unit alkalinization of the cytoplasm. Treatment of cell suspensions with the uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP), in light or darkness, collapsed the internal pH to the level of the external pH. The results suggest a strong light- or energy-dependent buffering of the cytoplasm over a range of external pH. The study demonstrates that 31P NMR can be used to investigate intracellular events in an actively photosynthesizing microorganism.  相似文献   

20.
31P-NMR has been applied to the study of the metabolisms of the intact parasitic helminths Ascaris suum (the intestinal roundworm) and Fasciola hepatica (the liver fluke). After calibration of the chemical shift of Pi in muscle extracts the internal pH of adult Ascaris worms and the effect of the pH of the external medium on the organism's internal pH were measured. Assignments of nearly all of the observable 31P resonances could be made. A large resonance from glycerophosphorylcholine whose function is unclear was observed but no signals from energy storage compounds such as creatine phosphate were detected. The profiles of the phosphorus-containing metabolites in both organisms were monitored as a function of time. Changes in sugar phosphate distributions but not ATP/ADP were observed. Studies of the drug closantel on Fasciola hepatica were performed. Initial effects of the drug were a decrease in glucose 6-phosphate and an increase in Pi with no substantial change in ATP levels as observed by 31P-NMR. Studies involving treatment with closantel followed by rapid freezing, extraction, and analytical determination of glycolytic intermediates confirmed NMR observations. This NMR method can serve as a simple noninvasive procedure to study parasite metabolism and drug effects on metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号