首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The human olfactory system can recognize and discriminate a large number of different odorant molecules. The detection of chemically distinct odorants begins with the binding of an odorant ligand to a specific receptor protein on the olfactory neuron cell surface. To address the problem of olfactory perception at a molecular level, we have cloned, functionally expressed and characterized the first human olfactory receptor (OR 17-40). Application of a mixture of hundred different odorants elicited a transient increase in intracellular calcium at HEK 293-cells which were transfected with a plasmid containing the receptor encoding DNA and a membrane import sequence. By subdividing the odorant mixture in smaller groups we could identify a single component which represented the only effective substance: helional. Testing some structurally closely related molecules we found only one other compound which also could activate the receptor: heliotropyl acetone. All other compounds tested were completely ineffective. These findings represent the beginning of molecular understanding of odorant recognition in humans.  相似文献   

4.
Plant cell membrane anion channels participate in basic physiological functions, such as cell volume regulation and signal transduction. However, nothing is known about their molecular structure. Using a polymerase chain reaction strategy, we have cloned a tobacco cDNA (CIC-Nt1) encoding a 780-amino acid protein with several putative transmembrane domains. CIC-Nt1 displays 24 to 32% amino acid identity with members of the animal voltage-dependent chloride channel (CIC) family, whose archetype is CIC-0 from the Torpedo marmorata electric organ. Injection of CIC-Nt1 complementary RNA into Xenopus oocytes elicited slowly activating inward currents upon membrane hyperpolarization more negative than -120 mV. These currents were carried mainly by anions, modulated by extracellular anions, and totally blocked by 10 mM extracellular calcium. The identification of CIC-Nt1 extends the CIC family to higher plants and provides a molecular probe for the study of voltage-dependent anion channels in plants.  相似文献   

5.
6.
Calreticulin is an endoplasmic reticulum protein involved in the homeostasis of intracellular Ca++ and other physiological processes. A complementary DNA clone containing the complete coding sequence of Taenia solium calreticulin (TsCRT) was isolated and characterized. Recombinant TsCRT was expressed in bacteria as a 50-kDa protein that specifically bound calcium when tested in a radioassay. The deduced amino acid sequence has 47-50% identity with other reported calreticulins. Poor recognition of TsCRT by human and pig sera with confirmed cysticercosis discourages its use for diagnosis of the disease. However, further characterization and localization studies could provide insights into the role of TsCRT in T. solium physiology and host-parasite interactions.  相似文献   

7.
8.
9.
Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMP or cGMP binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in cytosolic cyclic nucleotide into altered cell membrane potential and/or cation flux as part of a signal cascade pathway. Putative plant homologs of animal cng channels have been identified. However, functional characterization (i.e. demonstration of cyclic-nucleotide-dependent ion currents) of a plant cng channel has not yet been accomplished. We report the cloning and first functional characterization of a plant member of this family of ion channels. The Arabidopsis cDNA AtCNGC2 encodes a polypeptide with deduced homology to the alpha-subunit of animal channels, and facilitates cyclic nucleotide-dependent cation currents upon expression in a number of heterologous systems. AtCNGC2 expression in a yeast mutant lacking a low-affinity K(+) uptake system complements growth inhibition only when lipophilic cyclic nucleotides are present in the culture medium. Voltage clamp analysis indicates that Xenopus laevis oocytes injected with AtCNGC2 cRNA demonstrate cyclic-nucleotide-dependent, inward-rectifying K(+) currents. Human embryonic kidney cells (HEK293) transfected with AtCNGC2 cDNA demonstrate increased permeability to Ca(2+) only in the presence of lipophilic cyclic nucleotides. The evidence presented here supports the functional classification of AtCNGC2 as a cyclic-nucleotide-gated cation channel, and presents the first direct evidence (to our knowledge) identifying a plant member of this ion channel family.  相似文献   

10.
11.
Auxiliary beta1 subunits of voltage-gated sodium channels have been shown to be cell adhesion molecules of the Ig superfamily. Co-expression of alpha and beta1 subunits modulates channel gating as well as plasma membrane expression levels. We have cloned, sequenced, and expressed a splice variant of beta1, termed beta1A, that results from an apparent intron retention event. beta1 and beta1A are structurally homologous proteins with type I membrane topology; however, they contain little to no amino acid homology beyond the shared Ig loop region. beta1A mRNA expression is developmentally regulated in rat brain such that it is complementary to beta1. beta1A mRNA is expressed during embryonic development, and then its expression becomes undetectable after birth, concomitant with the onset of beta1 expression. In contrast, beta1A mRNA is expressed in adult adrenal gland and heart. Western blot analysis revealed beta1A protein expression in heart, skeletal muscle, and adrenal gland but not in adult brain or spinal cord. Immunocytochemical analysis of beta1A expression revealed selective expression in brain and spinal cord neurons, with high expression in heart and all dorsal root ganglia neurons. Co-expression of alphaIIA and beta1A subunits in Chinese hamster lung 1610 cells results in a 2.5-fold increase in sodium current density compared with cells expressing alphaIIA alone. This increase in current density reflected two effects of beta1A: 1) an increase in the proportion of cells expressing detectable sodium currents and 2) an increase in the level of functional sodium channels in expressing cells. [(3)H]Saxitoxin binding analysis revealed a 4-fold increase in B(max) with no change in K(D) in cells coexpressing alphaIIA and beta1A compared with cells expressing alphaIIA alone. beta1A-expressing cell lines also revealed subtle differences in sodium channel activation and inactivation. These effects of beta1A subunits on sodium channel function may be physiologically important events in the development of excitable cells.  相似文献   

12.
To better understand the protein secretion mechanisms involved in the growth and pathogenesis of Mycobacterium tuberculosis, we examined the secA gene from M. tuberculosis (tbsecA; cosmid sequence accession No. z95121.gb_ba). We generated plasmids containing the full-length tbsecA gene or a fusion containing the 5' sequence from the M. tuberculosis secA gene and the remainder from the Escherichia coli secA gene and evaluated the ability of each construct to complement the defective SecA protein in E. coli MM52ts when grown at the non-permissive temperature. The full-length tbsecA gene was unable to compensate for the temperature-sensitive defect, whereas E. coli MM52ts that has been transformed with plasmid pMF8TB226 containing a chimeric secA gene was able to grow at 42 degrees C. This work confirms that the topography of SecA and its ATP binding sites are highly conserved, whereas its membrane insertion domains are species specific.  相似文献   

13.
Human PSP94 (prostate secretory protein of 94 amino acids) is a major protein synthesized by the prostate gland and secreted in large quantities in seminal fluid. Previous studies have suggested a potential biomedical utility of PSP94 in applications such as diagnosis/prognosis and in treatment of human prostate cancer (PCa). This study was designed to produce a recombinant human PSP94 (rPSP94) to evaluate its clinical and functional role in PCa. We cloned PSP94 cDNA and successfully expressed an active recombinant protein in yeast using Pichia pastoris expression system. A simple purification strategy was established that incorporated combination of membrane ultrafiltration (Pellicon tangential-flow system) and anion exchange chromatography using DE52 resin. The method minimized the technical level of expertise for the production of high quality functional protein. The purified rPSP94 (>98% purity) showed a single band with SDS-PAGE analysis and a peak with a molecular mass (M(r)) of 11,495 kDa using MALDI TOF mass spectrometry (MS). The in vitro competitive binding assays indicated high functional similarity of the rPSP94 with that of its native counterpart. Furthermore, in vivo administration of rPSP94 caused a significant growth inhibition of hormone refractory Mat LyLu tumors in Dunning rat model. Taken together, our data provides evidence for high suitability of the purified rPSP94 for evaluation of its potential diagnostic and therapeutic role in PCa and as a valuable analytical reference standard for clinical studies.  相似文献   

14.
Silicon (Si) is known to be beneficial to plants, namely in alleviating biotic and abiotic stresses. The magnitude of such positive effects is associated with a plant's natural ability to absorb Si. Many grasses can accumulate as much as 10% on a dry weight basis while most dicots, including Arabidopsis, will accumulate less than 0.1%. In this report, we describe the cloning and functional characterization of TaLsi1, a wheat Si transporter gene. In addition, we developed a heterologous system for the study of Si uptake in plants by introducing TaLsi1 and OsLsi1, its ortholog in rice, into Arabidopsis, a species with a very low innate Si uptake capacity. When expressed constitutively under the control of the CaMV 35S promoter, both TaLsi1 and OsLsi1 were expressed in cells of roots and shoots. Such constitutive expression of TaLsi1 or OsLsi1 resulted in a fourfold to fivefold increase in Si accumulation in transformed plants compared to WT. However, this Si absorption caused deleterious symptoms. When the wheat transporter was expressed under the control of a root-specific promoter (a boron transporter gene (AtNIP5;1) promoter), a similar increase in Si absorption was noted but the plants did not exhibit symptoms and grew normally. These results demonstrate that TaLsi1 is indeed a functional Si transporter as its expression in Arabidopsis leads to increased Si uptake, but that this expression must be confined to root cells for healthy plant development. The availability of this heterologous expression system will facilitate further studies into the mechanisms and benefits of Si uptake.  相似文献   

15.
The Na(+)-driven Cl(-)/HCO(3)(-) exchanger is an important regulator of intracellular pH in various cells, but its molecular basis has not been determined. We show here the primary structure, tissue distribution, and functional characterization of Na(+)-driven chloride/bicarbonate exchanger (designated NCBE) cloned from the insulin-secreting cell line MIN6 cDNA library. The NCBE protein consists of 1088 amino acids having 74, 72, and 55% amino acid identity to the human skeletal muscle, rat smooth muscle, and human kidney sodium bicarbonate cotransporter, respectively. The protein has 10 putative membrane-spanning regions. NCBE mRNA is expressed at high levels in the brain and the mouse insulinoma cell line MIN6 and at low levels in the pituitary, testis, kidney, and ileum. Functional analyses of the NCBE protein expressed in Xenopus laevis oocytes and HEK293 cells demonstrate that it transports extracellular Na(+) and HCO(3)(-) into cells in exchange for intracellular Cl(-) and H(+), thus raising the intracellular pH. Thus, we conclude that NCBE is a Na(+)-driven Cl(-)/HCO(3)(-) exchanger that regulates intracellular pH in native cells.  相似文献   

16.
We have cloned the gene that encodes a novel glucosyl transferase (AraGT) involved in rhamnosylation of the polyketide antibiotic Aranciamycin in Streptomyces echinatus. AraGT comprises two domains characteristic of bacterial glycosyltranferases. AraGT was synthesized in E. coli as a decahistidinyl-tagged polypeptide. Purified AraGT is dimeric, displays a T(mapp) of 30 degrees C and can glycosylate the aglycone of an Aranciamycin derivative as shown by liquid chromatography and mass spectrometry. The availability of functional AraGT will allow the generation Aranciamycin-based combinatorial libraries.  相似文献   

17.
A rat brain cDNA (Raw3) related to the Drosophila Shaw K+ channel family has been characterized. Raw3 cRNA leads to the formation of TEA-insensitive, fast inactivating (A-type) K+ channels when injected into Xenopus laevis oocytes. Raw3 channels have markedly different properties from the previously cloned rat A-type K+ channel RCK4, Raw3 channels operate in the positive voltage range.  相似文献   

18.
Human TWIK-1, which has been cloned recently, is a new structural type of weak inward rectifier K+ channel. Here we report the structural and functional properties of TREK-1, a mammalian TWIK-1-related K+ channel. Despite a low amino acid identity between TWIK-1 and TREK-1 (approximately 28%), both channel proteins share the same overall structural arrangement consisting of two pore-forming domains and four transmembrane segments (TMS). This structural similarity does not give rise to a functional analogy. K+ currents generated by TWIK-1 are inwardly rectifying while K+ currents generated by TREK-1 are outwardly rectifying. These channels have a conductance of 14 pS. TREK-1 currents are insensitive to pharmacological agents that block TWIK-1 activity such as quinine and quinidine. Extensive inhibitions of TREK-1 activity are observed after activation of protein kinases A and C. TREK-1 currents are sensitive to extracellular K+ and Na+. TREK-1 mRNA is expressed in most tissues and is particularly abundant in the lung and in the brain. Its localization in this latter tissue has been studied by in situ hybridization. TREK-1 expression is high in the olfactory bulb, hippocampus and cerebellum. These results provide the first evidence for the existence of a K+ channel family with four TMS and two pore domains in the nervous system of mammals. They also show that different members in this structural family can have totally different functional properties.  相似文献   

19.
20.
Pax6 functions as a pleiotropic regulator in eye development and neurogenesis. Its splice variant Pax6 5a has been cloned in many vertebrate species including human and mouse, but never in rat. This study focused on the cloning and characterization of the Pax6 5a orthologous splicing variant in rat. It was cloned from Sprague–Dawley rats 10 days post coitum (E10) by RT-PCR and was sequenced for comparison with Pax6 sequences in the GenBank by BLAST. The rat Pax6 5a was revealed to contain an additional 42 bp insertion at the paired domain. At the nucleotide level, the rat Pax6 5a coding sequence (1311 bp) had a higher degree of homology to the mouse (96% identical) than to the human (93% identical) sequence. At the amino acid (aa) level, rat PAX6 5a shares 99.8% identity with the mouse sequence and 99.5% with the human sequence. The splice variant is preferentially expressed in the rat E10 embryonic headfolds and not in the trunk of neurula. Its effects on the proliferation of rat mesenchymal stem cells (rMSCs) were preliminarily evaluated by the MTT assay. Both pLEGFP-Pax6 5a-transfected cells and pLEGFP-Pax6-transfected cells exhibited a similar growth curve (P > 0.05), suggesting that the Pax6 5a has a similar effect on the proliferation of rMSCs as Pax6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号