首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gao X  Yang XY  Zhu JJ  Yuan JQ  Wang YW  Song MG 《动物学研究》2011,32(6):651-656
During conjugation of Paramecium caudatum, nuclear events occur in a scheduled program. Morphological studies on nuclear behavior during conjugation of P. caudatum have been performed since the end of the 19th century. Here we report on new details concerning the conjugation of P. caudatum through the staining of conjugating cells with protargol, carbol fuchsin solution, Hoechst 33342 and immunofluorescence labeling with monoclonal antibody of anti-α tubulin. 1) The crescent nucleus is a characteristic of the meiotic prophase of P. caudatum, has an unstained area. We stained this area with protargol, which was separated from the chromatin area and was not detected by the other stainings. 2) In regards to the four meiotic products, it has long been considered that only one product enters the paroral cone region (PC) and survives after meiosis. However, our protargol and immunofluorescence labeling results indicated that PC entrance of the meiotic product happened before the completion of meiosis instead of after. 3) In our previous study, protargol staining indicated the presence of a swollen structure around the central part of the "U" and "V" shaped spindles connecting the two types of prospective pronuclei. However, immunofluorescence labeling with anti-α tubulin antibodies gave a different image from protargol. All these observations form the basis for further studies of their molecular mechanisms.  相似文献   

2.
通过吖啶橙和Hoechst 33342两种活体荧光染料双染的方法对第四双小核草履虫(Paramecium tetraurelia)接合生殖过程中小核减数分裂产物进行观察,结果发现位于口旁锥外的小核分裂产物呈蓝绿色或黄绿色,表明它们以凋亡的方式发生退化.  相似文献   

3.
Microtubule dynamics in Paramecium caudatum were investigated with an anti-alpha-tubulin antibody and a microinjection technique to determine the function of microtubules on micronuclear behavior during conjugation. After meiosis, all four haploid micronuclei were connected by microtubular filaments to the paroral region and moved close to this region. This nuclear movement was micronucleus-specific, because some small macronuclear fragments transplanted from exconjugants never moved to the region. Only one of the four germ nuclei moved into the paroral cone and was covered by microtubule assembly (the so-called first assembly of microtubules, AM-I). This nucleus survived there, while the other three not in this region degenerated. The movement of germ nucleus was inhibited by the injection of the anti-alpha-tubulin antibody. The surviving germ nucleus divided once and produced a migratory pronucleus and a stationary pronucleus. Prior to the reciprocal exchange of the migratory nuclei, microtubules assembled around the migratory pronuclei again (the so-called second assembly of microtubules, AM-II). Then, the migratory pronucleus moved into the partner cell and fused with the stationary pronucleus. Thus, microtubules appear to be indispensable for nuclear behavior: they enable migration of postmeiotic nuclei to the paroral region and they permit the survival of the nucleus at the paroral cone.  相似文献   

4.
During conjugation of Paramecium caudatum, there are two well-known stages when nuclear migration occurs. What happens to the nuclei is closely related to their localisations in cells. The first of these stages is the entrance of one meiotic product into the paroral region. This nucleus survives, while the remaining three outside this area degenerate. The second stage is the antero-posterior localisation of eight synkaryon division products. Four posterior nuclei are differentiated into macronuclear anlagen, whereas four anterior nuclei remain as the presumptive micronuclei. In this experiment, the process of the third prezygotic division of P. caudatum was studied with the help of protargol staining. Here, a third nuclear migration was discovered. By two spindle turnings and two spindle elongations, stationary pronuclei were positioned near migratory pronuclei. This positioning of stationary pronuclei could shorten the distance for transferred migratory pronuclei to recognise and reach the stationary pronuclei. This fosters the synkaryon formation of P. caudatum.  相似文献   

5.
We have studied in detail the immunofluorescence localizations of Tetrahymena 14-nm filament-forming protein (49-kDa protein) in relation to tubulin in conjugating wild-type Tetrahymena thermophila (B strain) pairs and in pairs between B strain and star strains with defective micronuclei. The results suggest that germ nuclear behavior during conjugation may involve the following cytoskeletal structures: (1) during meiosis, microtubule structures are involved in micronuclear elongation and meiotic division; (2) at the postmeiotic stage, 49-kDa protein network structures that are formed independently of the existence of pronuclei are involved in the selection and the survival of one of four meiotic products; (3) during the third prezygotic division, gametic pronuclear transfer, and zygote formation, a cytoskeletal structure in which the 49-kDa protein colocalizes with microtubules and which is dependent on the existence of a normal gametic pronucleus is involved in gametic pronuclear behavior, and (4) during the postzygotic divisions, the microtubules are involved in nuclear behavior.  相似文献   

6.
Phage lambda integrative and excisive recombination normally proceeds by a pair of sequential strand exchanges. During the first exchange reaction, the "top" strand in each recombination site is cleaved, exchanged, and religated generating a Holliday junction intermediate. This intermediate DNA structure is resolved through a pair of reciprocal "bottom" strand exchanges, leading to recombinant products. The strict co-ordination of exchange reactions ensures religation between correct partner strands only. Here we show that the directionality of recombination is altered in vivo by two mutant integrases, Int-h (E174 K) and a double mutant Int-h/218 (E174 K/E218 K). This change in directionality leads to deletion instead of inversion on substrates that carry inverted attachment sites and, depending on the pair of target sites employed, requires the presence or absence of integration host factor. Neither Fis nor Xis is involved in deletion. Sequence analyses of deletion products reveal that the newly generated hybrid attachment site exhibits a reversed genetic polarity. We demonstrate that only one of two possible hybrid site configurations is generated and discuss two pathways leading to deletion. In the first, deletion results from a wrong alignment of the two recombination sites within the synaptic complex. In the second pathway, the unco-ordinated cleavage by the mutant integrases of all four DNA strands present in a conventional Holliday junction intermediate leads to two double-stranded breaks, whereby the subsequent rejoining between "wrong" partner strands appears restricted to only two strands.  相似文献   

7.
The nucleus of spermatocytes provides during the first meiotic prophase an interesting model for investigating relationships of the nuclear envelope (NE) with components of the nuclear interior. During the pachytene stage, meiotic chromosomes are synapsed via synaptonemal complexes (SCs) and attached through both ends to the nuclear periphery. This association is dynamic because chromosomes move during the process of synapsis and desynapsis that takes place during meiotic prophase. The NE of spermatocytes possesses some peculiarities (e.g., lower stability than in somatic cells, expression of short meiosis-specific lamin isoforms called C2 and B3) that could be critically involved in this process. For better understanding of the association of chromosomes with the nuclear periphery, in the present study we have investigated the distribution of NE proteins in relation to SC attachment sites. A major outcome was the finding that lamin C2 is distributed in the form of discontinuous domains at the NE of spermatocytes and that SC attachment sites are embedded in these domains. Lamin C2 appears to form part of larger structures as suggested by cell fractionation experiments. According to these results, we propose that the C2-containing domains represent local reinforcements of the NE that are involved in the proper attachment of SCs.  相似文献   

8.
《Developmental biology》1987,122(2):535-539
The survival or degeneration of nuclei produced by meiosis in Paramecium caudatum depends on their position in the cytoplasm. The surviving nucleus always lies in the special region of the cytoplasm called the paroral region, which is the region around the cytostome. The remaining three degenerate outside the region. The mechanism controlling the survival or degeneration of meiotic nuclei was analyzed microsurgically. When the nucleus in the early conjugating cells (stage II) was transplanted into the cell at the stage when three meiotic nuclei were degenerating, it did not degenerate, but divided. When one of the meiotic nuclei which was outside the paroral region and destined to degenerate was transplanted into the cell in the meiotic prophase (stage IV), it did not survive but degenerated. When the surviving nucleus in the paroral region was removed microsurgically, one of the three meiotic nuclei lying outside the paroral region and destined to degenerate moved into the paroral region and survived. These results suggest that the nuclei after meiosis are destined to degenerate but can be rescued from degeneration by the special environment of the paroral region.  相似文献   

9.
In a previous study, the apoptotic degeneration of meiotic products outside the paroral region of Paramecium caudatum was indirectly demonstrated by means of “apofluor” staining. In this experiment, conjugating pairs and exconjugants of P. caudatum were stained with either “apofluor” or carbol fuchsin or both to find some direct evidence to demonstrate the apoptotic characteristics of this process. As a result, asynchronous meiotic nuclear degeneration was observed. Furthermore, a number of additional meiotic nuclei were found. Disintegrating/dividing meiotic nuclei outside the paroral region were observed, which might be the origin of these additional meiotic nuclei. Condensed chromatin and disintegrated chromatin attached to the nuclear membrane were also observed in degenerating nuclei, which are the typical morphological characteristics of apoptosis. Comparison of the cells stained by the above two methods indicated that “apofluor”-stained meiotic nuclei could not be detected by carbol fuchsin in some cells, which suggests a time lag between meiotic nuclear DNA degradation and their eventual disappearance. In this study, some direct evidence was found to show that the meiotic nuclear degeneration in P. caudatum is of apoptotic nature, which further confirmed our previous study (Yang et al. 2007) and indicated that morphological apoptotic characteristics discovered in multicellular organisms do exist in unicellular eukaryotic ciliate protozoa.  相似文献   

10.
The Int proteins of bacteriophages HK022 and lambda promote recombination between phage and bacterial attachment sites. Although the proteins and attachment sites of the two phages are similar, neither protein promotes efficient recombination between the pair of attachment sites used by the other phage. To analyze this difference in specificity, we constructed and characterized chimeric attachment sites in which segments of one site were replaced with corresponding segments of the other. Most such chimeras recombined with appropriate partner sites in vivo and in vitro, and their differential responses to the Int proteins of the two phages allowed us to locate determinants of the specificity difference in the bacterial attachment sites and a central segment of the phage attachment sites. The location of these determinants encompasses three of the four core-type binding sites for lambda Int: C, B, and most importantly, B'. The regions corresponding to the C' core binding site and the arm-type binding sites of lambda Int play no role in the specificity difference and, indeed, are well conserved in the two phages. We found, unexpectedly, that the effect of replacement of an Int-binding region on the recombinational potency of one chimeric site was reversed by a change of partner. This novel context effect suggests that postsynaptic interactions affect the specificity of recognition of attachment sites by Int.  相似文献   

11.
J. Gaertig  Anne Fleury 《Protoplasma》1992,167(1-2):74-87
Summary Indirect immunofluorescence has revealed various intracytoplasmic microtubular structures, which are transiently polymerized in specific subcellular locations during the developmental process of conjugation in the ciliateTetrahymena thermophila. These structures include: (1) micronuclear spindles, (2) perimicronuclear microtubules, (3) microtubular baskets surrounding migrating pronuclei, and (4) microtubules interconnecting the pronuclei with the conjugants' junctional zone. Furthermore, a peripheral network of intracytoplasmic microtubules related to the cell cortex is present in both vegetative cells and in conjugants. Comparative observations made on cells undergoing normal conjugation and defective conjugation (occurring either spontaneously or induced by taxol) has revealed some rules governing the pattern of deployment of conjugation-specific microtubules. The presence of perinuclear microtubular arrays during early postmeiotic stages of development is strictly limited to more anteriorly located nuclei which includes the selected haploid nucleus that further divides to form the stationary and migratory pronuclei. These perinuclear microtubules may be involved in the positional control of nuclear fates leading to effective nuclear selection. Microtubular bundles associated with pronuclei and connecting the junctional zone are only formed in the presence of functional pronuclei, and may be involved in the guidance of pronuclei leading to their fusion. The mechanism of cytoplasmic control of nuclear differentiation of derivatives of the zygotic nucleus appear to be associated with a coordinate action of two microtubular arrays: spindle microtubules of the second postzygotic division and the peripheral intracytoplasmic network of microtubules, leading to a proper subcortical positioning of the postzygotic nuclei at opposite poles of the cell.Abbreviations MTs Microtubules  相似文献   

12.
During meiosis, the alignment of homologous chromosomes facilitates their subsequent migration away from one another to opposite spindle poles at anaphase I. Recombination is part of the mechanism by which chromosomes identify their homologous partners, and serves to link the homologs in a way that, in some organisms, has been shown to promote proper attachment to the meiotic spindle. We have built a diploid strain that contains a pair of homeologous chromosomes V': one is derived from Saccharomyces cerevisiae and one originates from S. carlsbergensis. Sequence analysis reveals that these chromosomes share 71% sequence identity. The homeologs experience high levels of meiotic double-stranded breaks. Despite their relatedness and their competence to initiate recombination, the meiotic segregation behavior of the homeologous chromosomes suggests that, in most meioses, they are partitioned by a meiotic segregation system that has been shown previously to partition non-exchange chromosomes and pairs with no homology. Though the homeologous chromosomes show a degree of meiotic segregation fidelity similar to that of other non-exchange pairs, our data provide evidence that their limited sequence homology may provide some bias in meiotic partner choice.  相似文献   

13.
Four types of anomalous conjugation were documented in Stylonychia mytilus. Type I pairs were formed between mates of different sizes. These pairs exhibited an abnormal site of fusion in at least one of the mates, and the mates might face each other ventrally throughout conjugation instead of the normal side-by-side position. Type I pairs underwent sexual nuclear development and proceeded with the first cortical reorganization as in normal conjugants. Type II involved pairing at the anterior ends of mates with ventral surfaces facing the same direction. These pairs also underwent sexual nuclear development. Hence, aberrant orientation of the mates, and also ectopic sites of cytoplasmic fusion, if extensive, would permit sexual development. Type III pairs were united ventral-to-ventral with their anterior-left sides at the adoral zone of membranelles, and remained as such throughout conjugation. In these pairs, nuclear and cortical events were typical of the asexual development of physiological reorganization. In Type IV pairs, one mate of the pair possessed a fission furrow and developed two sets of ciliature typical of binary fission, while the other mate might undergo physiological reorganization or binary fission. Type III and Type IV pairs thus reveal the asexual state of early conjugants, which can pursue either one of the two modes of asexual cortical reorganization; these cases reinforce the notion of overlap of asexual and sexual cycles during conjugation of hypotrichs. Spontaneous autogamy was documented for the first time for this genus. The autogamonts proceeded with nuclear development and with the first cortical reorganization. Some probably underwent second and third reorganizations, as in conjugants, but accompanied by abnormalities, particularly in the stages beyond fertilization. Post-autogamous clones were nonviable except for one dubious case.  相似文献   

14.
Kathleen Church 《Chromosoma》1976,58(4):365-376
Evidence is presented that chromosome ends are attached to the nuclear envelope prior to the formation of axial cores during early meiotic prophase in the grasshopper Brachystola magna. The attachment sites of distal and proximal chromosome ends are clustered in a small region of the inner nuclear envelope resulting in a classical bouquet arrangement of the chromosomes. Proximal ends are tightly clustered due to the presence of chromocenters. Distal chromosome ends are more widely scattered throughout the base of the bouquet. —Axial core formation can be initiated at chromosome ends or at internal chromosome sites. However, there is a preference for axial cores to form in distal chromosome regions rather than proximal regions during early meiotic prophase. — Virtually all of the nuclear pore complexes are located in the general vicinity of the chromosome attachment sites but each specific attachment site is surrounded by a small area of nuclear envelope which is devoid of pore complexes.  相似文献   

15.
Conjugating Tetrahymena were irradiated by ultraviolet-B (UV-B) at various stages of conjugation. When the conjugants were exposed to the UV-B at late meiotic prophase (the stage from pachytene to diplotene), abortive conjugation was induced at high frequencies. After completing meiosis, a significant number of the conjugants showed marked anomalies, i.e., failure of nuclear selection after meiosis, and abortion of the subsequent conjugation process such as a postmeiotic division to form gametic nuclei, nuclear exchange, synkaryon formation, and postzygotic development. The conjugating pairs retained the parental macronucleus and separated earlier as compared with a control. The resultant exconjugants degenerated meiotic products and became amicronucleates. These observations strongly suggest the presence of a UV-sensitive molecule that is expressed specifically at the meiotic prophase and that directs the subsequent development after meiosis. Dev. Genet. 23:151–157, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
During early meiotic prophase chromosome ends become attached to the nuclear envelope, a process that is essential for faithful homologue pairing and segregation. The factors involved in this attachment are largely unknown. Here we investigated the possible involvement of telomere chromatin by using late generation (G5 and G6) Terc-/- mice. These mice lack telomerase activity and show progressive telomere shortening with increasing mouse generations. We show here that in meiotic chromosome ends of late generation Terc-/- mice telomeric TTAGGG repeats and the TRF1 telomere-binding protein are significantly reduced or below detection level. In spite of this, electron microscopy showed no apparent structural differences at the attachment sites of meiotic chromosomes to the nuclear envelope between wild-type and G6 Terc-/- meiocytes. These results suggest, as already shown in yeast, that most telomere chromatin is dispensable for proper attachment of mammalian meiotic chromosome ends to the nuclear envelope.  相似文献   

17.
18.
Chloroplasts contain up to two c-type cytochromes, membrane-anchored cytochrome f and soluble cytochrome c6. To elucidate the post-translational events required for their assembly, acetate-requiring mutants of Chlamydomonas reinhardtii that have combined deficiencies in both plastid-encoded cytochrome f and nucleus-encoded cytochrome c6 have been identified and analyzed. For strains ct34 and ct59, where the phenotype displays uniparental inheritance, the mutations were localized to the chloroplast ccsA gene, which was shown previously to be required for heme attachment to chloroplast apocytochromes. The mutations in another eight strains were localized to the nuclear genome. Complementation tests of these strains plus three previously identified strains of the same phenotype (ac206, F18, and F2D8) indicate that the 11 ccs strains define four nuclear loci, CCS1-CCS4. We conclude that the products of the CCS1-CCS4 loci are not required for translocation or processing of the preproteins but, like CcsA, they are required for the heme attachment step during assembly of both holocytochrome f and holocytochrome c6. The ccsA gene is transcribed in each of the nuclear mutants, but its protein product is absent in ccs1 mutants, and it appears to be degradation susceptible in ccs3 and ccs4 strains. We suggest that Ccsl may be associated with CcsA in a multisubunit "holocytochrome c assembly complex," and we hypothesize that the products of the other CCS loci may correspond to other subunits.  相似文献   

19.
Meiotic recombination requires pairing of homologous chromosomes, the mechanisms of which remain largely unknown. When pairing occurs during meiotic prophase in fission yeast, the nucleus oscillates between the cell poles driven by astral microtubules. During these oscillations, the telomeres are clustered at the spindle pole body (SPB), located at the leading edge of the moving nucleus and the rest of each chromosome dangles behind. Here, we show that the oscillatory nuclear movement of meiotic prophase is dependent on cytoplasmic dynein. We have cloned the gene encoding a cytoplasmic dynein heavy chain of fission yeast. Most of the cells disrupted for the gene show no gross defect during mitosis and complete meiosis to form four viable spores, but they lack the nuclear movements of meiotic prophase. Thus, the dynein heavy chain is required for these oscillatory movements. Consistent with its essential role in such nuclear movement, dynein heavy chain tagged with green fluorescent protein (GFP) is localized at astral microtubules and the SPB during the movements. In dynein-disrupted cells, meiotic recombination is significantly reduced, indicating that the dynein function is also required for efficient meiotic recombination. In accordance with the reduced recombination, which leads to reduced crossing over, chromosome missegregation is increased in the mutant. Moreover, both the formation of a single cluster of centromeres and the colocalization of homologous regions on a pair of homologous chromosomes are significantly inhibited in the mutant. These results strongly suggest that the dynein-driven nuclear movements of meiotic prophase are necessary for efficient pairing of homologous chromosomes in fission yeast, which in turn promotes efficient meiotic recombination.  相似文献   

20.
We studied cell size and shape, nuclear changes, and the ciliary pattern during conjugation of Protospathidium serpens, using protargol impregnation and morphometry. Preliminary data were gathered from Epispathidium ascendens and Apertospathula armata. Conjugation of P. serpens is temporary, isogamic, and without preconjugation divisions. Pair formation is heteropolar, and the partners unite obliquely with the oral bulge. The body becomes smaller and broader during conjugation, but no basic changes occur in the ciliary pattern. Conjugation and nuclear reconstruction follow the usual mode of ciliates. However, some peculiarities occur: only two of the four synkaryon derivatives of the second synkaryon division enter the third division and generate four macronuclear anlagen, which fuse to a single, long macronucleus strand. During conjugation, E. ascendens unites obliquely as P. serpens, while A. armata can pair dorsal-to-dorsal surface, ventral-to-dorsal surface, or obliquely as P. serpens. The nuclear processes of these three species are also rather different, showing a considerable diversity in union modes and nuclear events of spathidiids; E. ascendens even has preconjugation division. Confirming previous data, the present study shows convincingly that most of the spathidiid nuclear variability is caused by reconstruction processes occurring in post-dividers, exconjugants and, possibly, exautogamonts. When these specimens are removed from the populations, spathidiid species are as stable (or variable) as other ciliate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号