首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Microsomal prostaglandin E synthase (mPGES)-1 is a newly identified inducible enzyme of the arachidonic acid cascade with a key function in prostaglandin (PG)E2 synthesis. We investigated the kinetics of inducible cyclo-oxygenase (COX)-2 and mPGES-1 expression with respect to the production of 6-keto-PGF1alpha and PGE2 in rat chondrocytes stimulated with 10 ng/ml IL-1beta, and compared their modulation by peroxisome-proliferator-activated receptor (PPAR)gamma agonists. Real-time PCR analysis showed that IL-1beta induced COX-2 expression maximally (37-fold) at 12 hours and mPGES-1 expression maximally (68-fold) at 24 hours. Levels of 6-keto-PGF1alpha and PGE2 peaked 24 hours after stimulation with IL-1beta; the induction of PGE2 was greater (11-fold versus 70-fold, respectively). The cyclopentenone 15-deoxy-Delta12,14prostaglandin J2 (15d-PGJ2) decreased prostaglandin synthesis in a dose-dependent manner (0.1 to 10 microM), with more potency on PGE2 level than on 6-keto-PGF1alpha level (-90% versus -66% at 10 microM). A high dose of 15d-PGJ2 partly decreased COX-2 expression but decreased mPGES-1 expression almost completely at both the mRNA and protein levels. Rosiglitazone was poorly effective on these parameters even at 10 microM. Inhibitory effects of 10 microM 15d-PGJ2 were neither reduced by PPARgamma blockade with GW-9662 nor enhanced by PPARgamma overexpression, supporting a PPARgamma-independent mechanism. EMSA and TransAM analyses demonstrated that mutated IkappaBalpha almost completely suppressed the stimulating effect of IL-1beta on mPGES-1 expression and PGE2 production, whereas 15d-PGJ2 inhibited NF-kappaB transactivation. These data demonstrate the following in IL-1-stimulated rat chondrocytes: first, mPGES-1 is rate limiting for PGE2 synthesis; second, activation of the prostaglandin cascade requires NF-kappaB activation; third, 15d-PGJ2 strongly inhibits the synthesis of prostaglandins, in contrast with rosiglitazone; fourth, inhibition by 15d-PGJ2 occurs independently of PPARgamma through inhibition of the NF-kappaB pathway; fifth, mPGES-1 is the main target of 15d-PGJ2.  相似文献   

2.
Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme regulating the synthesis of prostaglandin E2 (PGE2) in inflammatory conditions. In this study we investigated the regulation of mPGES-1 in gingival fibroblasts stimulated with the inflammatory mediators interleukin-1 beta (IL-1beta) and tumour necrosis factor alpha (TNFalpha). The results showed that IL-1beta and TNFalpha induce the expression of mPGES-1 without inducing the expression of early growth response factor-1 (Egr-1). Treatment of the cells with the PLA2 inhibitor 4-bromophenacyl bromide (BPB) decreased the cytokine-induced mPGES-1 expression accompanied by decreased PGE2 production whereas the addition of arachidonic acid (AA) upregulated mPGES-1 expression and PGE2 production. The protein kinase C (PKC) activator PMA did not upregulate the expression of mPGES-1 in contrast to COX-2 expression and PGE2 production. In addition, inhibitors of PKC, tyrosine and p38 MAP kinase markedly decreased the cytokine-induced PGE2 production but not mPGES-1 expression. Moreover, the prostaglandin metabolites PGE2 and PGF2alpha induced mPGES-1 expression as well as upregulated the cytokine-induced mPGES-1 expression indicating positive feedback regulation of mPGES-1 by prostaglandin metabolites. The peroxisome proliferator-activated receptor-gamma (PPARgamma) ligand, 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), decreased mPGES-1 expression but not COX-2 expression or PGE2 production. The results indicate that the inflammatory-induced mPGES-1 expression is regulated by PLA2 and 15d-PGJ2 but not by PKC, tyrosine kinase or p38 MAP kinase providing new insights into the regulation of mPGES-1.  相似文献   

3.
4.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have been shown to inhibit the effects of proinflammatory cytokines such as interleukin-1beta (IL-1beta). This cytokine plays a key role in articular pathophysiologies by inducing the production of inflammatory mediators such as nitric oxide (NO) and prostaglandin E(2) (PGE(2)). We previously demonstrated that 15d-PGJ(2) was more potent than troglitazone to counteract IL-1beta effects on chondrocytes. Here, we studied the action of 15d-PGJ(2) on intracellular targets in nuclear factor-kappaB (NF-kappaB) signalling pathway in IL-1beta treated rat chondrocytes. We found that 15d-PGJ(2) decreased inhibitor kappaBalpha (IkappaBalpha) degradation but not its phosphorylation by specifically inhibiting IkappaB kinase beta (IKKbeta), but not IKKalpha, enzymatic activity. We further evaluated the involvement of PPARgamma in the anti-inflammatory action of its ligands. In chondrocytes overexpressing functional PPARgamma protein, 15d-PGJ(2) pre-treatment inhibited inducible NO synthase and COX-2 mRNA expression, nitrite and PGE(2) production, p65 translocation and NF-kappaB activation. Troglitazone or rosiglitazone pre-treatment had no effect. 15d-PGJ(2) exhibited the same effect in chondrocytes overexpressing mutated PPARgamma protein. These results suggest that 15d-PGJ(2) exerts its anti-inflammatory effect in rat chondrocytes by a PPARgamma-independent mechanism, which can be conferred to a partial inhibition of IkappaBalpha degradation.  相似文献   

5.
6.
Rheumatoid arthritis (RA) is a chronic polyarticular joint disease associated with massive synovial proliferation, inflammation, and angiogenesis. PPAR-gamma ligands, both 15-deoxy-Delta(12,14)-prostaglandin J2 (15d- PGJ2) and troglitazone (TRO), can inhibit the growth of RA synoviocytes in vitro, and suppress the chronic inflammation of adjuvant-induced arthritis in rats, but the potency of 15d-PGJ2 is higher than TRO. Prostaglandin (PG) E2 plays important roles in joint erosion and synovial inflammation. In the present study, 15d-PGJ2, but not TRO and other prostanoids, suppressed interleukin (IL)-1beta-induced PGE2 synthesis in rheumatoid synovial fibroblasts (RSFs) through the inhibition of cyclooxygenase (COX-2) and cytosolic phospholipase A2 (cPLA2) expression. Furthermore, the inhibition was not affected by pretreatment with anti-PPAR-gamma antibody. It means that this anti-inflammatory effect of 15d-PGJ2 for PG synthesis may be independent of PPAR-gamma and 15d-PGJ2 is a key regulator of negative feedback of the arachidonate cascade on the COX pathway. These findings provide new insight into the feedback mechanism of the arachidonate cascade.  相似文献   

7.
The activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been shown to inhibit the production and the effects of proinflammatory cytokines. Since interleukin-1beta (IL-1beta) directly mediates cartilage degradation in osteoarthritis, we investigated the capability of PPARgamma ligands to modulate IL-1beta effects on human chondrocytes. RT-PCR and Western blot analysis revealed that PPARgamma expression was decreased by IL-1beta. 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), in contrast to troglitazone, was highly potent to counteract IL-1beta-induced cyclooxygenase-2 and inductible nitric oxide synthase expression, NO production and the decrease in proteoglycan synthesis. Western blot and gel-shift analyses demonstrated that 15d-PGJ2 inhibited NF-kappaB activation, while troglitazone was ineffective. Although 15d-PGJ2 attenuated activator protein-1 binding on the DNA, it potentiated c-jun migration in the nucleus. The absence or the low effect of troglitazone suggests that 15d-PGJ2 action in human chondrocytes is mainly PPARgamma-independent.  相似文献   

8.
CCAAT/enhancer-binding protein (C/EBP)-binding motifs have been identified in the promoter regions of interleukin (IL)-6, tumor necrosis factor-alpha, and platelet-derived growth factor-alpha receptor (PDGFalphaR). Recently, peroxisome proliferator-activated receptors (PPARs) have been suggested to be important immunomodulatory mediators. Although many studies have demonstrated that the interaction between C/EBPs and PPARs plays a central role in lipid metabolism, expression and function of these factors are unknown in vascular smooth muscle cells (VSMCs). In the present study, we clarified a functional relationship between C/EBPs and PPARgamma in the regulation of IL-1beta-induced PDGFalphaR expression in VSMCs. PPARgamma activators, troglitazone and 15-deoxy-Delta(12,14)-prostaglandin J(2), inhibited IL-1beta-induced PDGFalphaR expression and suppressed PDGF-induced proliferation activity of VSMCs. Electromobility shift and supershift assays for a C/EBP motif in the PDGFalphaR promoter region revealed that PPARgamma activators suppressed IL-1beta-induced DNA binding activity of C/EBPdelta and beta. PPARgamma activators also suppressed IL-1beta-induced C/EBPdelta expression. In contrast, overexpression of C/EBPdelta reversed the suppressive effect of PPARgamma activators on PDGFalphaR expression almost completely. From these results, we conclude that the inhibitory effect of PPARgamma activators on PDGFalphaR expression is mainly mediated by C/EBPdelta suppression. Regulation of C/EBPdelta by PPARgamma activators probably plays critical roles in modulating inflammatory responses in the arterial wall.  相似文献   

9.
In response to inflammatory cytokines, chondrocytes and synovial fibroblasts produce high amounts of prostaglandins (PG) which self-perpetuate locally the inflammatory reaction. Prostaglandins act primarily through membrane receptors coupled to G proteins but also bind to nuclear Peroxisome Proliferator-Activated Receptors (PPARs). Amongst fatty acids, the cyclopentenone metabolite of PGD2, 15-deoxy-Delta12,14PGJ2 (15d-PGJ2), was shown to be a potent ligand of the PPARgamma isotype prone to inhibit the production of inflammatory mediators. As the stimulated synthesis of PGE2 originates from the preferential coupling of inducible enzymes, cyclooxygenase-2 (COX-2) and membrane PGE synthase-1 (mPGES-1), we investigated the potency of 15d-PGJ2 to regulate prostaglandins synthesis in rat chondrocytes stimulated with interleukin-1beta (IL-1beta). We demonstrated that 15d-PGJ2, but not the high-affinity PPARgamma ligand rosiglitazone, decreased almost completely PGE2 synthesis and mPGES-1 expression. The inhibitory potency of 15d-PGJ2 was unaffected by changes in PPARgamma expression and resulted from inhibition of NF-kappaB nuclear binding and IkappaBalpha sparing, secondary to reduced phosphorylation of IKKbeta. Consistently with 15d-PGJ2 being a putative endogenous regulator of the inflammatory reaction if synthesized in sufficient amounts, the present data confirm the variable PPARgamma-dependency of its effects in joint cells while underlining possible species and cell types specificities.  相似文献   

10.
The studies of PGE2 (prostaglandin E2) biosynthesis have focused primarily on the role of cyclo-oxygenases. Efforts have shifted towards the specific PGE2 terminal synthases, particularly mPGES-1 (microsomal PGE synthase 1), which has emerged as the crucial inducible synthase with roles in pain, cancer and inflammation. mPGES-1 is induced by pro-inflammatory cytokines with studies focusing on the proximal promoter, mediated specifically through Egr-1 (early growth-response factor 1). Numerous studies demonstrate that the mPGES-1 promoter (PTGES) alone cannot account for the level of IL-1β (interleukin 1β) induction. We identified two DNase I-hypersensitive sites within the proximal promoter near the Egr-1 element and a novel distal site near -8.6 kb. Functional analysis of the distal site revealed two elements that co-operate with basal promoter expression and a stimulus-dependent enhancer. A specific binding site for C/EBPβ (CCAAT/enhancer-binding protein β) in the enhancer was directly responsible for inducible enhancer activity. ChIP (chromatin immunoprecipitation) analysis demonstrated constitutive Egr-1 binding to the promoter and induced RNA polymerase II and C/EBPβ binding to the promoter and enhancer respectively. Knockout/knockdown studies established a functional role for C/EBPβ in mPGES-1 gene regulation and the documented interaction between Egr-1 and C/EBPβ highlights the proximal promoter co-operation with a novel distal enhancer element in regulating inducible mPGES-1 expression.  相似文献   

11.
12.
Microsomal prostaglandin E synthase (mPGES)-1, which is dramatically induced in macrophages by inflammatory stimuli such as lipopolysaccharide (LPS), catalyzes the conversion of cyclooxygenase-2 (COX-2) reaction product prostaglandin H(2) (PGH(2)) into prostaglandin E(2) (PGE(2)). The mPGES-1-derived PGE(2) is thought to help regulate inflammatory responses. On the other hand, excess PGE(2) derived from mPGES-1 contributes to the development of inflammatory diseases such as arthritis and inflammatory pain. Here, we examined the effects of liver X receptor (LXR) ligands on LPS-induced mPGES-1 expression in murine peritoneal macrophages. The LXR ligands 22(R)-hydroxycholesterol (22R-HC) and T0901317 reduced LPS-induced expression of mPGES-1 mRNA and mPGES-1 protein as well as that of COX-2 protein. However, LXR ligands did not influence the expression of microsomal PGES-2 (mPGES-2) or cytosolic PGES (cPGES) protein. Consequently, LXR ligands suppressed the production of PGE(2) in macrophages. These results suggest that LXR ligands diminish PGE(2) production by inhibiting the LPS-induced gene expression of the COX-2-mPGES-1 axis in LPS-activated macrophages.  相似文献   

13.
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily that is activated by binding certain fatty acids, eicosanoids, and insulin-sensitizing thiazolidinediones (TZD). The TZD troglitazone (TRO) inhibits vascular smooth muscle cell proliferation and migration both in vitro and in vivo. The precise mechanism of its antiproliferative activity, however, has not been elucidated. We report here that PPARgamma ligands inhibit rat aortic vascular smooth muscle cell proliferation by blocking the events critical for G(1) --> S progression. Flow cytometry demonstrated that both TRO and another TZD, rosiglitazone, prevented G(1) --> S progression induced by platelet-derived growth factor and insulin. Movement of cells from G(1) --> S was also inhibited by the non-TZD, natural PPARgamma ligand 15-deoxy-(12,14)Delta prostaglandin J(2) (15d-PGJ(2)), and the mitogen-activated protein kinase pathway inhibitor PD98059. Inhibition of G(1) --> S exit by these compounds was accompanied by a substantial blockade of retinoblastoma protein phosphorylation. TRO and rosiglitazone attenuated both the mitogen-induced degradation of p27(kip1) and the mitogenic induction of p21(cip1). 15d-PGJ(2) and PD98059 inhibited both the degradation of p27(kip1) and the induction of cyclin D1 in response to mitogens. These effects resulted in the inhibition of mitogenic stimulation of cyclin-dependent kinases activated by cyclins D1 and E. These data demonstrate that PPARgamma ligands are antiproliferative drugs that act by modulating cyclin-dependent kinase inhibitors; they may provide a new therapeutic approach for proliferative vascular diseases.  相似文献   

14.
15.
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-regulated nuclear receptor superfamily member. Liganded PPARgamma exerts diverse biological effects, promoting adipocyte differentiation, inhibiting tumor cellular proliferation, and regulating monocyte/macrophage and anti-inflammatory activities in vitro. In vivo studies with PPARgamma ligands showed enhancement of tumor growth, raising the possibility that reduced immune function and tumor surveillance may outweigh the direct inhibitory effects of PPARgamma ligands on cellular proliferation. Recent findings that PPARgamma ligands convey PPARgamma-independent activities through IkappaB kinase (IKK) raises important questions about the specific mechanisms through which PPARgamma ligands inhibit cellular proliferation. We investigated the mechanisms regulating the antiproliferative effect of PPARgamma. Herein PPARgamma, liganded by either natural (15d-PGJ(2) and PGD(2)) or synthetic ligands (BRL49653 and troglitazone), selectively inhibited expression of the cyclin D1 gene. The inhibition of S-phase entry and activity of the cyclin D1-dependent serine-threonine kinase (Cdk) by 15d-PGJ(2) was not observed in PPARgamma-deficient cells. Cyclin D1 overexpression reversed the S-phase inhibition by 15d-PGJ(2). Cyclin D1 repression was independent of IKK, as prostaglandins (PGs) which bound PPARgamma but lacked the IKK interactive cyclopentone ring carbonyl group repressed cyclin D1. Cyclin D1 repression by PPARgamma involved competition for limiting abundance of p300, directed through a c-Fos binding site of the cyclin D1 promoter. 15d-PGJ(2) enhanced recruitment of p300 to PPARgamma but reduced binding to c-Fos. The identification of distinct pathways through which eicosanoids regulate anti-inflammatory and antiproliferative effects may improve the utility of COX2 inhibitors.  相似文献   

16.
Interleukin (IL-)1 stimulates prostaglandin E(2)(PGE(2)) generation in fibroblasts, and preferential couplings between particular phospholipase A(2)(PLA(2)) and cyclooxygenase (COX) isozymes are implicated with IL-1-induced delayed PGE(2)generation. The regulatory effects of interferon (IFN)-gamma and IL-4 on IL-1beta-induced COX, PLA(2)isoforms expression and terminal delayed PGE(2)generation were examined in three types of human fibroblasts. These human fibroblasts constitutively expressed cytosolic PLA(2)(cPLA(2)) and COX-1 enzymes, and exhibited delayed PGE(2)generation in response to IL-1beta. IL-1beta also stimulated expression of cPLA(2)and COX-2 only, while constitutive and IL-1beta-induced type IIA and type V secretory PLA(2)s (sPLA(2)s) expression could not be detected. A COX-2 inhibitor and cPLA(2)inhibitor markedly suppressed the IL-1beta-induced delayed PGE(2)generation, while a type IIA sPLA(2)inhibitor failed to affect it. IFN-gamma and IL-4 dramatically inhibited the IL-1beta-induced delayed PGE(2)generation; these cytokines apparently suppressed IL-1beta-stimulated COX-2 expression and only weakly suppressed cPLA(2)expression in response to IL-1beta. These results indicate that IL-1beta-induced delayed PGE(2)generation in these human fibroblasts mainly depends on de novo induction of COX-2 and cPLA(2), irrespective of the constitutive presence of COX-1, and that IFN-gamma and IL-4 inhibit IL-1beta-induced delayed PGE(2)generation by suppressing, predominantly, COX-2 expression.  相似文献   

17.
We have previously shown that the cyclooxygenase (COX)-2/PGE2 pathway plays a key role in VEGF production in gastric fibroblasts. Recent studies have identified three PGE synthase (PGES) isozymes: cytosolic PGES (cPGES) and microsomal PGES (mPGES)-1 and -2, but little is known regarding the expression and roles of these enzymes in gastric fibroblasts. Thus we examined IL-1beta-stimulated mPGES-1 and cPGES mRNA and protein expression in gastric fibroblasts by quantitative PCR and Western blot analysis, respectively, and studied both their relationship to COX-1 and -2 and their roles in PGE2 and VEGF production in vitro. IL-1beta stimulated increases in both COX-2 and mPGES-1 mRNA and protein expression levels. However, COX-2 mRNA and protein expression were more rapidly induced than mPGES-1 mRNA and protein expression. Furthermore, MK-886, a nonselective mPGES-1 inhibitor, failed to inhibit IL-1beta-induced PGE2 release at the 8-h time point, while totally inhibiting PGE2 at the later stage. However, MK-886 did inhibit IL-1beta-stimulated PGES activity in vitro by 86.8%. N-(2-cyclohexyloxy-4-nitrophenyl)-methanesulfonamide (NS-398), a selective COX-2 inhibitor, totally inhibited PGE2 production at both the 8-h and 24-h time points, suggesting that COX-2-dependent PGE2 generation does not depend on mPGES-1 activity at the early stage. In contrast, NS-398 did not inhibit VEGF production at 8 h, and only partially at 24 h, whereas MK-886 totally inhibited VEGF production at each time point. These results suggest that IL-1beta-induced mPGES-1 protein expression preferentially coupled with COX-2 protein at late stages of PGE2 production and that IL-1beta-stimulated VEGF production was totally dependent on membrane-associated proteins involved in eicosanoid and glutathione metabolism (MAPEG) superfamily proteins, which includes mPGES-1, but was partially dependent on the COX-2/PGE2 pathway.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号