首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superinfection of polyoma virus-infected mouse embryo cells by beta-propiolactone-inactivated Sendai virus resulted in a 90% inhibition of the synthesis of infectious polyoma progeny. The interference is dependent upon the time of superinfection and the concentration of the inactivated virus. The inhibition of polyoma virus synthesis is transient in nature since normal synthesis of polyoma progeny virus is seen upon prolonged incubation. Interferon does not appear to be implicated in the interference. Various aspects of the biological and synthetic capabilities of beta-propiolactone-inactivated Sendai virus are also described.  相似文献   

2.
Ultraviolet irradiation and actinomycin D impair the capacity of mouse embryo (ME) cells to support the replication of polyoma virus, but not of encephalomyocarditis (EMC) virus. The loss in capacity for polyoma virus synthesis was an “all-or-none” effect and followed closely upon the loss in cellular capacity for clone formation. Cells treated with either agent produced polyoma “T” antigen, but did not synthesize polyoma structural protein. Infection of untreated ME cells with polyoma virus produced marked stimulation of both deoxyribonucleic acid (DNA) synthesis and ribonucleic acid (RNA) synthesis. ME cell cultures irradiated with ultraviolet for 30 sec at 60 μw/cm2 or treated with actinomycin D at 0.1 μg/ml for 6 hr prior to infection were incapable of synthesizing DNA or RNA, even after infection with polyoma virus. Irradiation of cells during infection produced cessation of synthesis of both RNA and DNA. Addition of actinomycin D during infection did not inhibit DNA synthesis but abolished RNA synthesis and reduced the yield of polyoma virus to 10% of that in untreated infected cultures. Both agents lost the ability to prevent replication of a full yield of polyoma virus when administered 30 hr after infection or later. The period after which neither agent inhibited polyoma replication corresponded with the period at which maximal RNA synthesis in untreated infected cultures had subsided. It can be concluded on the basis of the data presented that the functional integrity of the mouse embryo cell genome is required for the replication of polyoma virus, but not for EMC virus. Whereas the requirement for cellular DNA-dependent RNA synthesis for polyoma virus replication has been demonstrated, the exact nature of the host-cell function remains to be elucidated.  相似文献   

3.
The addition of phleomycin (25 mug) to primary mouse embryo cells infected with polyoma virus was found to cause 96% inhibition of the synthesis of infectious virus. When ribonucleic acid and protein synthesis was investigated in these cells by use of isotope incorporation, it was found that neither was inhibited drastically. Immunofluorescent staining studies with the use of antibody directed to the viral structural proteins showed that proteins were synthesized in the presence of the antibiotic. However, when deoxyribonucleic acid (DNA) synthesis was investigated, it was found that DNA synthesis in uninfected cells was completely inhibited within the initial 10 hr of phleomycin addition, whereas DNA synthesis in infected cells proceeded at a reduced rate. Selective DNA extraction (Hirt method) of phleomycin-treated infected cells demonstrated that synthesized viral DNA was salt-extractable, similar to that in infected control cells lacking phleomycin. This extracted DNA was further fractionated by ethidium bromide-cesium chloride density gradient equilibrium centrifugation. The phleomycin-treated preparations revealed twice as much component II (circular nicked and linear) as component I (supercoiled) DNA, whereas the DNA from normally infected control cells showed the reverse picture. It was also demonstrated that viral particles synthesized in the presence of phleomycin did not contain component I DNA. This packaged DNA was found to consist of fragments of both the host and viral types. Cells that were prelabeled with (3)H-thymidine and then treated with phleomycin demonstrated host DNA degradation. However, fragments formed from prelabeled host DNA were not encapsidated into viral particles.  相似文献   

4.
Vitamin A (retinoic acid) inhibited polyoma virus replication in confluent mouse embryo cells. A significant, dose dependent inhibition was observed when cell monolayers were pretreated with concentrations of vitamin A (10(-8) to 10(-6) M) thought to approximate those found in vivo. This inhibitory effect could be reduced by increasing the input multiplicity of infection. Growth curves of polyoma virus in the presence and absence of vitamin A suggested that vitamin A actually inhibited, and did not simply delay, virus replication. The cell density dependence of this inhibitory effect suggested its association with the prevailing level of cellular DNA synthesis. Vitamin A caused a significant decrease in overall (viral plus cellular) DNA synthesis. Other viruses which do not require induction of host cell DNA synthesis for their replication in confluent, non-dividing cells were not inhibited by vitamin A. These results are consistent with the known inhibitory effects of vitamin A on papovavirus infection in vivo and suggest a mechanism of vitamin A action at the level of the infected cell.  相似文献   

5.
The effects of Kilham rat virus multiplication were studied in cultured rat embryo cells to examine the mechanisms by which virus infection might be related to developmental defects in rats and hamsters. The virus was found to inhibit motosis and deoxyribonucleic acid (DNA) synthesis within 2 to 10 hr after infection. However, total ribonucleic acid synthesis was relatively unaffected until about 20 hr after infection, and total protein synthesis did not decline significantly until loss of viable cells was apparent in the cultures. No effect on chromosomes was detected. The effect of Kilham rat virus on DNA synthesis appears to be due to inhibition of macromolecular synthesis rather than to an inhibition of uptake of precursors into cells. The effect of the virus on mitosis may be an addition to the effect on DNA synthesis, since mitosis is inhibited even in cultures in which cells are able to divide at the time of infection and which have presumably completed DNA synthesis.  相似文献   

6.
Cells of the 3T3 mouse line efficiently supported the multiplication of polyoma virus, and the infectious process was accompanied by a marked increase in thymidine kinase (TK) activity. Two lines of 5-bromodeoxyuridine-resistant 3T3 cells have been isolated. As expected, these cells incorporated practically no exogenous thymidine into their deoxyribonucleic acid (DNA) and contained negligible TK activity. Like the parental 3T3 cells, TK(-) lines were susceptible to productive infection by polyoma virus, but infection did not lead to an increase in TK activity. Since kinase activity did appear after infection with another virus (vaccinia) known to contain the gene(s) for that enzyme, it is concluded that TK is not one of the gene products of polyoma virus. As induction of cellular DNA synthesis by polyoma virus occurs normally when the TK(-) cells are infected in the stationary phase, TK cannot play a role in the determination of this phenomenon.  相似文献   

7.
5-Iododeoxyuridine (IUDR) inhibited production of infectious polyoma virus in mouse embryo cells and mouse kidney cells in culture. Deoxythymidine reversed its effect. IUDR did not inactivate infectivity of free virus particles. IUDR did not prevent adsorption and penetration of polyoma virus to cells. The events sensitive to IUDR treatment occurred at around 20 hours after infection. The cytopathic effects of polyoma virus, including emergence of DNA containing-inclusions in the nucleus, were observable in infected cells in which viral replication was completely arrested by IUDR. It was shown by fluorescent antibody technique in infected mouse embryo cells and by complement fixation test in infected mouse kidney cells that IUDR inhibited completely the synthesis of viral antigen. No virus-like particles were demonstrated in the IUDR-treated infected-mouse kidney cells by electron microscope examinations.  相似文献   

8.
Adsorption of ultraviolet-inactivated Sendai virus, at high or low multiplicity, to HeLa cells caused a transient increased incorporation of (3)H-thymidine into the cellular deoxyribonucleic acid (DNA). In HeLa cells synchronized by a double-thymidine block, this increased incorporation of thymidine during the S phase lasted from about 30 to 90 min after virus adsorption. The observations that the kinetics of accumulation of radioactive thymidine in the nucleotide pool did not differ in control and in the virus-treated cells and that the (32)P incorporation into the DNA of the virus-treated cells was inhibited at the same time indicate that the augmented incorporation of (3)H-thymidine into DNA results from a transient block in the endogenous pathway of thymidine synthesis. Chromatographic analysis of the nucleotide pool of the virus-treated cells labeled with (14)C-formate indicates that methylation of deoxyuridine monophosphate to thymidine monophosphate is inhibited. It is suggested that the inhibition is caused by a block of either the thymidilate synthetase or some step in the tetrahydrofolate cycle.  相似文献   

9.
The ability of vaccinia virus to replicate in HeLa cells which had been previously infected with adenovirus type 2 (Ad2) was studied in order to gain insight into the mechanism by which adenovirus inhibits the expression of host cell functions. Vaccinia virus was employed in these studies because it replicates in the cytoplasm, whereas Ad2 replicates in the nucleus of the cell. It was found that vaccinia deoxyribonucleic acid (DNA) synthesis is greatly inhibited in adeno-preinfected HeLa cells provided that vaccinia superinfection does not occur before 18 hr after adeno infection. The inhibition of vaccinia DNA synthesis can be traced to an inhibition of vaccinia protein synthesis and viral uncoating. Vaccinia ribonucleic acid (RNA) synthesis is not inhibited in adeno-preinfected cells, but the vaccinia RNA does not become associated with polysomes.  相似文献   

10.
Inhibition of the ribonucleic acid (RNA)- and deoxyribonucleic acid (DNA)-dependent DNA polymerase activities of mammalian C-type viruses was obtained with sera from rats bearing murine leukemia virus-induced transplant tumors. Polymerase activities of nonmammalian (viper) C-type virus and murine mammary tumor virus were not inhibited by such sera nor by serum from a rat immunized with the DNA polymerase of feline leukemia virus purified by isoelectric focusing. The latter serum appeared to inhibit preferentially the DNA-dependent DNA polymerase activity of mammalian C-type viruses showing no inhibition of RNA-dependent DNA synthesis.  相似文献   

11.
In tissue culture phosphonoacetic acid (PAA) specifically inhibited DNA synthesis of human cytomegalovirus (CMV), murine CMV, simian CMV, Epstein-Barr virus, and Herpesvirus saimiri. Fifty to one hundred micrograms per milliliter PAA completely inhibited viral DNA synthesis with no significant damage to host cell DNA synthesis. In vitro DNA polymerization assays showed that 10 μg/ml of PAA specifically inhibited partially purified human CMV-induced DNA polymerase, while little inhibition of host-cell DNA polymerase activity was found. The specific inhibition of herpes-group virus DNA synthesis with little toxicity to host cells suggests that PAA has great potential as an antiherpesvirus therapeutic agent.  相似文献   

12.
Clones of virogenic simian virus 40 (SV40)-transformed hamster kidney cells were exposed to medium deficient in the essential amino acids leucine, arginine, or methionine. Infectious virus was induced after deprivation periods of from 24 to 32 hr. The highest yields of infectious SV40 were obtained from cultures deprived for 3 to 4 days. Infectious virus was also induced in cells that were treated with the metabolic inhibitor cycloheximide. Pulse labeling experiments revealed that both protein synthesis and deoxyribonucleic acid (DNA) synthesis were inhibited by concentrations of cycloheximide which were effective for virus induction. It is suggested that inhibition of protein synthesis by either amino acid deprivation or by cycloheximide was responsible for the induction of infectious virus from virogenic cells. We postulate that the inhibition of protein synthesis caused a temporary inhibition of DNA synthesis which resulted in the induction of infectious virus.  相似文献   

13.
Interactions Between Sendai Virus and Human Erythrocytes   总被引:25,自引:5,他引:20       下载免费PDF全文
Concentrated Sendai virus, when adsorbed to erythrocytes at 4 C, caused invaginations in the plasma membrane. Following elevation of the temperature to 37 C, the plasma membrane became fused with the viral envelope before dissolution of the virions and rupture of the cells. Cell lysis was accompanied by rapid and total loss of hemoglobin to the extracellular space. Following aqueous pyridine extraction, the hemoglobin-free ghosts remaining were found to be devoid of N-acetylneuraminic acid and to have solubility properties different from those of normal erythrocyte ghosts. By the action of viral neuraminidase, bound N-acetylneuraminic acid was also liberated from purified virus receptor substance whose electrophoretic mobility was thereby substantially reduced. Cu++ selectively inhibited hemolysis and neuraminidase without interfering with hemagglutination and attachment. Neuraminidase appeared to be essential for Sendai virus hemolysis; viral particle size may also be a critical factor in this process.  相似文献   

14.
Türler H 《Journal of virology》1975,15(5):1158-1167
In primary mouse kidney cell cultures infected with polyoma virus, the processes leading to virion and pseudovirion formation were studied. By photometric DNA quantitation, we followed the kinetics of mouse and polyoma DNA synthesis and the formation of low-molecular-weight fragmented mouse DNA (mouse f-DNA). Virus was harvested at different times and analyzed for its proportion of pseudovirions. The following correlations between the intracellular events and the production of virions and pseudovirions were found. (i) Syntheses of cellular and viral DNA were closely linked, both in time and in rates of synthesis. (ii) An increase of mouse f-DNA could only be detected several hours after the onset of mouse and polyoma DNA replication; its formation coincided in time with the appearance of progeny virus. (iii) The proportion of pseudovirions was not dependent on the amount of mouse f-DNA formed, but seemed to be inversely related to the amount of viral DNA synthesized. This was borne out by experiments in which DNA synthesis was partially inhibited by mitomycin C or after a synchronized onset of DNA replication. Under these conditions, virus preparations with a two- to threefold increased proportion of pseudovirions were obtained as compared with those from uninhibited cultures. Virus isolated from the remaining monolayer always had a higher proportion of pseudovirions than virus isolated at the same time from the supernatant medium only; also, the proportion of pseudovirions increased slightly with time after infection. Thus, according to the experimental conditions used, polyoma virus preparations with a low (10 to 20%) or a high (60 to 80%) proportion of pseudovirions can be obtained.  相似文献   

15.
Avian myeloblastosis virus cannot initiate its reproduction in the presence of amethopterin or fluorodeoxyuridine. This inhibition is reversed by thymidine. Addition of either inhibitor after virus production has started does not inhibit further virus synthesis. In presence of either inhibitor, deoxyribonucleic acid synthesis is inhibited by over 90%, but ribonucleic acid synthesis is not affected. Cells resume their normal growth rate 24 hr after removal of either inhibitor.  相似文献   

16.
We have studied the differences between erythrocytes and erythrocyte ghosts as target membranes for the study of Sendai virus fusion activity. Fusion was monitored continuously by fluorescence dequenching of R18-labeled virus. Experiments were carried out either with or without virus/target membrane prebinding. When Sendai virus was added directly to a erythrocyte/erythrocyte ghost suspension, fusion was always lower than that obtained when experiments were carried out with virus already bound to the erythrocyte/erythrocyte ghost in the cold, since with virus prebinding fusion can be triggered more rapidly. Although virus binding to both erythrocytes and erythrocyte ghosts was similar, fusion activity was much more pronounced when erythrocyte ghosts were used as target membranes. These observations indicate that intact erythrocytes and erythrocyte ghosts are not equivalent as target membranes for the study of Sendai virus fusion activity. Fusion of Sendai virus with both target membranes was inhibited when erythrocytes or erythrocyte ghosts were pretreated with proteinase K, suggesting a role of target membrane proteins in this process. Treatment of both target membranes with neuraminidase, which removes sialic acid residues (the biological receptors for Sendai virus) greatly reduced viral binding. Interestingly, this treatment had no significant effect on the fusion reaction itself.  相似文献   

17.
The multiplication of polyoma virus in a mouse-hamster (3T3 x BHK) somatic hybrid line (10A), which, although permissive for viral multiplication, produces very low amounts of virus, has been studied. In this cell line, the efficiency of productive infection is high, but the yield of infectious virus is on the order of 0.5% of that of 3T3 cells. The amount of viral deoxyribonucleic acid (DNA) synthesized by these cells upon infection is about 5% of that of 3T3 cells. An examination of the virus produced in hybrid 10A revealed that it was only one-tenth as infectious as the virus grown in 3T3. Although the viral DNA synthesized in the infected 10A cells is normal, the DNA extracted from purified virus grown in 10A consists of approximately 10% of normal, supercoiled polyoma DNA molecules and of approximately 90% linear DNA molecules with a sedimentation coefficient of 14 to 16S. These DNA molecules appear to be of cellular origin but contain a limited amount of viral DNA sequences. The host DNA-containing particles are not infectious but appear to possess some biological activity; they give rise to a weak complementation effect, and part of them are able to induce T-antigen synthesis. In addition, the host DNA present in these particles is predominantly that which has been synthesized after infection. The correlation between the block in viral DNA synthesis in this cell line and the abnormal encapsidation of host DNA is discussed.  相似文献   

18.
Incubation of cell suspensions or monolayers at 4 degrees C for 20 min after addition of beta-propiolactone-inactivated Sendai virus did not enhance heterokaryon formation as compared to parallel cell cultures incubated at 37 degrees C immediately after the addition of Sendai virus. These findings show that the routine chilling of somatic cells in fusion experiments can be omitted.  相似文献   

19.
The synthesis of polyoma DNA was studied in isolated nuclei from hydroxyurea-inhibited 3T6 cells infected with polyoma virus. During incubation of nuclei under conditions suitable for polyoma DNA synthesis in vitro, the short DNA fragments with a sedimentation coefficient of 4S formed in vivo (hydroxyurea fragments) became associated with preformed, replicating DNA strands. Centrifugation in dye-buoyant density gradients showed that the fragments formed part of the structure of the replicative intermediate of polyoma DNA. The proportion of "young" replicative intermediates was larger after hydroxyurea inhibition than in uninhibited controls. Hydroxyurea fragments appear to be closely related to the 4S fragments formed as normal intermediates during discontinuous synthesis of polyoma DNA.  相似文献   

20.
Puromycin was used to study the effect of the inhibition of protein synthesis on transformation of hamster cells (BHK21) by polyoma virus. The drug was used at a concentration (10(-4)m) which caused in these cells a drastic but fully reversible inhibition of protein synthesis. A two- to threefold enhancement of transformation rate was obtained when the cells were exposed to puromycin for a period of 5 hr that started at the end of the virus adsorption period. No further enhancement was produced by prolonging puromycin treatment up to 13 hr after infection. The possibility that the observed effect on transformation rate could be mainly attributed to cell selection by puromycin was excluded. In addition, the relevance of a number of possible secondary effects of puromycin (inhibition of cell division, inhibition of deoxyribonucleic acid synthesis, etc.) was also ruled out. The effect of puromycin on transformation appeared to be dependent on the time (relative to infection) of addition of the drug. In fact, no transformation enhancement was observed when the cells were exposed to puromycin prior to infection or beyond the 10th hr after infection. Since another drug known to affect protein synthesis (p-fluorophenylalanine) was also shown to produce similar effects, it is suggested that transformation enhancement results from the inhibition of protein synthesis during a sensitive period closely following adsorption of the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号