首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A histological, histochemical and ultrastrucutral study of the pars intercerebralis (PI) has been made in Locusta migratoria. The acellular neural lamella is made up of an elastic tissue and collagen fibrils. The cells of the perilemma contain numerous lysosome structures and lipid granules.Three different types of neurosecretory cells (NSC A, B and C) have been distinguished in the PI associated with giant neurons.The cells termed A and B seem not to have an activity cycle during the two last larval instars. At the moment of sexual maturity the NSC A show an important accumulation of neurosecretory material and their number increases at the expense of the NSC B. The NSC A, which are characterized by a highly developped endoplasmic reticulum, contain numerous secretory granules which appear to be individualized in the Golgi complex in three different ways. The NSC B, with a reduced endoplasmic reticulum and an almost quiescent Golgi complex, contain abundant lysosome structures and more seldom some neurosecretory granules. In fact, the study of the fine structure shows different intermediate types, linking in a continuous way typical A cells and typical B cells. NSC A and NSC B might correspond to two opposed stages of secretory activity of one single cell type: the A cell representing the activity stage and the B cell the quiescent stage.NSC C show an accumulation of their neurosecretory products in relation to metamorphosis and sexual maturity. Ultrastructural evidence confirms their neurosecretory activity.A mode of regulating neurosecretion in NSC A and B by internal catabolism of the secretion and formation of lysosome like structures is discussed in the present paper.The giant neurons, which are surrounded by a glial envelope (trophospongium), contain several dense granules originated from Golgi complex.  相似文献   

2.
Summary

Prominent secretory nerve endings are found at the posterior margin of the supraesophageal ganglion in the protandric polychaete, Ophryotrocha puerilis. Solitary juveniles developing as primary males, and then as females, accumulate neurosecretory material in the nerve endings which thereby swell and become filled with granules. Females maintained in mass culture have similar terminals, whereas in secondary males (males which had been females before), these axon terminals are very small and contain no material. When such males are isolated, they accumulate neurosecretory material within the nerve endings and become females. When formerly isolated females are put together, their stores of neurosecretory material are rapidly discharged. Subsequently they lay egg masses and switch to the male state. These effects are mediated by a pheromone released during social contact of formerly isolated females. The complexity of the relationship between neurosecretory activity and sexual state is indicated by the situation in animals maintained in pairs, when both male and female partners have swollen nerve endings packed with secretory material.  相似文献   

3.
In each optic lobe and optic peduncle of two aquatic beetles viz. Dineutes indicus and Cybister rugulosus the neurosecretory cells are observed with the help of various histochemical techniques. These cells are arranged to form a discrete group. A group in the optic lobe of both species contains about 25 to 30 neurosecretory cells. On the basis of staining properties the neurosecretory cells are classified into A and B types. These cells stain with chrome haematoxylin-phloxine and paraldehyde fuchsin, but do not stain with azan. Histochemically, the neurosecretory material is positive for proteins and shows a negative reaction for 1,2-glycols. The cells show variations in RNA contents in correlation with the state of secretory activity. Axons of the neurosecretory cell group of the optic lobe are observed directed to the optic peduncle. The axonal tract from neurosecretory cells in the optic peduncle runs towards the lateral margin of the brain.  相似文献   

4.
Summary In the four species of elasmobranchs examined (Triakis scyllia, Heterodontus japonicus, Scyliorhinus torazame, Dasyatis akajei), all identifiable caudal neurosecretory cells and their corresponding neurohemal areas showed urotensin II (UII)-immunoreactivity with varied intensity. To localize urotensin I (UI) in the caudal neurosecretory system of the dogfish, Triakis scyllia, h-CRF (1–20) antiserum that cross-reacts with UI was used in place of UI antiserum. CRF/UI-immunoreactivity was demonstrated in the neurosecretory cells and neurohemal areas. A considerable number of neurons showed both UII- and CRF/UI-immunoreactivities, suggesting that UII and UI are produced in the same neurosecretory cells. However, some neurons exhibited UII-immunoreactivity, but no CRF/UI-immunoreactivity. Cells immunoreactive only to CRF antiserum were not detected. At least two populations of neurons exist in the dogfish caudal neurosecretory system: (i) cells immunoreactive for both CRF/UI and UII, and (ii) cells immunoreactive for UII. The dorsal cells of the lamprey, Lampetra japonica, did not react with either UII or CRF antiserum.  相似文献   

5.
6.
Summary The neurosecretory system of the freshwater snail Bulinus truncatus was investigated. With the Alcian blue-Alcian yellow (AB/AY) staining method at least 10 different types of neurosecretory cells (NSC) were distinguished in the ganglia of the central nervous system. The differences in staining properties of the NSC — with AB/AY the cells take on different shades of green and yellow — are borne out at the ultrastructural level: the NSC types contain different types of neurosecretory elementary granules.The neurosecretory system of B. truncatus is compared to that of Lymnaea stagnalis, the species which has received the most attention among the pulmonates. It appears from the comparison that the systems of both species show many similarities, although some differences are also apparent.  相似文献   

7.
Summary The histological appearance of certain cell groups in the anterior hypothalamus was studied during various phases of the reproductive cycle of the common striped skunk (Mephitis mephitis nigra), a carnivore having a very restricted period of sexual activity. Pronounced changes occur in the amount of stainable neurosecretory material in cells of the supraoptic, paraventricular and anterior hypothalamic nuclei. Material staining with aldehyde fuchsin is stored (or inhibited from being released) in these cells during the sexually quiescent period in both the female and male skunk. The time of approaching sexual activity is characterized by the first signs of release of neurosecretory material from these hypothalamic cells and the peak of estrus and rut coincides with a minimal content of the material.Dedicated to Professor Berta V. Scharrer in honor of her 60th birthday.This study was supported by U.S.P.H.S. Training Grant 5 T 1-GM 102 and Research Grant BN-00840, from the National Institutes of Health. This represents a portion of a dissertation, written under the guidance of the late Professor Ernst Scharrer, and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Yeshiva University, June, 1965. Preliminary reports of this work were presented at the 78th annual session of the American Association of Anatomists, Miami, Florida, and at the VIIIth International Congress of Anatomists, Wiesbaden, Germany, (Hagedoorn, 1965a, b). I thank Dr. H. W. Deane and Dr. J. Osinchak for their critical reading of this manuscipt.  相似文献   

8.
Abstract The brain of Nephtys contains four neurosecretory cell types with distinctive cytoplasmic inclusions, a cells are located uniquely in a single pair of ganglionic nuclei and b cells are represented by a single pair of cells, whereas c cells and d cells have a scattered distribution. Their axons form two types of secretory release structure. First, possible axon collaterals synapse upon slender “dentritic twigs” in the core of the brain. Secondly, two tracts descend to the brain floor to form a “neurosecretory neuropile” (or storage and release complex) in contact with the inner surface of the brain capsule. Other neurosecretory fibres penetrate through the capsule, branch extensively, and terminate in contact with its ventral surface in close association with the “infracerebral gland”. The gland is derived from the pericapsular epithelium and exhibits signs of specialization for glandular function. In contrast to certain other polychaetes, it does not contain secretory neuron perikarya. The secretory end-foot system is poorly developed. Its terminals are located adjacent to the neurosecretory neuropile, which they encircle. The cell bodies are probably represented by four e cells which, like the terminals, contain many mitochondria.  相似文献   

9.
10.
The neurosecretory system and retrocerebral endocrine glands of Nezara viridula Linn. have been described on the basis of in situ preparations and histological sections employing the paraldehyde fuchsin (PF) and performic acid-victoria blue (PAVB) techniques. In the brain of N. viridula, there are two medial groups–each consisting of five neurosecretory cells which belong to A-type. The lateral neurosecretory cells are absent. The axons of the two groups of medial neurosecretory cells (MNC) compose the two bundles of neurosecretory pathways (NSP) that decussate in the anterodorsal part of the protocerebrum. The two pathways, after the cross-over, run deep into the protocerebrum and deutocerebrum and emerge as NCC-I from the tritocerebrum. The nervi corporis cardiaci-I (NCC-I) of each side which are heavily loaded with NSM terminate in the aorta wall. Thus, the neurosecretory material (NSM), elaborated in the medial neurosecretory cells of the brain, is stored in the aortic wall and nervi corporis cardiaci-I (NCC-I). The NCC-II are very short nerves that originate from the tritocerebrum and terminate in the corpora cardiaca (CC) of their side. Below the aorta, but dorsal to the oesophagus, lie two oval or spherical corpora cardiaca. A corpus allatum (CA) lies posterior to the corpora cardiaca (CC). The corpora cardiaca do not contain NSM; only the intrinsic secretion of their cells has been occasionally observed which stains orange or green with PF staining method. The corpus allatum sometimes exhibits PF positive granules of cerebral origin. A new connection between the corpus allatum and aorta has been recorded. The suboesophageal ganglion contains two neurosecretory cells of A-type which, in structure and staining behaviour, are similar to the medial neurosecretory cells of the brain. The course and termination of axons of suboesophageal ganglion neurosecretory cells, and the storage organ for the secretion of these cells have been reported. It is suggested that the aortic wall and NCC-I axons function as neurohaemal organ for cerebral and suboesophageal secretions.  相似文献   

11.
Résumé L'étude histologique, histochimique et ultrastructurale des péricaryones neurosécréteurs latéraux de Locusta précise leur nombre et leur localisation. Elle révèle que le neurosécrétat latéral est semblable morphologiquement (forme et diamètre des granules élémentaires) au neurosécrétat A de la pars intercerebralis. Cependant, il en diffère histochimiquement par la présence d'une composante glucidique. Elle confirme l'hypothèse émise pour les péricaryones neurosécréteurs de la pars intercerebralis (Girardie et Girardie, 1967), de l'unicité cellulaire chez Locusta des types A et B selon la nomenclature de Johansson (1958). Elle suggère que les péricaryones latéraux pourraient être des cellules neurosécrétrices très actives.
Histological, histochemical and ultrastructural aspects of the lateral neurosecretory cells of the protocerebrum in Locusta migratoria migratorioides (insect: orthoptera)
Summary The number (8 to 12) and position of the lateral neurosecretory cells have been established in Locusta by a histological, histochemical and ultrastructural study. The neurosecretory material of the lateral cells contains glycoprotein and is, in this way, histochemically different from medial A cells neurosecretory material. However, the morphological aspect (shape, diameter) of elementary dense core vesicles in the lateral and medial A neurosecretory cells is similar. This study confirms the idea (Girardie and Girardie, 1967) that, in Locusta, A cells and B cells (Johansson, 1958) are in fact two physiological aspects of one cell type. It also suggests that the lateral cells could be very active neurosecretory cells.
  相似文献   

12.
Changes in the neurosecretory cell cytology of I. exustus subjected to hypertonic saline (0.1 ml of 1.5%/snail) loading and thermal stress (35°C) for two hours, have been investigated. Of the two types of neurosecretory cells A and B that are present in the central nervous system (CNS) of I. exustus, striking changes were evident only in B cells. After both treatments, there was about 33% decline in NSM (Neurosecretory material) intensity. However, the nuclear diameter of B cells was significantly (P < 0.001) increased in the snails administrated with hypertonic saline unlike in those exposed to 35°C wherein significant (P < 0.005) decline was evident. The adaptive significance of the neuroendocrine system of I exustus is discussed in relation to hydrothermal stress.  相似文献   

13.
Summary In each ganglion of the nerve chain of Eisenia foetida there are several types of neurosecretory cells. They are constant in number and strictly localized. A. Toward the front of the ganglion, the array includes (a) a pair of small cells in the anterior region, and (b) a pair of voluminous elements close to the origin of nerve 2 of the ganglion. These two types of cells are characterized by the presence of secretory granules in the perikaryon and in the axon. B. Between the origins of nerves 2 and 3 of the ganglion, there are (c) a pair of cells possessing a large apical vacuole filled with a secretory material, and (d) a dozen cells distinguished by a dense, highly chromophilic cytoplasm. Only the cells of group (b) are present when the worm emerges from the cocoon. The cells of group (a) appear in the young worm. The cells of types (c) and (d) are only active in worms on their way to sexual maturity. The term neurosecretory elements, as applied to these different cell types is discussed.

Dédié au Professeur W. Bargmann À l'occasion de son 60e anniversaire.  相似文献   

14.
The Egyptian locust, Anacridium aegyptium, has four protocerebral neurosecretory centres: the A to B neurosecretory cells of the pars intercerebralis (the A cells are rich in fuchsinophil material and the B cells are devoid of fuchsinophil neurosecretion), the voluminous C neurosecretory cells poor in neurosecretion, and the median sub-ocellar neurosecretory cells.From September to the beginning of January, imaginal diapause is characterized by an accumulation of the median neurosecretion in the pars intercerebralis-corpora cardiaca system, by small corpora allata, and, in the female, by a stop in oöcyte development although the male's sexual activity is still not altered. Allatectomy suppresses neither the male's sexual behaviour nor its fecundity. From January, the increase of the photoperiod causes a release of the median neurosecretion in both sexes, an increase of the volume of the corpora allata, and breaks ovarian diapause.In autumn, the implantation of the male's or female's corpora allata of Anacridium does not stimulate ovarian growth of diapausing females. On the contrary, the implantation of corpora allata or of pars intercerebralis or of corpora cardiaca of Locusta migratoria migratorioides (locust without diapause) causes ovarian development of the diapausing females of Anacridium. Thus, in the two sexes of the Egyptian locust, the corpora allata are inactive during the female ovarian diapause. The imaginal diapause of Anacridium affects both sexes (stocking of median neurosecretion, arrest of the corpora allata). If diapause does not seem to affect the male's development, it is because its sexual activity is free from the pars intercerebralis and corpora allata.The corpora allata of Anacridium show a sexual dimorphism in the active adult: they are smaller in the male and have more mitosis in the female. An explanation of this dimorphism is advanced.  相似文献   

15.
Antisera were raised against leucokinin IV, a member of the leucokinin peptide family. Immunohistochemical localization of leucokinin immunoreactivity in the brain of the cockroach Nauphoeta cinerea revealed neurosecretory cells in the pars intercerebralis and pars lateralis, several bilateral pairs of interneurons in the protocerebrum, and a group of interneurons in the optic lobe. Several immunoreactive interneurons were found in the thoracic ganglia, while the abdominal ganglia contained prominent immunoreactive neurosecretory cells, which projected to the lateral cardiac nerve. The presence of leucokinins in the abdominal nerve cord was confirmed by HPLC combined with ELISA. Leucokinin-immunoreactive neurosecretory cells were also found in the pars intercerebralis of the cricket Acheta domesticus and the mosquito Aedes aegypti, but not in the locust Schistocerca americana or the honey bee Apis mellifera. However, all these species have leucokinin-immunoreactive neurosecretory cells in the abdominal ganglia. The neurohemal organs innervated by abdominal leucokinin-immunoreactive cells were different in each species.  相似文献   

16.
1.  In the polychaetePlatynereis dumerilii, the hormone-elaborating portion of the prostomium was determined by means of prostomium transection and implantation experiments. The area in question lies between the two pairs of eyes, extending longitudinally from the posterior border of the anterior eyes to about the posterior border of the posterior eyes. This corresponds approximately with the brain area delimited by the anterior and posterior dorsoventral connective tissue tubes and which is covered ventrally by the infracerebral gland epithelium.
2.  The infracerebral gland-complex and neurosecretory neurons within the brain were envisaged as possible sites of hormone synthesis.
3.  The infracerebral gland-complex inPl. dumerilii was investigated with light—and electron-microscopical techniques. A leaf-shaped area (measuring 120 by 95 m at the most) of the pericapsular epithelium at the ventral side of the brain, adjacent to the main blood vessel and to its efferent branches, consists of specialized columnar epithelial cells. Numerousa-cells and scarceb-cells can be distinguished. Fibre tracts with glia fibres and axons (some being neurosecretory axons) descend from the neuropile and in part terminate with prominent end-structures at the inner face of the brain capsule in the gland region. Probably some axons penetrate the capsule and make contact with the gland cells. Neither structural nor experimental findings prove that the infracerebral gland synthesizes the brain hormone. Accessory functions are discussed.
4.  Investigations in secretory brain cells ofPl. dumerilii are reported. In agreement with Müller (1973), a lack of correlation between the number of stainable neurosecretory neurons and the hormonal activity of the brain was found: in immature worms (to which high hormonal titers are ascribed) only few or even no neurosecretory brain cells at all were detectable. Prostomium transection and implantation experiments show further that not all regions of the brain which enclose neurosecretory neurons produce brain hormone. The results are discussed with reference to the hypotheses of Müller (1973) which suggest that the appearance of stainable neurosecretory brain cells indicates inactivation of neurons possibly previously involved with hormone synthesis.
  相似文献   

17.
Yadav, L., Sengar, M., Zaccone, D. and Gopesh, A. 2011. Paraneuronal pseudobranchial neurosecretory cells in scorpion catfish Heteropneustes fossilis: an environment scanning electron microscope and transmission electron microscope study. —Acta Zoologica (Stockholm) 00 : 1–8. Pseudobranchial neurosecretory system (PNS), found in the gill region of certain groups of teleosts, falls under the category of the ‘diffuse neuroendocrine system’ (DNES). The cells belonging to the system share morpho‐functional features with the paraneuronal cells observed in respiratory tract and airway surfaces of higher vertebrates. On the basis of the experimental observations, a role in condition of hypoxia has been recorded for this system. In an attempt to elucidate the ultrastructure of pseudobranchial neurosecretory cells, present investigation was undertaken using environment scanning electron microscope (ESEM) and TEM in an air‐breathing catfish, Heteropneustes fossilis. The external morphology of PNS under ESEM appeared as a mass of cells supplied with nerves and blood capillaries. Each cell mass is made up of numerous pear‐shaped neurosecretory cells, confirmed by neurosecretion‐specific acid violet stain. The TEM investigation of the cells revealed the presence of different sizes of dense‐cored vesicles in the cytoplasm, which was observed as granular cytoplasm under light microscope. Presence of large number of mitochondria in the cytoplasm confirmed active involvement of these cells in the physiology of fishes. Although lacuna prevails regarding the exact function of this system of fish, its probable role in hypoxic condition and surfacing behavior are speculated.  相似文献   

18.
A SURVEY OF NEUROENDOCRINE PHENOMENA IN NON-ARTHROPOD INVERTEBRATES   总被引:4,自引:0,他引:4  
  • 1 Neurosecretory phenomena are apparently ubiquitous among Metazoa.
  • 2 In Hydra, neurosecretory products are probably involved in the control of growth and reproduction.
  • 3 Secretory elements in the central nervous system of turbellarians probably promote fission, regeneration and reproduction.
  • 4 The cerebral ganglia of nemertines are the source of a hormone which exercises an inhibitory influence on maturation of the gonads and the development of somatic sexual characteristics. A principle secreted by the ganglia and/or the associated cerebral organs controls weight regulation. A sex hormone controls sexual differentiation.
  • 5 Secretory neurons may influence the production of exsheathing fluid and ecdysis in nematodes.
  • 6 In nereid polychaetes, a single hormone which originates from the cerebral neuroendocrine system apparently promotes segment proliferation and inhibits maturation. However, in certain other polychaetes, contrasting endocrine mechanisms seem to operate.
  • 7 In lumbricid oligochaetes, a hormone secreted by the cerebral ganglion (and possibly by other nervous centres also) promotes gonadal activity and the differentiation of somatic sexual characters. In some species the ganglion exerts an inhibitory influence on the associated processes of ‘diapause’ and posterior regeneration. The cerebral and suboesophageal ganglia are implicated in the control of osmoregulation. Cerebral neurosecretory cells in limicolous oligochaetes may influence regenerative growth and osmoregulation.
  • 8 The cerebral ganglia of leeches secrete a gonadotrophic hormone.
  • 9 In gastropod molluscs, hormones secreted by the cerebral ganglia, glandular ‘dorsal bodies’ and/or optic tentacles are responsible for the control of the development of the reproductive tract, and the activity of the gonads. Contrasting mechanisms are thought to operate in the different gastropod groups and there is conflicting evidence particularly with respect to the endocrine functions of the optic tentacles and the gonads. The ‘bag cells’ of the abdominal ganglion of ApZysiu secrete a hormone which induces egg-laying. Cells in the pleural and parietal ganglia probably control osmoregulation in Lymnaea.
  • 10 The optic glands of cephalopods secrete a gonadotrophic hormone, but sex hormones are apparently absent. The functional significance of the neurovenous tissues (presumptive neurosecretory complexes of unusual character) is obscure in most cases.
  • 11 The radial nerves of starfish are the source of a hormone which induces the production of I-methyl adenine by the follicle cells of the gonad. This second principle stimulates oocyte maturation and the shedding of male and female gametes.
  • 12 The relevance of such information to the development of certain biological concepts and to various aspects of comparative physiology is briefly discussed.
  相似文献   

19.
The neurosecretory system of the giant garden slug Limax maximus was studied using the alcian blue/alcian yellow (AB/AY) staining technique for neurosecretion. Stainable cells could be identified in the paired cerebral, pleural, parietal, and buccal ganglia, and in the visceral ganglion. The cells occur as single cells or in groups of up to 100, with diameters ranging between 10 and 70 μm. Axon tracts could only be traced for a small number of cells; neurohemal areas were not conclusively identified. The morphological similarities of the neurosecretory system of L. maximus is compared with that of other investigated stylommatophoran slugs.  相似文献   

20.
Effect of catecholamines (CA) on the functional state of vasopressin (VP)-ergic neurons of hypothalamus at their stimulation produced by dehydration (salt diet and water deprivation) was studied in in vivo experiments on adult male Wistar rats. Quantitative assessment of VP-immunopositive substance and digoxigenin-labeled VP mRNA (hybridization in situ) in neurosecretory cells of supraoptic (SON) and paraventricular (PVN) nuclei was performed using measurements of optical density of the stained substance in perykaria and a computer digital television analyzer with PhotoM software. Hybridization in situ technique allowed evaluating intensity of VP synthesis, while comparison of the amount of VP mRNA and VP-immunoreactive substance in neurons of SON and PVN made it possible to evaluate release of VP from perykaria. In PVN, repeated saline administration (0.25 ml per 100 g weight) and severe dehydration led to activation both of synthesis and of release of VP from cell perikarya. Use of -methyl-p-tyrosine, an inhibitor of catecholamine (CA) synthesis on the background of dehydration was not accompanied by changes of the functional state of VP-ergic neurons of PVN as compared with dehydrated animals. No changes in functional state of VP-ergic neurosecretory cells in SON were found after saline administration, whereas dehydration activated synthesis and release of VP from perykaria, like in VP-ergic neurons of PVN. Inhibition of CA synthesis on the background of dehydration led to activation of VP release by SON neurons without affecting the level of VP synthesis. The data obtained indicate that CA is able to suppress the VP release from neurons of SON, which is produced caused by activation of the VP-ergic system under conditions of dehydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号