首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The REC104 gene was initially defined by mutations that rescued the inviability of a rad52 spo13 haploid strain in meiosis. We have observed that rec104 mutant strains undergo essentially no induction of meiotic gene conversion, and we have not been able to detect any meiotic crossing over in such strains. The REC104 gene has no apparent role in mitosis, since mutations have no observable effect on growth, mitotic recombination, or DNA repair. The DNA sequence of REC104 reveals that it is a previously unknown gene with a coding region of 549-bp, and genetic mapping has localized the gene to chromosome VIll near FUR1. Expression of the REC104 gene is induced in meiosis, and it appears that the gene is not transcribed in mitotic cells. Possible roles for the REC104 gene product in meiosis are discussed. © 1993 Wiley-Liss, Inc.  相似文献   

2.
In the yeast Saccharomyces cerevisiae at least 10 genes are required to begin meiotic recombination. A new early recombination gene REC103 is described in this paper. It was initially defined by the rec103-1 mutation found in a selection for mutations overcoming the spore inviability of a rad52 spo13 haploid strain. Mutations in REC103 also rescue rad52 in spo13 diploids. rec103 spo13 strains produce viable spores; these spores show no evidence of meiotic recombination. rec103 SPO13 diploids produce no viable spores, consistent with the loss of recombination. Mutations in REC103 do not affect mitotic recombination, growth, or repair. These phenotypes are identical to those conferred by mutations in several other early meiotic recombination genes (e.g., REC102, REC104, REC114, MEI4, MER2, and SPO11). REC103 maps to chromosome VII between ADE5 and RAD54. Cloning and sequencing of REC103 reveals that REC103 is identical to SKI8, a gene that depresses the expression of yeast double-stranded (``killer') (ds)RNA viruses. REC103/SKI8 is transcribed in mitotic cells and is induced ~15-fold in meiosis. REC103 has 26% amino acid identity to the Schizosaccharomyces pombe rec14(+) gene; mutations in both genes confer similar meiotic phenotypes, suggesting that they may play similar roles in meiotic recombination.  相似文献   

3.
Using a selection based upon the ability of early Rec- mutations (e.g., rad50) to rescue the meiotic lethality of a rad52 spo13 strain, we have isolated 177 mutants. Analysis of 56 of these has generated alleles of the known Rec genes SPO11, ME14 and MER1, as well as defining five new genes: REC102, REC104, REC107, REC113 and REC114. Mutations in all of the new genes appear to specifically affect meiosis; they do not have any detectable mitotic phenotype. Mutations in REC102, REC104 and REC107 reduce meiotic recombination several hundred fold. No alleles of RED1 or HOP1 were isolated, consistent with the proposal that these genes may be primarily involved with chromosome pairing and not exchange.  相似文献   

4.
Salem L  Walter N  Malone R 《Genetics》1999,151(4):1261-1272
REC104 is a gene required for the initiation of meiotic recombination in Saccharomyces cerevisiae. To better understand the role of REC104 in meiosis, we used an in vitro mutagenesis technique to create a set of temperature-conditional mutations in REC104 and used one ts allele (rec104-8) in a screen for high-copy suppressors. An increased dosage of the early exchange gene REC102 was found to suppress the conditional recombinational reduction in rec104-8 as well as in several other conditional rec104 alleles. However, no suppression was observed for a null allele of REC104, indicating that the suppression by REC102 is not "bypass" suppression. Overexpression of the early meiotic genes REC114, RAD50, HOP1, and RED1 fails to suppress any of the rec104 conditional alleles, indicating that the suppression might be specific to REC102.  相似文献   

5.
A mutation at the REC102 locus was identified in a screen for yeast mutants that produce inviable spores. rec102 spore lethality is rescued by a spo13 mutation, which causes cells to bypass the meiosis I division. The rec102 mutation completely eliminates meiotically induced gene conversion and crossing over but has no effect on mitotic recombination frequencies. Cytological studies indicate that the rec102 mutant makes axial elements (precursors to the synaptonemal complex), but homologous chromosomes fail to synapse. In addition, meiotic chromosome segregation is significantly delayed in rec102 strains. Studies of double and triple mutants indicate that the REC102 protein acts before the RAD52 gene product in the meiotic recombination pathway. The REC102 gene was cloned based on complementation of the mutant defect and the gene was mapped to chromosome XII between CDC25 and STE11.  相似文献   

6.
By selecting for mutations which could rescue the meiotic lethality of a rad52 spo13 strain, we isolated several new Rec genes required relatively early in the meiotic recombination process. This paper presents data to confirm that two of them, REC102 and REC107, are general, meiosis-specific recombination genes that have no detectable role during mitosis. Sequence analysis and genetic complementation indicate that REC107 is identical to the MER2 gene. No sequences related to REC102 have been found in the GenBank or EMBL collections. REC102 is expressed only in meiosis, prior to the reductional division, at about the time that genetic recombination occurs. Examination of the REC102 sequence indicates the presence of several sequences which may play a role in the regulation of its expression; however, the URS1 sequence commonly found in genes expressed early in meiosis is not present.  相似文献   

7.
Recombination is an essential part of meiosis; in almost all organisms, including Saccharomyces cerevisiae, proper chromosome segregation and the viability of meiotic products is dependent upon normal levels of recombination. In this article we examine the kinetics of the meiotic divisions in four mutants defective in the initiation of recombination. We find that mutations in any of three Early Exchange genes (REC104, REC114 or REC102) confer a phenotype in which the reductional division occurs earlier than in an isogenic wild-type diploid. We also present data confirming previous reports that strains with a mutation in the Early Exchange gene MEI4 undergo the first division at about the same time as wild-type cells. The rec104 mutation is epistatic to the mei4 mutation for the timing of the first division. These observations suggest a possible relationship between the initiation of recombination and the timing of the reductional division. These data also allow these four Early Exchange genes examined to be distinguished in terms of their role in coordinating recombination with the reductional division.  相似文献   

8.
Recombination-deficient strains have been proven useful for the understanding of the genetic control of homologous recombination. As the genetic screens used to isolate recombination-deficient (rec(-)) yeast mutants have not been saturated, we sought to develop a simple colony color assay to identify mutants with low or elevated rates of recombination. Using this system we isolated a collection of rec(-) mutants. We report the characterization of the REC41 gene identified in this way. REC41 is required for normal levels of interplasmid recombination and gamma-ray induced mitotic interchromosomal recombination. The rec41-1 mutant failed to grow at 37 degrees C. Microscopic analysis of plated cells showed that 45-50% of them did not form visible colonies at permissive temperature. Haploid cells of the rec41 mutant show the same gamma-ray sensitivity as wild type ones. However, the diploid rec41 mutant shows gamma-ray sensitivity which is comparable with heterozygous REC41/rec41-1 diploid cells. This fact indicates semidominance of the rec41-1 mutation. Diploid strains homozygous for the rec41 rad52 mutations had the same gamma-ray sensitivity as single rad52 diploids and exhibited dramatically decreased growth rate. The expression of the HO gene does not lead to inviability of rec41 cells. The rec41 mutation has an effect on meiosis, likely meiotic recombination, even in the heterozygous state. We cloned the REC41 gene. Sequence analysis revealed that the REC41 gene is encoded by ORF YDR245w. Earlier, this ORF was attributed to MNN10, BED1, SLC2, CAX5 genes. Two multicopy plasmids with suppressers of the rec41-1 mutation (pm21 and pm32) were isolated. The deletion analysis showed that only DNA fragments with the CDC43 and HAC1 genes can partially complement the rec41-1 mutation.  相似文献   

9.
Mutations in the REM1 gene of Saccharomyces cerevisiae confer a semidominant hyper-recombination and hypermutable phenotype upon mitotic cells ( GOLIN and ESPOSITO 1977). These effects have not been observed in meiosis. We have examined the interactions of rem1 mutations with rad6-1, rad50 -1, rad52-1 or spo11 -1 mutations in order to understand the basis of the rem1 hyper-rec phenotype. The rad mutations have pleiotropic phenotypes; spo11 is only defective in sporulation and meiosis. The RAD6, RAD50 and SPO11 genes are not required for spontaneous mitotic recombination; mutations in the RAD52 gene cause a general spontaneous mitotic Rec- phenotype. Mutations in RAD50 , RAD52 or SPO11 eliminate meiotic recombination, and mutations in RAD6 prevent spore formation. Evidence for the involvement of RAD6 in meiotic recombination is less clear. Mutations in all three RAD genes confer sensitivity to X rays; the RAD6 gene is also required for UV damage repair. To test whether any of these functions might be involved in the hyper-rec phenotype conferred by rem1 mutations, double mutants were constructed. Double mutants of rem1 spo11 were viable and demonstrated rem1 levels of mitotic recombination, suggesting that the normal meiotic recombination system is not involved in producing the rem1 phenotype. The rem1 rad6 double mutant was also viable and had rem1 levels of mitotic recombination. Neither rem1 rad50 nor rem1 rad52 double mutants were viable. This suggests that rem1 causes its hyper-rec phenotype because it creates lesions in the DNA that are repaired using a recombination-repair system involving RAD50 and RAD52.  相似文献   

10.
11.
rec mutations result in an extremely low level of recombination and a high frequency of primary non-disjunction in the female meiosis of Drosophila melanogaster. Here we demonstrate that the rec gene encodes a novel protein related to the mini-chromosome maintenance (MCM) proteins. Six MCM proteins (MCM2-7) are conserved in eukaryotic genomes, and they function as heterohexamers in the initiation and progression of mitotic DNA replication. Three rec alleles, rec(1), rec(2) and rec (3), were found to possess mutations within this gene, and P element-mediated germline transformation with a wild-type rec cDNA fully rescued the rec mutant phenotypes. The 885 amino acid REC protein has an MCM domain in the middle of its sequence and, like MCM2, 4, 6 and 7, REC contains a putative Zn-finger motif. Phylogenetic analyses revealed that REC is distantly related to the six conserved MCM proteins. Database searches reveal that there are candidates for orthologs of REC in other higher eukaryotes, including human. We addressed whether rec is involved in DNA repair in the mitotic division after the DNA damage caused by methylmethane sulfonate (MMS) or by X-rays. These analyses suggest that the rec gene has no, or only a minor, role in DNA repair and recombination in somatic cells.  相似文献   

12.
13.
In budding yeast, commitment to meiosis is attained when meiotic cells cannot return to the mitotic cell cycle even if the triggering cue (nutrients deprivation) is withdrawn. Commitment is arrived at gradually, and different aspects of meiosis may be committed at different times. Cells become fully committed to meiosis at the end of Prophase I, long after DNA replication and just before the first meiotic division (MI). Whole‐genome gene expression analysis has shown that committed cells have a distinct and rapid response to nutrients, and are not simply insulated from environmental signals. Thus becoming committed to meiosis is an active process. The cellular event most likely to be associated with commitment to meiosis is the separation of the duplicated spindle‐pole bodies (SPBs) and the formation of the spindle. Commitment to the mitotic cell cycle is also associated with the separation of SPBs, although it occurs in G1, before DNA replication.  相似文献   

14.
Diploid germ cells produce haploid gametes through meiosis, a unique type of cell division. Independent reassortment of parental chromosomes and their recombination leads to ample genetic variability among the gametes. Importantly, new mutations also occur during meiosis, at frequencies much higher than during the mitotic cell cycles. These meiotic mutations are associated with genetic recombination and depend on double‐strand breaks (DSBs) that initiate crossing over. Indeed, sequence variation among related strains is greater around recombination hotspots than elsewhere in the genome, presumably resulting from recombination‐associated mutations. Significantly, enhanced mutagenicity in meiosis may lead to faster divergence during evolution, as germ‐line mutations are the ones that are transmitted to the progeny and thus have an evolutionary impact. The molecular basis for mutagenicity in meiosis may be related to the repair of meiotic DSBs by polymerases, or to the exposure of single‐strand DNA to mutagenic agents during its repair.  相似文献   

15.
This paper describes the identification, cloning and phenotypic analysis of SPO14, a new gene required for meiosis and spore formation. Studies of strains carrying a temperature-sensitive mutation or a disruption/duplication allele indicate that spo14 mutants have the unusual property of being able to return to mitotic division, even from the late stages of meiotic development. Early meiotic events, such as DNA replication and intragenic and intergenic recombination, occur normally. In contrast, later meiotic processes are defective in spo14 mutants: the meiosis I division appears to be executed at slightly depressed levels, the meiosis II division is reduced more severely, and no spores are formed. Epistasis tests using mutants defective in recombination or reductional division support these findings. Based on these data, we suggest that the SPO14 gene product is involved in the coordinate induction of late meiotic events and that this induction is responsible for the phenomenon of commitment.  相似文献   

16.
In the yeast, Saccharomyces cerevisiae, several genes appear to act early in meiotic recombination. HOP1 and RED1 have been classified as such early genes. The data in this paper demonstrate that neither a red1 nor a hop1 mutation can rescue the inviable spores produced by a rad52 spo13 strain; this phenotype helps to distinguish these two genes from other early meiotic recombination genes such as SPO11, REC104, or MEI4. In contrast, either a red1 or a hop1 mutation can rescue a rad50S spo13 strain; this phenotype is similar to that conferred by mutations in the other early recombination genes (e.g., REC104). These two different results can be explained because the data presented here indicate that a rad50S mutation does not diminish meiotic intrachromosomal recombination, similar to the mutant phenotypes conferred by red1 or hop1. Of course, RED1 and HOP1 do act in the normal meiotic interchromosomal recombination pathway; they reduce interchromosomal recombination to ~10% of normal levels. We demonstrate that a mutation in a gene (REC104) required for initiation of exchange is completely epistatic to a mutation in RED1. Finally, mutations in either HOP1 or RED1 reduce the number of double-strand breaks observed at the HIS2 meiotic recombination hotspot.  相似文献   

17.
Recombinationless meiosis in Saccharomyces cerevisiae.   总被引:38,自引:11,他引:27       下载免费PDF全文
We have utilized the single equational meiotic division conferred by the spo13-1 mutation of Saccharomyces cerevisiae (S. Klapholtz and R. E. Esposito, Genetics 96:589-611, 1980) as a technique to study the genetic control of meiotic recombination and to analyze the meiotic effects of several radiation-sensitive mutations (rad6-1, rad50-1, and rad52-1) which have been reported to reduce meiotic recombination (Game et al., Genetics 94:51-68, 1980); Prakash et al., Genetics 94:31-50, 1980). The spo13-1 mutation eliminates the meiosis I reductional segregation, but does not significantly affect other meiotic events (including recombination). Because of the unique meiosis it confers, the spo13-1 mutation provides an opportunity to recover viable meiotic products in a Rec- background. In contrast to the single rad50-1 mutant, we found that the double rad50-1 spo13-1 mutant produced viable ascospores after meiosis and sporulation. These spores were nonrecombinant: meiotic crossing-over was reduced at least 150-fold, and no increase in meiotic gene conversion was observed over mitotic background levels. The rad50-1 mutation did not, however, confer a Rec- phenotype in mitosis; rather, it increased both spontaneous crossing-over and gene conversion. The spore inviability conferred by the single rad6-1 and rad52-1 mutations was not eliminated by the presence of the spo13-1 mutation. Thus, only the rad50 gene has been unambiguously identified by analysis of viable meiotic ascospores as a component of the meiotic recombination system.  相似文献   

18.
We utilized strains of Saccharomyces cerevisiae that exhibit high efficiency of synchrony of meiosis to examine several aspects of meiosis including sporulation, recombination, DNA synthesis, DNA polymerase I and II, and Mg2+-dependent alkaline DNases. The kinetics of commitment to intragenic recombination and sporulation are similar. The synthesis of DNA, as measured directly with diphenylamine, appears to precede the commitment to recombination. Both DNA polymerase I and II activities and total DNA-synthesizing activity in crude extracts increase two- to threefold before the beginning of meiotic DNA synthesis. Increases of 10- to 20-fold over mitotic levels are found for Mg2+-dependent alkaline DNase activity in crude extracts before and during the commitment to meiotic intragenic recombination. Of particular interest is the comparable increase in a nuclease under the control of the RAD52 gene; this enzyme has been identified by the use of antibody raised against a similar enzyme from Neurospora crassa. Since the RAD52 gene is essential for meiotic recombination, the nuclease is implicated in the high levels of recombination observed during meiosis. The effects observed in this report are meiosis specific since they are not observed in an alpha alpha strain.  相似文献   

19.
The hyper-gene conversion srs2-101 mutation of the SRS2 DNA helicase gene of Saccharomyces cerevisiae has been reported to suppress the UV sensitivity of rad18 mutants. New alleles of SRS2 were recovered using this suppressor phenotype. The alleles have been characterized with respect to suppression of rad18 UV sensitivity, hyperrecombination, reduction of meiotic viability, and definition of the mutational change within the SRS2 gene. Variability in the degree of rad18 suppression and hyperrecombination were found. The alleles that showed the severest effects were found to be missense mutations within the consensus domains of the DNA helicase family of proteins. The effect of mutations in domains I (ATP-binding) and V (proposed DNA binding) are reported. Some alleles of SRS2 reduce spore viability to 50% of wild-type levels. This phenotype is not bypassed by spo13 mutation. Although the srs2 homozygous diploids strains undergo normal commitment to meiotic recombination, this event is delayed by several hours in the mutant strains and the strains appear to stall in the progression from meiosis I to meiosis II.  相似文献   

20.
L. Weber  B. Byers 《Genetics》1992,131(1):55-63
Mutations in CDC13 have previously been found to cause cell cycle arrest of Saccharomyces cerevisiae at a stage in G2 immediately preceding the mitotic division. We show here that cdc13 blocks the meiotic pathway at a stage that follows DNA replication, but in this case the spindle has not yet formed nor have the chromosomes undergone synapsis or recombination. This arrest is alleviated by rad9, thus implicating the same checkpoint function that delays mitotic progression when chromosomal lesions are present. An assessment of the spores produced upon alleviation of the meiotic arrest by rad9 reveals that the absence of recombination in strains bearing cdc13 alone is attributable to the RAD9-mediated arrest rather than to other effects of cdc13 lesions. We have tested the possibility that this checkpoint function is important in regulating meiotic progression to permit resolution of recombinational intermediates during ongoing meiosis and have found no evidence that rad9 alters the execution of functions that might depend upon such regulation. We consider the possible role of other checkpoints in yeast meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号