首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribotyping was evaluated as a method to differentiate between Pseudomonas syringae pv. phaseolicola and pv. syringae strains causing bacterial brown spot and halo blight diseases in Phaseolus vulgaris L. Ribotyping, with restriction enzymes BglI and SalI and using the Escherichia coli rrnB operon as the probe, differentiated 11 and 14 ribotypes, respectively, and a combination of data from both procedures yielded 19 combined ribotypes. Cluster analysis of the combined ribotypes differentiated the pathovars phaseolicola and syringae, as well as different clonal lineages within these pathovars. The potential of ribotyping to screen for correlations between lineages and factors such as geographical region and/or bean varieties is also reported.  相似文献   

2.
Pseudomonas syringae pv. phaseolicola, which causes halo blight on various legumes, and pv. actinidiae, responsible for canker or leaf spot on actinidia plants, are known as phaseolotoxin producers, and the former possesses phaseolotoxin-resistant ornithine carbamoyltransferase (ROCT) which confers resistance to the toxin. We confirmed that the latter is also resistant to phaseolotoxin and possesses ROCT, and we compared the two pathovars by using sequence data of the ROCT gene and the intergenic spacer region located between the 16S and 23S rRNA genes (16S-23S spacer region) as an index. It was found that the identical ROCT gene (argK) is contained not only in bean isolates of P. syringae pv. phaseolicola in Mexico and the United States but also in bean isolates in Japan and Canada, and that it is also distributed in the kudzu (Pueraria lobata) isolates of P. syringae pv. phaseolicola. Moreover, the kiwifruit and tara vine isolates of P. syringae pv. actinidiae were also found to possess the identical argK. On the contrary, the 16S-23S spacer regions showed a significant level of sequence variation between P. syringae pv. actinidiae and pv. phaseolicola, suggesting that these two pathovars evolved differently from each other in the phylogenetic development. The fact that even synonymous substitution has not occurred in argK among these strains despite their extreme differences in phylogenetic evolution and geographical distribution suggests that it was only recently in evolutionary time that argK was transferred from its origin to P. syringae pv. actinidiae and/or pv. phaseolicola.  相似文献   

3.
The lemA gene is conserved among strains and pathovars of Pseudomonas syringae. In P. syringae pv. syringae B728a, a causal agent of bacterial brown spot disese of bean, the lemA gene is required for lesion formation on leaves and pods. Using lemA-containing DNA as a probe, we determined that 80 P. syringae pv. syringae strains isolated from bean leaves could be grouped into seven classes based on restriction fragment length polymorphism. Marker exchange mutagenesis showed that the lemA gene was required for lesion formation by representative strains from each restriction fragment length polymorphism class. Hybridization to the lemA locus was detected within six different P. syringae pathovars and within Pseudomonas aeruginosa. Interestingly, a lemA homolog was present and functional within the nonpathogenic strain P. syringae Cit7. We cloned a lemA homolog from a genomic library of P. syringae pv. phaseolicola NPS3121, a causal agent of halo blight of bean, that restored lesion formation to a P. syringae pv. syringae lemA mutant. However, a lemA mutant P. syringae pv. phaseolicola strain retained the ability to produce halo blight disease symptoms on bean plants. Therefore, the lemA gene played an essential role in disease lesion formation by P. syringae pv. syringae isolates, but was not required for pathogenicity of a P. syringae pv. phaseolicola strain.  相似文献   

4.
Abstract Exopolysaccharides produced by plant pathogenic bacteria are thought to play an important role in both the general ecology and the virulence of the producing organism. The environmental factors affecting exopolysaccharide production in planta by Pseudomonas syringae pathovars are not known. We tested the effect of increased medium osmolarity and dehydration on exopolysaccharide production in a sucrose-containing medium by three P. syringae pathovars, one ( P. syringae pv. phaseolicola ) capable of levan and alginate production and two ( P. syringae pv. papulans and pv. savastanoi ) capable of only alginate production. Addition of NaCl and ethanol to the medium led to increased accumulation of alginate by all three pathovars as well as increased levan production by P. syringae pv. phaseolicola . Culture fluids of the two non-levan producers also contained increased amounts of neutral carbohydrate which was not levan. Based on sugar compostion this material may have originated from outer membrane lipopolysaccharide. In addition, the ratio of neutral material (levan or not) to alginate varied dependent on culture conditions.  相似文献   

5.
Pseudomonas syringae pv. phaseolicola, a gram-negative bacterial plant pathogen, is the causal agent of halo blight of bean. In this study, we report on the genome sequence of P. syringae pv. phaseolicola isolate 1448A, which encodes 5,353 open reading frames (ORFs) on one circular chromosome (5,928,787 bp) and two plasmids (131,950 bp and 51,711 bp). Comparative analyses with a phylogenetically divergent pathovar, P. syringae pv. tomato DC3000, revealed a strong degree of conservation at the gene and genome levels. In total, 4,133 ORFs were identified as putative orthologs in these two pathovars using a reciprocal best-hit method, with 3,941 ORFs present in conserved, syntenic blocks. Although these two pathovars are highly similar at the physiological level, they have distinct host ranges; 1448A causes disease in beans, and DC3000 is pathogenic on tomato and Arabidopsis. Examination of the complement of ORFs encoding virulence, fitness, and survival factors revealed a substantial, but not complete, overlap between these two pathovars. Another distinguishing feature between the two pathovars is their distinctive sets of transposable elements. With access to a fifth complete pseudomonad genome sequence, we were able to identify 3,567 ORFs that likely comprise the core Pseudomonas genome and 365 ORFs that are P. syringae specific.  相似文献   

6.
Significant amounts of ethylene were produced by Pseudomonas syringae pv. glycinea, pv. phaseolicola (which had been isolated from viny weed Pueraria lobata [Willd.] Ohwi [common name, kudzu]), and pv. pisi in synthetic medium. On the other hand, the bean strains of P. syringae pv. phaseolicola and strains of 17 other pathovars did not produce ethylene. P. syringae pv. glycinea and P. syringae pv. phaseolicola produced nearly identical levels of ethylene (about 5 x 10(sup-7) nl h(sup-1) cell(sup-1)), which were about 10 times higher than the ethylene level of P. syringae pv. pisi. Two 22-bp oligonucleotide primers derived from the ethylene-forming enzyme (efe) gene of P. syringae pv. phaseolicola PK2 were investigated for their ability to detect ethylene-producing P. syringae strains by PCR analysis. PCR amplification with this primer set resulted in a specific 0.99-kb fragment in all ethylene-producing strains with the exception of the P. syringae pv. pisi strains. Therefore, P. syringae pv. pisi may use a different biosynthetic pathway for ethylene production or the sequence of the efe gene is less conserved in this bacterium. P. syringae pv. phaseolicola isolated from kudzu and P. syringae pv. glycinea also produced ethylene in planta. It could be shown that the enhanced ethylene production in diseased tissue was due to the production of ethylene by the inoculated bacteria. Ethylene production in vitro and in planta was strictly growth associated.  相似文献   

7.
Type VI secretion systems (T6SS) of Gram-negative bacteria form injectisomes that have the potential to translocate effector proteins into eukaryotic host cells. In silico analysis of the genomes in six Pseudomonas syringae pathovars revealed that P. syringae pv. tomato DC3000, pv. tabaci ATCC 11528, pv. tomato T1 and pv. oryzae 1-6 each carry two putative T6SS gene clusters (HSI-I and HSI-II; HSI: Hcp secretion island), whereas pv. phaseolicola 1448A and pv. syringae B728 each carry one. The pv. tomato DC3000 HSI-I and pv. tomato T1 HSI-II possess a highly similar organization and nucleotide sequence, whereas the pv. tomato DC3000, pv. oryzae 1-6 and pv. tabaci 11528 HSI-II are more divergent. Putative effector orthologues vary in number among the strains examined. The Clp-ATPases and IcmF orthologues form distinct phylogenetic groups: the proteins from pv. tomato DC3000, pv. tomato T1, pv. oryzae and pv. tabaci 11528 from HSI-II group together with most orthologues from other fluorescent pseudomonads, whereas those from pv. phaseolicola, pv. syringae, pv. tabaci, pv. tomato T1 and pv. oryzae from HSI-I group closer to the Ralstonia solanacearum and Xanthomonas orthologues. Our analysis suggests multiple independent acquisitions and possible gene attrition/loss of putative T6SS genes by members of P. syringae.  相似文献   

8.
Pseudomonas syringae pv. maculicola causes bacterial spot on Brassicaceae worldwide, and for the last 10 years severe outbreaks have been reported in the Loire Valley, France. P. syringae pv. maculicola resembles P. syringae pv. tomato in that it is also pathogenic for tomato and causes the same types of symptoms. We used a collection of 106 strains of P. syringae to characterize the relationships between P. syringae pv. maculicola and related pathovars, paying special attention to P. syringae pv. tomato. Phylogenetic analysis of gyrB and rpoD gene sequences showed that P. syringae pv. maculicola, which causes diseases in Brassicaceae, forms six genetic lineages within genomospecies 3 of P. syringae strains as defined by L. Gardan et al. (Int. J. Syst. Bacteriol. 49[Pt 2]:469-478, 1999), whereas P. syringae pv. tomato forms two distinct genetic lineages. A multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) conducted with eight minisatellite loci confirmed the genetic structure obtained with rpoD and gyrB sequence analyses. These results provide promising tools for fine-scale epidemiological studies on diseases caused by P. syringae pv. maculicola and P. syringae pv. tomato. The two pathovars had distinct host ranges; only P. syringae pv. maculicola strains were pathogenic for Brassicaceae. A subpopulation of P. syringae pv. maculicola strains that are pathogenic for Pto-expressing tomato plants were shown to lack avrPto1 and avrPtoB or to contain a disrupted avrPtoB homolog. Taking phylogenetic and pathological features into account, our data suggest that the DC3000 strain belongs to P. syringae pv. maculicola. This study shows that P. syringae pv. maculicola and P. syringae pv. tomato appear multiclonal, as they did not diverge from a single common ancestral group within the ancestral P. syringae genomospecies 3, and suggests that pathovar specificity within P. syringae may be due to independent genetic events.  相似文献   

9.
Aims:  To design and evaluate a loop-mediated isothermal amplification (LAMP) protocol by combining comparative genomics and bioinformatics for characterization of Pseudomonas syringae pv. phaseolicola (PSP), the causal agent of halo blight disease of bean ( Phaseolus vulgaris L.).
Methods and Results:  Genomic sequences of Pseudomonas syringae pathovars, P. fluorescens and P. aeruginosa were analysed using multiple sequence alignment. A pathovar-specific region encoding pathogenicity-related secondary metabolites in the PSP genome was targeted for developing a LAMP assay. The final assay targeted a polyketide synthase gene, and readily differentiated PSP strains from other Pseudomonas syringae pathovars and other Pseudomonas species, as well as other plant pathogenic bacteria, e.g. species of Pectobacterium , Erwinia and Pantoea .
Conclusion:  A LAMP assay has been developed for rapid and specific characterization and identification of PSP from other pathovars of P. syringae and other plant-associated bacteria .
Significance and Impact of the Study:  This paper describes an approach combining a bioinformatic data mining strategy and comparative genomics with the LAMP technology for characterization and identification of a plant pathogenic bacterium. The LAMP assay could serve as a rapid protocol for microbial identification and detection with significant applications in agriculture and environmental sciences.  相似文献   

10.
Pectate lyase (PL) is a potent cell wall-degrading enzyme known to play a role in the microbial infection of plants. We re-examined the pectolytic property of seven representative pathovars of Pseudomonas syringae. None of the 10 P. syringae pv. glycinea strains examined exhibited pectolytic activity. However, the PL gene (pel) was detected by Southern hybridization in four out of four P. syringae pv. glycinea strains examined. A P. syringae pv. glycinea pel gene was cloned, sequenced, and predicted to encode a protein sharing 70%-90% identity in amino acid sequence with PLs produced by pectolytic pseudomonads and xanthomonads. A series of amino acid and nucleotide sequence analyses reveal that (i) the predicted P. syringae pv. glycinea PL contains two regions in the amino acid sequence that may affect the formation of a beta-helix structure important for the enzyme activity, and (ii) the P. syringae pv. glycinea pel gene contains a single-base insertion, a double-base insertion, and an 18-bp deletion, which can lead to the synthesis of an inactive PL protein. The function of P. syringae pv. glycinea PL could be restored by removing the unwanted base insertions and by filling in the 18-bp deletions by site-directed mutagenesis. The altered pel sequence was also detected by polymerase chain reaction and nucleotide sequencing in the genomes of other pathovars of P. syringae, including phaseolicola and tagetis.  相似文献   

11.
The siderophore and virulence factor yersiniabactin is produced by Pseudomonas syringae. Yersiniabactin was originally detected by high-pressure liquid chromatography (HPLC); commonly used PCR tests proved ineffective. Yersiniabactin production in P. syringae correlated with the possession of irp1 located in a predicted yersiniabactin locus. Three similarly divergent yersiniabactin locus groups were determined: the Yersinia pestis group, the P. syringae group, and the Photorhabdus luminescens group; yersiniabactin locus organization is similar in P. syringae and P. luminescens. In P. syringae pv. tomato DC3000, the locus has a high GC content (63.4% compared with 58.4% for the chromosome and 60.1% and 60.7% for adjacent regions) but it lacks high-pathogenicity-island features, such as the insertion in a tRNA locus, the integrase, and insertion sequence elements. In P. syringae pv. tomato DC3000 and pv. phaseolicola 1448A, the locus lies between homologues of Psyr_2284 and Psyr_2285 of P. syringae pv. syringae B728a, which lacks the locus. Among tested pseudomonads, a PCR test specific to two yersiniabactin locus groups detected a locus in genospecies 3, 7, and 8 of P. syringae, and DNA hybridization within P. syringae also detected a locus in the pathovars phaseolicola and glycinea. The PCR and HPLC methods enabled analysis of nonpathogenic Escherichia coli. HPLC-proven yersiniabactin-producing E. coli lacked modifications found in irp1 and irp2 in the human pathogen CFT073, and it is not clear whether CFT073 produces yersiniabactin. The study provides clues about the evolution and dispersion of yersiniabactin genes. It describes methods to detect and study yersiniabactin producers, even where genes have evolved.  相似文献   

12.
13.
The utility of 36 presumptive determinative tests for 32 pathovars of Pseudomonas syringae was investigated. A total of 395 strains was examined. Most strains of 12 of these pathovars ( Ps. syringae pv. cannabina, Ps. syr. delphinii, Ps. syr. glycinea, Ps. syr. helianthi, Ps. syr. lachrymans, Ps. syr. mori, Ps. syr. morsprunorum, Ps. syr. phaseolicola, Ps. syr. 'porri', Ps. syr. papulans, Ps. syr. savastanoi and Ps. syr. tabaci ) formed clusters when test data were compared by centroid analysis. Pseudomonas syr. syringae, Ps. syr. aptata, Ps. syr. atrofaciens, Ps. syr. dysoxyli and Ps. syr. japonica formed a single cluster, indicating their possible synonymy. Strains of Ps. syr. antirrhini and Ps. syr. tomato were indistinguishable, as were those of Ps. syr. garcae and Ps. syr. oryzae. Strains of Ps. syr. berberidis, Ps. syr. coronafaciens, Ps. syr. eriobotryae, Ps. syr. maculicola, Ps. syr. passiflorae, Ps. syr. pisi and Ps. syr. striafaciens and Ps. syr. tagetis did not form distinguishable clusters.
The tests which reliably differentiated pathovars are recorded in a determinative scheme.  相似文献   

14.
To study the role of type III-secreted effectors in the host adaptation of the tobacco ( Nicotiana sp.) pathogen Pseudomonas syringae pv. tabaci , a selection of seven strains was first characterized by multilocus sequence typing (MLST) to determine their phylogenetic affinity. MLST revealed that all strains represented a tight phylogenetic group and that the most closely related strain with a completely sequenced genome was the bean ( Phaseolus vulgaris ) pathogen P. syringae pv. phaseolicola 1448A. Using primers designed to 21 P. syringae pv. phaseolicola 1448A effector genes, it was determined that P. syringae pv. phaseolicola 1448A shared at least 10 effectors with all tested P. syringae pv. tabaci strains. Six of the 11 effectors that failed to amplify from P. syringae pv. tabaci strains were individually expressed in one P. syringae pv. tabaci strain. Although five effectors had no effect on phenotype, growth in planta and disease severity of the transgenic P. syringae pv. tabaci expressing hopQ1-1 Pph1448A were significantly increased in bean, but reduced in tobacco. We conclude that hopQ1-1 has been retained in P. syringae pv. phaseolicola 1448A, as this effector suppresses immunity in bean, whereas hopQ1-1 is missing from P. syringae pv. tabaci strains because it triggers defences in Nicotiana spp. This provides evidence that fine-tuning effector repertoires during host adaptation lead to a concomitant reduction in virulence in non-host species.  相似文献   

15.
Plasmid analysis and variation in Pseudomonas syringae   总被引:2,自引:1,他引:1  
Total plasmid DNA was successfully isolated from 46 of 55 strains of Pseudomonas syringae . Electrophoretic separation after digestion with restriction endonuclease Eco RI gave reproducible banding patterns. Cluster analysis of banding data grouped all strains of pathovar (pv.) pisi separately from pv. glycinea , pv. phaseolicola and pv. syringae . Pathovars glycinea and phaseolicola were more similar to each other than to pv. pisi. A relationship between fragment banding patterns and race structure within pv. pisi was observed.  相似文献   

16.
The plant apoplast is the intercellular space that surrounds plant cells, in which metabolic and physiological processes relating to cell wall biosynthesis, nutrient transport, and stress responses occur. The apoplast is also the primary site of infection for hemibiotrophic pathogens such as P. syringae, which obtain nutrients directly from apoplastic fluid. We have used apoplastic fluid extracted from healthy tomato leaves as a growth medium for Pseudomonas spp. in order to investigate the role of apoplastic nutrients in plant colonization by Pseudomonas syringae. We have confirmed that apoplast extracts mimic some of the environmental and nutritional conditions that bacteria encounter during apoplast colonization by demonstrating that expression of the plant-induced type III protein secretion pathway is upregulated during bacterial growth in apoplast extracts. We used a modified phenoarray technique to show that apoplast-adapted P. syringae pv. tomato DC3000 expresses nutrient utilization pathways that allow it to use sugars, organic acids, and amino acids that are highly abundant in the tomato apoplast. Comparative analyses of the nutrient utilization profiles of the genome-sequenced strains P. syringae pv. tomato DC3000, P. syringae pv. syringae B728a, P. syringae pv. phaseolicola 1448A, and the unsequenced strain P. syringae pv. tabaci 11528 with nine other genome-sequenced strains of Pseudomonas provide further evidence that P. syringae strains are adapted to use nutrients that are abundant in the leaf apoplast. Interestingly, P. syringae pv. phaseolicola 1448A lacks many of the nutrient utilization abilities that are present in three other P. syringae strains tested, which can be directly linked to differences in the P. syringae pv. phaseolicola 1448A genome.  相似文献   

17.
ABSTRACT: BACKGROUND: The central role of Type III secretion systems (T3SS) in bacteria-plant interactions is well established, yet unexpected findings are being uncovered through bacterial genome sequencing. Some Pseudomonas syringae strains possess an uncharacterized cluster of genes encoding putative components of a second T3SS (T3SS-2) in addition to the well characterized Hrc1 T3SS which is associated with disease lesions in host plants and with the triggering of hypersensitive response in non-host plants. The aim of this study is to perform an in silico analysis of T3SS-2, and to compare it with other known T3SSs. RESULTS: Based on phylogenetic analysis and gene organization comparisons, the T3SS-2 cluster of the P. syringae pv. phaseolicola strain is grouped with a second T3SS found in the pNGR234b plasmid of Rhizobium sp. These additional T3SS gene clusters define a subgroup within the Rhizobium T3SS family. Although, T3SS-2 is not distributed as widely as the Hrc1 T3SS in P. syringae strains, it was found to be constitutively expressed in P. syringae pv phaseolicola through RT-PCR experiments. CONCLUSIONS: The relatedness of the P. syringae T3SS-2 to a second T3SS from the pNGR234b plasmid of Rhizobium sp., member of subgroup II of the rhizobial T3SS family, indicates common ancestry and/or possible horizontal transfer events between these species. Functional analysis and genome sequencing of more rhizobia and P. syringae pathovars may shed light into why these bacteria maintain a second T3SS gene cluster in their genome.  相似文献   

18.
PCR fingerprinting using primers corresponding to repetitive (ERIC and REP) and insertion sequences (IS50) was investigated as a method to distinguish the pathovars of Pseudomonas syringae . After amplification of total DNA with the ERIC-, REP-, and IS50-PCR followed by agarose gel electrophoresis. most of the tested pathovars showed specific patterns of PCR products. The differences between the fingerprints among strains within a pathovar were small, with the exception of pathovars syringae, aptata , and atrofaciens . The fingerprints of the related pathovars savastanoi, phaseolicola, glycinea, morsprunorum, tabaci, lachrymans , and mori generated with the ERIC- and REP-primers were found to be very similar, showing the potential of this technique for taxonomical studies. In contrast, the IS50-PCR fingerprints of these pathovars were clearly distinguishable. The fingerprint patterns of a strain were highly reproducible with all three tested primer sets, also when whole cells were added to the reaction mixture. Thus, the PCR technique with the ERIC-, REP-, and IS50-primers is a rapid, simple, reproducible, and low cost method to identify and classify strains of the Pseudomonas syringae pathovars.  相似文献   

19.
Oh SK  Lee S  Chung E  Park JM  Yu SH  Ryu CM  Choi D 《Planta》2006,223(5):1101-1107
Plants protect themselves against pathogens using a range of response mechanisms. There are two categories of nonhost resistance: Type I, which does not result in visible cell death; and Type II, which entails localized programmed cell death (or hypersensitive response) in response to nonhost pathogens. The genes responsible for these two systems have not yet been intensively investigated at the molecular level. Using tobacco plants (Nicotiana tabacum), we compared expression of 12 defense-related genes between a Type I (Xanthomonas axonopodis pv. glycines 8ra) nonhost interaction, and two Type II (Pseudomonas syringae pv. syringae 61 and P. syringae pv. phaseolicola NPS3121) nonhost interactions, as well as those expressed during R gene-mediated resistance to Tobacco mosaic virus. In general, expression of most defense-related genes during R gene-mediated resistance was activated 48 h after challenge by TMV; the same genes were upregulated as early as 9 h after infiltration by nonhost pathogens. Surprisingly, X. axonopodis pv. glycines (Type I) elicited the same set of defense-related genes as did two pathovars of P. syringae, despite the absence of visible cell death. In two examples of Type II nonhost interactions, P. syringae pv. phaseolicola NPS3121 produced an expression profile more closely resembling that of X. axonopodis pv. glycines 8ra, than that of P. syringae pv. syringae 61. These results suggest that Type I nonhost resistance may act as a mechanism providing a more specific and active defense response against a broad range of potential pathogens.  相似文献   

20.
The gene coding for GDP-mannose dehydrogenase ( algD ) was isolated from a Pseudomonas syringae pv. phaseolicola genomic library using a polymerase chain reaction-generated heterologous DNA-probe from Pseudomonas aeruginosa . A total of 2123 base pairs were sequenced (accession number AF001555) and analysed for homologies to the alginate gene cluster of P. aeruginosa . Downstream from algD an alg8 homologue was found suggesting a similar arrangement of the alginate gene cluster in P. syringae pv. phaseolicola to that in P. aeruginosa . Also, the deduced amino acid sequence of algD shows high similarity to that of P. aeruginosa (0.9) and Azotobacter vinelandii (0.88). Southern hybridization experiments revealed that algD is widely distributed among members of the Pseudomonas rRNA homology group I. Among others, sequences homologous to algD were detected in the P. syringae pathovars lachrymans , mori , morsprunorum, pisi , savastanoi, tabaci and tomato as well as in Pseudomonas amygdali . For most of the algD positive organisms synthesis of alginate has been reported by other studies. However, algD homologues were also detected for the species Pseudomonas corrugata , Pseudomonas marginalis and Pseudomonas avenae ( Acidovorax avenae ), for which alginate biosynthesis has not yet been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号