首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The extension of transgene technology to pasture species presents new challenges for ecological risk assessment because, unlike most crops, pasture plants are well adapted for persistence in mixed plant communities and are an important source of invasive species worldwide. Despite this, the impact of transgenic pasture plants on native ecosystems remains relatively unstudied. Here we use a community gradient modelling approach to investigate the performance of subterranean clover containing a nutrition‐enhancing transgene over a range of ecologically important grassland communities at a study site in south‐eastern Australia. Our data, which were collected over a full annual growing season, show that the transgenic clover line has different seedling survival and seed dormancy breakdown rates than the commercial non‐transgenic line, which suggests that transgenic populations will decline faster than non‐transgenic ones in perennial native grassland communities but could, under optimal climatic conditions, have potentially higher growth rates in grazed annual grasslands. These results demonstrate that changes to ecologically important demographic parameters can occur in plants containing transgenes that are not typically considered fitness enhancing, and that genotype by environment interactions and management regimes that impact on these parameters may influence the invasiveness of transgenic plants. Our study also demonstrates the utility of incorporating plant community gradient modelling into ecological risk assessment protocols designed for transgenic pasture plants.  相似文献   

3.
Host‐plant data for North American and Australian butterflies were used to test the hypothesis that larval diet breadth increases with decreasing resource predictability (where the latter was estimated by host‐plant growth‐form/duration). For each region in turn we compared the diet breadths of butterflies which utilise herbaceous host‐plants with those of species having woody hosts. For North America alone we also compared the diet breadths of species having annual hosts with those utilising perennial hosts, and the diets of species having herbaceous‐annual hosts with those using woody‐perennial hosts. Studies of diet breadth may be biased by the host taxonomic level which contributes most to the diet index used. For example, the results of analyses which employ indices based on numbers of families of hosts utilised may differ from those using indices based on counts of host species or genera. To investigate this potential problem we performed cross‐species analyses where diet breadth was defined in turn as the number of host species, genera, or families eaten. We found that using different taxonomic levels did give inconsistent results. To avoid this we employed phylogenetic diet breadth indices in comparative analyses of Independent Contrasts. The former incorporate information from the whole of the host‐plant phylogeny, whilst the comparative method eliminates any confounding effects of butterfly phylogeny. The results indicated that there is a phylogenetic component to butterfly diet breadth. They also largely differed from those of the cross‐species investigations, although there were similarities (i.e. results differed between regions and varied according to whether the whole fauna or just endemics were investigated). Our results suggested that in both regions, non‐endemics which feed on herbaceous plants have wider diet breadths than non‐endemics which utilise woody hosts. However, we found no consistent evidence that the diet breadths of endemics increase with decreasing resource predictability (as estimated here).  相似文献   

4.
Many herbaceous meadows are dominated by competitive non‐native grasses and subject to ungulate herbivory, ecological processes that shift the proportional biomass of plant groups in the community. Predicting the outcome of restoration is complicated because herbivory and competition can interact. We examined the relationship between herbivory by native black‐tailed deer and domestic sheep and dominance of non‐native grasses in Garry oak meadows, one of North America's most endangered habitat types. A 3‐year factorial experiment tested the effects of mowing and fencing on plant community biomass, categorized into eight groups by geographic origin (native/non‐native), growth form (annual/perennial), and plant type (forb/grass). To test if the rarity of native plant groups was related to herbivory, we estimated ungulate foraging preferences for each plant group. Mowing and fencing treatments interacted for annual and perennial non‐native grasses. Dominance was shifted from non‐native to native grasses only when both mowing and fencing were applied. Fencing increased the total biomass, whereas mowing had no overall effect; however, fencing alone did not affect any individual plant group. Mowing shifted dominance from grasses to forbs, although both native and non‐native forbs benefited from the increased light availability. We also noted that herbivore fecal pellet densities were greatest in the spring, which coincided with the peak season of their preferred plant group, native perennial forbs. Overall, applying both mowing and fencing was the most effective restoration treatment to increase native plant groups and biomass.  相似文献   

5.
Abstract The long-term growth and coexistence of species with large mixed populations in varying environments were modelled for representative environments and life-history characteristics of annual and perennial plants. The effects of the relationships between the means, variances, and covariances of seed yield, establishment, and survival, were explored by Taylor's expansion. The main findings are: 1. Individual variation in reproductive success within generations has no effect on long-term growth, which is determined only by the mean growth rate of the individuals of the species. 2. In annual species with nonoverlapping generations and without seed banks, the species with the largest mean log of the annual growth rate Y, that is the product of the average seed yield per plant and the establishment probability per seed, will win in competition with other species, independent of the correlations between the growth rates of the different species. In this case there is a negative tradeoff between the mean and the variance. 3. In perennial species with a lottery type of equal access to vacant sites, a high annual survival probability allows stable coexistence between perennial species with independent or negatively correlated variance in their mean annual product of seed production and establishment Y. 4. The coexistence range and the likely number of coexisting perennial species increase as a function of the variance of the common species, and is decreased by the variance of the rare species. The coexistence range is decreased by the covariance between the growth rates of the species, and between the survival of the rare species and its growth rate. 5. If mortality in the community of long-lived perennials is synchronized, the generations become nonoverlapping, and the competitive dynamics become similar to that of annuals. 6. Coexistence between annual and perennial species is promoted if the covariances between the annual survival and the relative yield of perennials, and between the yields of perennials and annuals, decrease and become more negative. 7. Selection for seed yield and establishment in different conditions in annuals favours a generalist strategy with low variance between years which provides a moderate yield and establishment over a wide range of environmental conditions. In perennial plants, long-term growth rate is determined by the lifetime seed yield and establishment. Because of strong competition with annuals in the more common conditions, selection in perennials favours instead a specialist strategy, with a high seed yield and establishment at relatively rare occasions in space and time, in which there is only weak competition with annuals. 8. Coexistence of annual species with a long-lived seed bank in the soil is also made possible by independent variation in different years of the germination, seed yield and establishment of different species, analogous to the situation of perennial plants.  相似文献   

6.
Understanding how carbon source and sink strengths limit plant growth is a critical knowledge gap that hinders efforts to maximize crop yield. We investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast‐growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow‐growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub‐ambient and elevated CO2 concentrations ([CO2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbon and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO2] indicating that source strength was near maximal at current [CO2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO2], and lower non‐structural carbohydrate accumulation. Alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO2].  相似文献   

7.
1. The growth of riparian trees in semi‐arid regions is influenced by stream flow regime, but the relative importance of base flow and seasonal floods on growth has not been explored. I examined abiotic influences on the growth of Platanus wrightii in four stream reaches in Arizona. All reaches had a bimodal pattern of discharge, but only two had continuous flow throughout the growing season.
2. In two reaches of Sycamore Creek without perennial flow, a large percentage of the annual variation in radial growth rate of P. wrightii was explained by annual and growing season flow rate. Growth was related to these same variables in a perennial reach of Sycamore Creek, but trees maintained higher growth during drought years than they did in the temporary reaches. At Oak Creek, a larger perennial stream, P. wrightii growth showed a bell‐shaped relationship with flow. These data suggest that growth rate is frequently limited by water availability at Sycamore Creek, but not at Oak Creek.
3. At both rivers, much of the annual surface flow occurs as winter floods. Oak Creek, however, maintains a high summer base flow even during years with no floods. Platanus wrightii growth was significantly related to winter flood frequency only at Sycamore Creek. The positive relationship of growth with stream flow and winter flood frequency at Sycamore Creek presumably occurs because the P. wrightii trees are dependent on the winter flows to recharge the shallow alluvial aquifer and to raise the level of ground water within the root zone.
4. Frequent summer floods increased the growth of trees in perennial and non‐perennial reaches alike. At perennial Oak Creek, summer flood frequency was the only variable linearly related to growth of P. wrightii. Summer flood frequency was a significant, but secondary, component of multiple‐regression growth models for trees in the perennial and non‐perennial reaches of Sycamore Creek. Summer floods may stimulate growth, in part, by replenishing limiting nutrients.
5. High temperature was negatively associated with the growth of P. wrightii at Sycamore Creek. The combination of drought and high temperature resulted in very low growth rate.
6. These results have implications for the management of flood and base flow regimes on regulated, diverted and pumped rivers.  相似文献   

8.
Native perennial grasses were once common in California prairies that are now dominated by annual grasses introduced from Europe. Competition from exotics may be a principal impediment to reestablishment of native perennial grasses. Introduced annual grasses, such as Vulpia myuros (zorro fescue), are often included with native perennial species in revegetation seed mixtures used in California. To examine the potential suppressive effect of this graminoid, we evaluated the growth and performance of a mixture of California native perennial grasses and resident weeds when grown with varying densities of V. myuros. The annual fescue exhibited a strongly plastic growth response to plant density, producing similar amounts of above‐ground biomass at all seeding densities. Perennial grass seedling survival and above‐ ground biomass decreased and individuals became thinner (i.e., reduced weight‐to‐height ratio) with increasing V. myuros seeding density. V. myuros also significantly suppressed above‐ground biomass and densities of weeds and had a more negative effect on weed densities than on native perennial grass densities. Biomass of native grasses and weeds was not differentially affected by increasing densities of V. myuros. Overall, because V. myuros significantly reduced the survival and performance of the mixture of native perennial grasses and this effect increased with increasing V. myuros density, we conclude that including this exotic annual in native seed mixtures is counterproductive to restoration efforts.  相似文献   

9.
Land managers frequently apply vegetation removal and seeding treatments to restore ecosystem function following woody plant encroachment, invasive species spread, and wildfire. However, the long‐term outcome of these treatments is unclear due to a lack of widespread monitoring. We quantified how vegetation removal (via wildfire or management) with or without seeding and environmental conditions related to plant community composition change over time in 491 sites across the intermountain western United States. Most community metrics took over 10 years to reach baseline conditions posttreatment, with the slowest recovery observed for native perennial cover. Total cover was initially higher in sites with seeding after vegetation removal than sites with vegetation removal alone, but increased faster in sites with vegetation removal only. Seeding after vegetation removal was associated with rapidly increasing non‐native perennial cover and decreasing non‐native annual cover. Native perennial cover increased in vegetation removal sites irrespective of seeding and was suppressed by increasing non‐native perennial cover. Seeding was associated with higher non‐native richness across the monitoring period as well as initially higher, then declining, total and native species richness. Several cover and richness recovery metrics were positively associated with mean annual precipitation and negatively associated with mean annual temperature, whereas relationships with weather extremes depended on the lag time and season. Our results suggest that key plant groups, such as native perennials and non‐native annuals, respond to restoration treatments at divergent timescales and with different sensitivities to climate and weather variation.  相似文献   

10.
Prescribed fire is an important management tool for reducing the dominance of non‐native species in annual grasslands; both annual and perennial native species show strong vegetative responses in the subsequent growing season. However, although the post‐fire contribution of native species to the seed bank is assumed to be larger than in pretreatment years, the effects on seed quality, particularly viability and longevity, are not well understood. In this study, I germinated Nassella pulchra (purple needlegrass) seed that had been stored for 10 years after collection from target plants receiving treatment combinations of summer burning and grazing by sheep. Seeds from burned plants were larger and had higher germinability than seed from unburned plants. Seeds from plants that were both burned and grazed had the highest germination. The strong relationship between long‐term viability and seed size suggests greater maternal provisioning and increased seed quality subsequent to burning and grazing. I conclude that managing for seed quality may be a useful approach for conservation of native species in California's critically endangered grassland habitats.  相似文献   

11.
Kjell Bolmgren  Peter D. Cowan 《Oikos》2008,117(3):424-429
Parents face a timing problem as to when they should begin devoting resources from their own growth and survival to mating and offspring development. Seed mass and number, as well as maternal survival via plant size, are dependent on time for development. The time available in the favorable season will also affect the size of the developing juveniles and their survival through the unfavorable season. Flowering time may thus represent the outcome of such a time partitioning problem. We analyzed correlations between flowering onset time, seed mass, and plant height in a north-temperate flora, using both cross-species comparisons and phylogenetic comparative methods. Among perennial herbs, flowering onset time was negatively correlated with seed mass (i.e. plants with larger seeds started flowering earlier) while flowering onset time was positively correlated with plant height. Neither of these correlations was found among woody plants. Among annual plants, flowering onset time was positively correlated with seed mass. Cross-species and phylogenetically informed analyses largely agreed, except that flowering onset time was also positively correlated with plant height among annuals in the cross-species analysis. The different signs of the correlations between flowering onset time and seed mass (compar. gee regression coefficient=−7.8) and flowering onset time and plant height (compar. gee regression coefficient=+30.5) for perennial herbs, indicate that the duration of the growth season may underlie a tradeoff between maternal size and offspring size in perennial herbs, and we discuss how the partitioning of the season between parents and offspring may explain the association between early flowering and larger seed mass among these plants.  相似文献   

12.
Plant strategy and life‐history theories make different predictions about reproductive efficiency under competition. While strategy theory suggests under intense competition iteroparous perennial plants delay reproduction and semelparous annuals reproduce quickly, life‐history theory predicts both annual and perennial plants increase resource allocation to reproduction under intense competition. We tested (1) how simulated competition influences reproductive efficiency and competitive ability (CA) of different plant life histories and growth forms; (2) whether life history or growth form is associated with CA; (3) whether shade avoidance plasticity is connected to reproductive efficiency under simulated competition. We examined plastic responses of 11 herbaceous species representing different life histories and growth forms to simulated competition (spectral shade). We found that both annual and perennial plants invested more to reproduction under simulated competition in accordance with life‐history theory predictions. There was no significant difference between competitive abilities of different life histories, but across growth forms, erect species expressed greater CA (in terms of leaf number) than other growth forms. We also found that shade avoidance plasticity can increase the reproductive efficiency by capitalizing on the early life resource acquisition and conversion of these resources into reproduction. Therefore, we suggest that a reassessment of the interpretation of shade avoidance plasticity is necessary by revealing its role in reproduction, not only in competition of plants.  相似文献   

13.
Successful restoration of an invaded landscape to a diverse, invasion‐resistant native plant community requires determining the optimal native species mix to add to the landscape. We manipulated native seed mix (annuals, perennials, or a combination of the two), while controlling the growth of non‐native species to test the hypothesis that altering native species composition can influence native establishment and subsequent non‐native invasion. Initial survival of native annuals and perennials was higher when seeded in separate mixes than when combined, and competition between the native perennials and annuals led to lower perennial cover in year 2 of mixed‐seeded plots. The plots with the highest perennial cover had the highest resistance to invasion by Brassica nigra. To clarify interactions among different functional groups of natives and B. nigra, we measured competitive interactions in pots. We grew one native annual, one native perennial, and B. nigra alone or with different competitors and measured biomass after 12 weeks. Brassica nigra was the strongest competitor, limiting the growth of all native species, and was not impacted by competition with native annuals or perennial seedlings. Results from the potted plant experiment demonstrated the strong negative influence of B. nigra on native seedlings. Older native perennials were the strongest competitors against invasive species in the field, yet perennial seedling survival was limited by competition with native annuals and B. nigra. Management action that maximizes perennial growth in early years may lead to a relatively more successful restoration and the establishment of an invasion‐resistant community.  相似文献   

14.
一年生盐生植物耐盐机制研究进展   总被引:5,自引:0,他引:5       下载免费PDF全文
盐生植物是一类能够在盐土上完成生活史的天然植物, 在与盐土协同演化过程中形成了一系列适应盐生环境的特殊生存策略。其中一年生盐生植物因其生活史短、方便培养和观察、易于基因转化和后代繁殖, 已成为耐盐机制研究的主要对象。一年生盐生植物面临多变的生境胁迫, 具有更大的生存风险, 所以具有不同于多年生盐生植物的更稳妥的适应机制, 主要体现在种子的高盐休眠、复水速萌、形态和萌发的多态性、存在持久种子库及调节资源分配等方面。种子萌发后的生长、发育和繁殖等生活史的各阶段都要经受严峻的盐生胁迫环境。通常所说的耐盐机理是指成株对盐分的调控, 按照植物种类不同而分为稀盐、泌盐和拒盐3种耐盐形式。该文在对国内外相关文献进行分析归纳的基础上, 首先介绍了一年生盐生植物的常见类型, 然后分别从种子特征、形态结构、生理生化和生态习性等方面综述了一年生盐生植物的耐盐机制。  相似文献   

15.
Abstract. The relationship between intensity and timing of cattle grazing on changes in the size and composition of the soil seed bank were investigated in a 3‐yr study in a Mediterranean grassland in northeastern Israel. Treatments included manipulations of stocking rates and of grazing regimes, in a factorial design. The retrieved soil seed bank community was rich in species, with 133 species accounting for 80% of the 166 species recorded at the site. Within the seed bank, 89% of the species were annuals. Seed bank dynamics was analysed in terms of plant functional groups and germination strategies. In terms of total seed bank density and including all functional groups, 42% of the seeds present in the soil did not germinate under watering conditions. The dormancy level differed greatly among functional groups. The seed bank of annual legumes, crucifers, annual thistles and annual forbs had a large fraction of non‐germinated seeds and characterized areas grazed early in the growing season under high and very high grazing intensity. These functional groups were considered to have a higher potential for persistent seed banks production. In contrast, short and tall annual grasses and tall perennial grasses, that were dominant in ungrazed or moderately grazed paddocks, generally had seed banks with a very small fraction of non‐germinated seeds. Seed bank densities varied widely between grazing treatments and years. Under continuous grazing, heavy grazing pressure reduced seed bank densities of grasses and crucifers in comparison to moderate grazing. The greatest reduction on the seed bank densities resulted from heavy grazing concentrated during the seed‐set stages.  相似文献   

16.
《Aquatic Botany》1987,27(3):243-256
The variation in reproductive potential of annual eelgrass was examined along a continuous gradient on an extensive mudflat bordering on and sloping down from the shore (Eastern River) and in a habitat mosaic in a salt marsh (Petpeswick Inlet) in Nova Scotia. Spathe and flower production as well as plant density were compared among habitats. Of the four habitats investigated in Petpeswick Inlet, the largest numbers of spathes and flowers per spathe were produced by plants in ponds on raised flats of Spartina alterniflora Loisel. The highest number of seeds per unit area was produced by plants in depressions on these flats which drained with each low tide. Seed production of annual eelgrass in drained depressions (4 889 seeds per 625 cm2) was seven times that of perennial shoots in creeks and higher than any records in the literature for perennial eelgrass. On average, seed production of annual eelgrass in this study was higher than values reported for other locations. Along the gradient, both annual and perennial eelgrass showed peaks in reproductive potential, but the annual peaked further up the gradient where there was greater exposure to air at low tide. Transplanting studies indicated that the among-habitat differences in reproductive potential were largely controlled by environmental as opposed to genetic factors. The possible effect of inter- and intraspecific competition on the reproductive potential of annual eelgrass was investigated experimentally in two habitats where co-existing species were abundant. In creeks the presence of perennial eelgrass significantly reduced the reproductive potential of annual eelgrass, but in a drained depression, the removal of Ruppia maritima L. s.l. had no effect. The upper distribution limit of annual eelgrass is likely determined by desiccation while the lower limit is probably determined by a combination of light availability (to some extent affected by perennial eelgrass) and exposure to spring rains which would significantly enhance seed germination.  相似文献   

17.
Aim Biotic homogenization is a growing phenomenon and has recently attracted much attention. Here, we analyse a large dataset of native and alien plants in North America to examine whether biotic homogenization is related to several ecological and biological attributes. Location North America (north of Mexico). Methods We assembled species lists of native and alien vascular plants for each of the 64 state‐ and province‐level geographical units in North America. Each alien species was characterized with respect to habitat (wetland versus upland), invasiveness (invasive versus non‐invasive), life cycle (annual/biennial versus perennial) and habit (herbaceous versus woody). We calculated a Jaccard similarity index separately for native, for alien, and for native and alien species. We used the average of Jaccard dissimilarity index (1 ? Jaccard index) of all paired localities as a measure of the mean beta diversity of alien species for each set of localities examined in an analysis. We used a homogenization index to quantify the effect of homogenization or differentiation. Results We found that (1) wetland, invasive, annual/biennial and herbaceous alien plants markedly homogenized the state‐level floras whereas non‐invasive and woody alien plants tended to differentiate the floras; (2) beta diversity was significantly lower for wetland, invasive, annual/biennial and herbaceous alien plants than their counterparts (i.e. upland, non‐invasive, perennial and woody alien plants, respectively); and (3) upland and perennial alien plants each played an equal role in homogenizing and differentiating the state‐level floras. Main conclusions Our study shows that biotic homogenization is clearly related to habitat type (e.g. wetland versus uplands), species invasiveness and life‐history traits such as life cycle (e.g. annual/biennial and herbaceous versus woody species) at the spatial scale examined. These observations help to understand the process of biotic homogenization resulting from alien vascular plants in North America.  相似文献   

18.
In many annual plant populations, seeds may be dormant for several seasons before they germinate. Here, we investigate the consequences of both conditional (dispersed seeds cannot enter a dormant stage) and unconditional seed dormancy on the amount and the distribution of neutral genetic diversity within and among populations. We present joint demographic and population genetics models for single and subdivided populations and derive the effective size and population differentiation at both local and metapopulation scales. We suggest that a Wahlund effect is unlikely to result from age structure alone. Furthermore, the differentiation among populations is decreased by the presence of seed banks. We also extend these models to describe monocarpic (semelparous) perennial life cycle, where the nonreproductive stages are vegetative rosettes instead of dormant seeds. The main difference between the models relies in the way the density-dependent regulation is acting. The effective size of monocarpic perennial species may be less than the census number of individuals, and among-population differentiation is always larger than in annual species. We discuss our results in the light of recent population genetics surveys of annual plants with seed banks.  相似文献   

19.
Despite a large body of literature that describes the effects of arbuscular mycorrhizal colonization on plant response to water deficit, reviews of these works have been mainly in narrative form, and it is therefore difficult to quantify the magnitude of the effect. We performed a meta-analysis to examine the effect of mycorrhizal colonization on growth and yield of plants exposed to water deficit stress. Data were compared in the context of annual vs. perennial plants, herbaceous vs. woody plants, field vs. greenhouse conditions, degree of stress, functional group, regions of plant growth, and mycorrhizal and host species. We found that, in terms of biomass measurements, mycorrhizal plants have better growth and reproductive response under water stress compared to non-mycorrhizal plants. When variables such as habit, life cycle, or water stress level are considered, differences in mycorrhizal effect on plant growth between variables are observed. While growth of both annual and perennial plants is improved by symbiosis, perennials respond more favorably to colonization than annuals. Overall, our meta-analysis reveals a quantifiable corroboration of the commonly held view that, under water-deficit conditions, plants colonized by mycorrhizal fungi have better growth and reproductive response than those that are not.  相似文献   

20.
Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号