首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用蛋白组学技术分析质粒介导siRNA的“Off-target”效应   总被引:1,自引:0,他引:1  
siRNA的"脱靶效应"(off-target effects)是RNA干扰应用研究领域的热点问题.采用蛋白组学技术对质粒介导的siRNA稳定沉默原癌基因c-myc可能存在的"off-target"效应进行初步研究,为siRNA靶向特异性的系统评价奠定理论与实验基础.构建靶向c-myc的siRNA真核表达质粒p-Mat01-1及其错配质粒p-Mis09-1,空质粒pEGFP-C1为对照,并稳定转染MCF-7人乳腺癌细胞.通过RT-PCR和Western印迹分析结果显示p-Mat01-1稳定转染克隆中c-myc/c-MYC的表达降低.采用2-DE及LC-ESI-MS/MS等方法,研究了p-Mat01-1与pEGFP-C1稳定转染克隆的蛋白组表达差异.结果显示,p-Mat01-1稳定转染克隆中有47个c-myc非调控蛋白点表达升高或降低,约占423个随机检测蛋白点的11.1%.这些蛋白涉及细胞骨架、代谢、增殖、信号传导、分子伴侣、氧化还原等多条途径.实验结果表明,质粒介导靶向c-myc的siRNA在MCF-7细胞中存在明显的"off-target"效应,提示在设计siRNA实验及应用研究时应系统考察其靶向特异性.  相似文献   

2.
3.
Glucose concentration may be an important factor in breast cancer cell proliferation, and the prevalence of breast cancer is high in diabetic patients. Leptin may also be an important factor since plasma levels of leptin correlated with TNM staging for breast cancer patients. The effects of glucose and leptin on breast cancer cell proliferation were evaluated by examining cell doubling time, DNA synthesis, levels of cell cycle related proteins, protein kinase C (PKC) isozyme expression, and peroxisome proliferator-activated receptor (PPAR) subtypes were determined following glucose exposure at normal (5.5 mM) and high (25 mM) concentrations with/without leptin in MCF-7 human breast cancer cells. In MCF-7 cells, leptin and high glucose stimulated cell proliferation as demonstrated by the increases in DNA synthesis and expression of cdk2 and cyclin D1. PKC-alpha, PPARgamma, and PPARalpha protein levels were up-regulated following leptin and high glucose treatment in drug-sensitive MCF-7 cells. However, there was no significant effect of leptin and high glucose on cell proliferation, DNA synthesis, levels of cell cycle proteins, PKC isozymes, or PPAR subtypes in multidrug-resistant human breast cancer NCI/ADR-RES cells. These results suggested that hyperglycemia and hyperleptinemia increase breast cancer cell proliferation through accelerated cell cycle progression with up-regulation of cdk2 and cyclin D1 levels. This suggests the involvement of PKC-alpha, PPARalpha, and PPARgamma.  相似文献   

4.
5.
戎嵘  韦红梅  周静  朱俊东 《生物磁学》2011,(6):1025-1029
目的:探讨两种大豆异黄酮主要成分染料木黄酮(genistein,GEN)和大豆苷元(daidzein,DAI)抑制人乳腺癌MCF-7细胞增殖的作用与过氧化物酶体增殖激活物受体γ(peroxisome proliferators-activated receptorγ,PPARγ)信号途径的关系。方法:采用免疫细胞化学染色方法观察MCF-7细胞的PPARγ表达情况,PPARγ介导的荧光素酶报告基因检测大豆异黄酮和PPARγ配体罗格列酮(rosiglitazone,ROS)对MCF-7细胞PPARγ的激活作用,MCF-7细胞分别经8×10-5mol/L GEN、DAI和1×10-5mol/L的ROS单独或联合1×10-5mol/L的PPARγ特异性抑制剂GW9662联合处理24、48和72 h后,用CCK-8法检测细胞增殖。结果:MCF-7细胞存在有PPARγ表达,GEN、DAI呈剂量依赖性增强报告基因荧光素酶活性,且这种作用可被GW9662明显阻断;GEN、DAI和ROS呈时间依赖性明显抑制MCF-7细胞增殖(P〈0.05),而GW9662可以显著削弱GEN、DAI和ROS对MCF-7细胞的增殖抑制作用(P〈0.05)。结论:大豆异黄酮可通过激活乳腺癌MCF-7细胞的PPARγ信号途径抑制其增殖。  相似文献   

6.
The objective of this study is to compare the expression level of MAP3K1 between normal mammary gland cells and breast cancer cells, and to analyze the effects of silencing MAP3K1 on breast cancer cells with paclitaxel treatment. Western blotting analysis was used to detect the expression level of MAP3K1 in MCF-7 and MCF-12F cells. The effect of gene silencing through different siRNAs was determined by realtime-PCR. MTT assay was used to test the cell proliferation. Cell cycle was detected by flow cytometry. MAP3K1 protein expression level in breast cancer cells was higher than that in normal mammary gland cells. MAP3K1 siRNA transfection significantly reduced the expression level of MAP3K1, and enhanced paclitaxel-induced cell proliferation inhibition and cell cycle arrest in breast cancer cells. Targeting MAP3K1 expression through small RNA interference can promote the therapeutic effects of paclitaxel in breast cancer.  相似文献   

7.
Neogambogic acid (NGA), an active ingredient in garcinia, can inhibit the growth of some solid tumors and result in an anticancer effect. We hypothesize that NGA may be responsible for the inhibition of proliferation of human breast cancer cell line MCF-7 cells. To investigate its anticancer mechanism in vitro, MCF-7 cells were treated with various concentrations of NGA. Results of MTT (methyl thiazolyl tetrazolum) assay showed that treatment with NGA significantly reduced the proliferation of MCF-7 cells in a dose-dependent manner. NGA could increase the expression of the apoptosis-related proteins FasL, caspase-3, caspase-8, caspase-9, and Bax and decrease the expression of anti-apoptotic protein Bcl-2 accompanied by the mitochondrial transmembrane damage. The antiproliferative effect of NGA on MCF-7 cells is due to the G(0)/G(1) arrest, increased apoptosis and activation of Fas/FasL and cytochrome C pathway. These results provide an important insight into the cellular and molecular mechanisms through which NGA impairs the proliferation of breast cancer cells.  相似文献   

8.
The role of human Sex Hormone-Binding Globulin (SHBG), the plasma carrier of sex steroids, and its membrane receptor, SHBG-R, in estrogen-dependent breast cancer has been investigated in our laboratory in the past few years. SHBG-R is expressed in MCF-10 A cells (not neoplastic mammary cells), MCF-7 cells (breast cancer, ER positive) and in tissue samples from patients affected with ER positive breast cancer, but not in estrogen-insensitive MDA-MB 231 cells. The SHBG/SHBG-R interaction, followed by the binding of estradiol to the complex protein/receptor, causes a significant increase of the intracellular levels of cAMP, but does not modify the amount of estradiol entering MCF-7 cells. The estradiol-induced proliferation of MCF-7 cells is inhibited by SHBG, through SHBG-R, cAMP and PKA. Similarly, the proliferation rate of tissue samples positive for SHBG-R was significantly lower than the proliferation rate of negative samples. SHBG and SHBG-R could thus trigger a ‘biologic’ anti-estrogenic pathway. In order to get a more detailed knowledge of this system, we first examined the frequence of the reported mutated form of SHBG in 255 breast cancer patients. The mutated SHBG is characterized by a point mutation (Asp 327→Asn) causing an additional N-glycosylation site, which does not affect the binding of steroids to SHBG. The frequence of the mutation was significantly higher (24.5%) in estrogen-dependent breast cancers than in healthy control subjects (11.6%). This observation confirms the close relationship between SHBG and estrogen-dependent breast cancer and suggests that the mutation could modify SHBG activity at cell site. Lastly, the possibility of using SHBG to modulate the estradiol action in breast cancer was further studied by transfecting MCF-7 cells with an expression vector carrying the SHBG cDNA (study in collaboration with G.L. Hammond). Transfected cells are able to produce significant amount of SHBG in their medium, but their SHBG-R is reduced to undetectable levels. The SHBG produced by transfected MCF-7 cells is, however, able to inhibit estradiol-induced proliferation of MCF-7 cells expressing a functional receptor. Thus, the local production of SHBG obtained with transfection could be a useful tool to control cell growth in estrogen-dependent breast cancer.  相似文献   

9.
目的:通过敲低微小RNA (microRNA,miRNA)-449a的方法研究miR-449a对人乳腺癌细胞MCF-7的增殖和迁移能力的影响。方法:采用miRNA芯片在乳腺癌细胞MCF-7和人正常乳腺细胞MCF-10A筛选具有表达差异的miRNA;化学合成法制备miR-449a的抑制剂(inhibitor),转染后经real-time PCR验证表达的变化;细胞增殖CCK-8实验对转染后细胞增殖能力进行检测;划痕实验检测细胞转移能力,transwell小室实验检测细胞侵袭的改变;蛋白免疫印迹法(Western blot)实验对MCF-7细胞增殖和迁移相关的β-catenin和E-cadherin蛋白进行检测;通过生物信息学软件预测miR-449a潜在靶基因为Notch 1,荧光素酶实验检测Notch 1是miR-449a的靶基因。结果:分别收集MCF-7和MCF-10A细胞,芯片结果显示miR-449a在MCF-7细胞的表达水平显著高于MCF-10A;本研究将细胞分为未处理组(Mock组),阴性对照组(negative control组,NC组)和处理组,通过收集不同组MCF-7细胞进行试验,CCK-8结果显示miR-449a下调后MCF-7细胞增殖能力显著降低;划痕实验结果显示miR-449a表达降低导致MCF-7细胞转移能力降低;transwell实验结果显示MCF-7细胞侵袭受到抑制;Western blot结果发现miR-449a敲低后β-catenin表达降低,E-cadherin表达增加;荧光素酶试验结果显示,miR-449a能够显著降低Notch 1-3'-UTR质粒的荧光素活性(P<0.01)。结论:在乳腺癌细胞MCF-7中敲低miR-449a能够显著抑制癌细胞增殖和迁移,而这一变化可能通过降低Notch 1蛋白表达实现的。  相似文献   

10.
We report experimental evidence that BRCA1, a breast and ovarian cancer susceptibility gene, is up-regulated in response to prolactin (PRL) stimulation. Expression of the BRCA1 gene was monitored in 2 human breast cancer cell lines (MCF-7 and T-47D) and in the normal mammary epithelial cell line MCF10a. Using competitive RT-PCR, we have shown that PRL induced an increase in BRCA1 mRNA level in MCF-7 and T-47D cell lines at a dose resulting in the maximal enhancement of cell proliferation. The up-regulation was 12-fold in MCF-7 cells and 2-fold in T-47D cells. No increase in BRCA1 mRNA level was observed in the MCF10a cell line. The level of BRCA1 protein was quantified using an affinity chromatography strategy. At the protein level, PRL treatment induced a 4-fold increase of BRCA1 protein expression in MCF-7 and a 6-fold increase in T-47D cells, whereas BRCA1 protein expression was not affected by PRL in MCF10a.  相似文献   

11.
目的:探讨靶向MDM2反义寡核苷酸(ASON)联合紫杉醇对乳腺癌MCF-7细胞株的影响。方法:合成一段与MDM2 mRNA特异性结合的反义寡核苷酸和与反义寡核苷酸有4个碱基不同的的错义寡核苷酸(MON),脂质体2000介导不同浓度的MDM2ASON转染MCF-7乳腺癌细胞系,转染的乳腺癌细胞通过1μmol/L紫杉醇药物处理后,采用RT-PCR和Western Blot方法检测MDM2 ASON联合紫杉醇的协同作用及对乳腺癌MCF-7细胞株的抑制效率,MTT观察给药后MCF-7细胞的增殖能力和药物敏感性。结果:MDM2反义寡核苷酸联合紫杉醇明显下调MDM2 mRNA及MDM2蛋白表达水平,抑制MCF-7细胞的生长,随着MDM2 ASON浓度的增加,MDM2表达越来越低,协同作用越来越强,呈剂量依赖关系,A500联合紫杉醇的协同作用最明显,MTT显示紫杉醇处理的转染MCF-7细胞增殖抑制率明显增高,A500抑制增殖作用最明显,抑制率达(13.0±0.84)%。结论:不同浓度MDM2 ASON转染后的乳腺癌MCF-7细胞,等浓度紫杉醇处理后,乳腺癌MCF-7细胞MDM2表达明显降低,细胞凋亡增加,,MDM2 ASON联合紫杉醇对MCF-7细胞有协同作用,提高了乳腺癌MCF-7细胞对紫杉醇的药物敏感性。  相似文献   

12.
BACKGROUND: Breast cancer is an increasingly common malignancy. Several vitamins such as retinoic acid (RA), ascorbic acid (AA), vitamin D and vitamin E are known to prevent the development and progression of breast cancer. OBJECTIVE: We sought to determine whether RA and AA together (RA+AA) acted synergistically in blocking the proliferation of human breast cancer cells. To elucidate the mechanism by which RA+AA inhibited breast carcinoma proliferation, we then evaluated the gene expression profiles of the treated and untreated cells by radioactive cDNA microarray analysis. METHODS: We cultured the human breast cancer cell line MCF-7 for 3 days with 100 nM RA and/or 1 mM AA, counted the cell numbers and harvested the total RNAs for cDNA microarray analysis. RESULTS: RA, AA and RA+AA reduced MCF-7 cell proliferation by 20.7%, 23.3% and 75.7% relative to the untreated cell proliferation, respectively. The synergistic ratio of RA and AA was 1.72. The MCF-7 gene expression profiles showed that 29 genes were up-regulated and 38 genes were down-regulated after RA+AA treatment. The nature of these genes suggests that the mechanism by which RA and AA act synergistically in inhibiting human breast cancer cell proliferation may involve the expression of genes that induce differentiation and block proliferation, and the up-regulation of antioxidant enzymes and proteins involved in apoptosis, cell cycle regulation and DNA repair. CONCLUSION: Combined treatment with RA and AA inhibits the proliferation of human breast cancer cells by altering their gene expression related to antioxidation processes as well as the proliferation inhibitory pathway.  相似文献   

13.
CAPER is an estrogen receptor (ER) co-activator that was recently shown to be involved in human breast cancer pathogenesis. Indeed, we reported increased expression of CAPER in human breast cancer specimens. We demonstrated that CAPER was undetectable or expressed at relatively low levels in normal breast tissue and assumed a cytoplasmic distribution. In contrast, CAPER was expressed at higher levels in ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) specimens, where it assumed a predominantly nuclear distribution. However, the functional role of CAPER in human breast cancer initiation and progression remained unknown. Here, we used a lentiviral-mediated gene silencing approach to reduce the expression of CAPER in the ER-positive human breast cancer cell line MCF-7. The proliferation and tumorigenicity of MCF-7 cells stably expressing control or human CAPER shRNAs was then determined via both in vitro and in vivo experiments. Knockdown of CAPER expression significantly reduced the proliferation of MCF-7 cells in vitro. Importantly, nude mice injected with MCF-7 cells harboring CAPER shRNAs developed smaller tumors than mice injected with MCF-7 cells harboring control shRNAs. Mechanistically, tumors derived from mice injected with MCF-7 cells harboring CAPER shRNAs displayed reduced expression of the cell cycle regulators PCNA, MCM7, and cyclin D1, and the protein synthesis marker 4EBP1. In conclusion, knockdown of CAPER expression markedly reduced human breast cancer cell proliferation in both in vitro and in vivo settings. Mechanistically, knockdown of CAPER abrogated the activity of proliferative and protein synthesis pathways.  相似文献   

14.
为探讨MCF-7乳腺癌细胞分泌的血管内皮生长因子( vascular endothelial growth factor, VEGF)对树突状细胞(dendritic cell, DC)功能及其分化的影响,针对VEGF基因设计siRNA(small interfering RNA, siRNA),采用脂质体转染法以100 nmol/L最佳转染浓度导入MCF-7乳腺癌细胞(siRNA组),以脂质体Lipofectamine 2000TM转染MCF-7 乳腺癌细胞培养上清培养正常DC作为对照(对照组),采用ELISA法检测经siRNA 干扰VEGF基因后的MCF-7 乳腺癌细胞分泌的VEGF因子含量, Western 印迹检测VEGF蛋白表达,以探讨siRNA的基因沉默效果;以siRNA组和对照组培养上清分别培养外周血单个核细胞,用流式细胞仪检测所诱导DC表型CD1a、CD80、CD83、CD86和HLA-DR的表达,用MTT法检测转染前后两组DC 诱导的细胞毒性T淋巴细胞(cytotoxic T lymphocyte, CTL)对MCF-7细胞的细胞毒作用.结果显示,MCF-7 乳腺癌细胞培养上清能明显抑制正常DC分化成熟及抗原递呈能力,干扰VEGF基因后MCF-7 乳腺癌细胞培养上清对DC的影响明显降低,CD80、CD83、CD86和HLA-DR的表达较对照组显著升高,而CD1a表达下降(P<0.01).转染前后DC 诱导的CTL对MCF-7细胞的杀伤活性有明显差异(P<0.01).由此可见,siRNA可靶向抑制MCF-7乳腺癌细胞VEGF的表达,下调VEGF后的MCF-7 细胞上清对DC分化成熟及功能的抑制作用明显降低,从而推测VEGF在肿瘤的发生、发展和免疫抑制方面可能起着重要的作用.  相似文献   

15.
Heparan sulfate proteoglycans (HSPG) are involved in the regulation of cellular proliferation, differentiation, and migration. We have studied the effect of three inhibitors of proliferation on35S incorporation into HSPG of the breast cancer cell lines MCF-7 and MDA-MB-231 and the normal breast epithelial cells (NBEC). Transforming growth factor β-1 (TGFβ-1), which inhibits the proliferation of NBEC, but not of MCF-7 and MDA-MB-231, cells induced an increase in35S incorporation of HSPG in NBEC, but had no effect on cancer cells. Sodium butyrate (NaB), which inhibits NBEC as well as cancer cell proliferation, induced an increase in35S incorporation into HSPG in all cell types studied. In contrast, retinoic acid had no effect on HSPG of breast epithelial cells. Modification of HSPG induced by TGFβ-1 or NaB treatments in normal and breast cancer epithelial cells resulted in an increase in125I-fibroblast growth factor-2 (FGF-2) binding on HSPG. More importantly, NaB pretreatment resulted in an inhibition of the MCF-7 cell responsiveness to FGF-2, even though these cells remained sensitive to growth stimulation induced by serum or epidermal growth factor. These results indicate that changes in HSPG production are a key process involved in the mechanism of breast epithelial cell growth regulation.  相似文献   

16.
17.
Glargine is widely used as a long-acting insulin analogue in the treatment of diabetes mellitus. However, this insulin analogue has been recently suspected to be associated with an increased risk of cancer. The aim of this study was to investigate the influence of glargine on proliferation of breast adenocarcinoma cell line (MCF-7) and its possible mechanism. Effects of glargine and regular human insulin on the cell proliferation were tested in ER-positive MCF-7 cells by MTT assay. Apoptosis in MCF-7 cells was measured by flow cytometry. The protein levels of p-AKT, Bcl-2, and Bax were also determined by Western blotting and immunohistochemistry, respectively. The result showed that glargine (100, 200?nmol/l) stimulated proliferation of ER-positive MCF-7 cells compared with regular human insulin. At the same time, glargine decreased the percentage of early apoptosis in MCF-7 cells. Otherwise, glargine (100?nmol/l) stimulated the p-AKT in a time-dependent manner in MCF-7 cells. Furthermore, we found that glargine downregulated the level of Bax protein and upregulated that of Bcl-2 (p <0.05). These data show that glargine promote the proliferation of breast adenocarcinoma cells in vitro, probably by preventing apoptosis.  相似文献   

18.
Protein kinase C (PKC) has been considered for a potential target of anticancer chemotherapy. PKC-alpha has been associated with growth and metastasis of some cancer cells. However, the role of PKC-alpha in human breast cancer cell proliferation and anticancer chemotherapy remains unclear. In this study, we examined whether alterations of PKC-alpha by phorbol esters and PKC inhibitors could affect proliferation of human breast cancer MCF-7 cells and the cytotoxic effect of chemotherapeutic agents. Exposure for 24 h to doxorubicin (DOX) and vinblastine (VIN) caused a concentration-dependent reduction in proliferation of MCF-7 cells. However, these two anticancer drugs altered cellular morphology and growth pattern in distinct manners. Phorbol 12,13-dibutyrate (PDBu, 100 nM), which enhanced activities of PKC-alpha, increased cancer cell proliferation and attenuated VIN (1 microM)-induced cytotoxicity. These effects were not affected in the presence of 10 nM staurosporine. Phorbol myristate acetate (PMA, 100 nM) that completely depleted PKC-alpha also enhanced cancer cell proliferation and attenuated VIN-induced cytotoxicity. Three potent PKC inhibitors, staurosporine (10 nM), chelerythrine (5 microM) and bisindolylmaleimide-I (100 nM), had no significant effect on MCF-7 cell proliferation; staurosporine and chelerythrine, but not bisindolylmaleimide-I, attenuated VIN-induced cytotoxicity. Moreover, neither phorbol esters nor PKC inhibitors had an effect on cytotoxic effects of DOX (1 microM) on MCF-7 cell proliferation. Thus, these data suggest that MCF-7 cell proliferation or the anti-cancer action of DOX and VIN on breast cancer cells is independent of PKC-alpha.  相似文献   

19.
目的: 研究n-6脂肪酸脱氢酶 fat-1基因在人乳腺癌细胞内的表达,改变细胞膜脂肪酸组成,对乳腺癌细胞的凋亡作用。方法: 构建含有fat-1 基因的重组腺病毒载体 (Ad.GFP.fat-1),通过包装细胞系(293)产生的腺病毒,感染人乳腺癌细胞MCF-7。提取细胞的总RNA,以fat-1的反义mRNA 作探针,用Northern Blot检测fat-1 基因在MCF-7细胞内的表达。MTT法分析fat-1 基因对MCF-7细胞增殖的影响,凋亡染色试剂盒检测细胞的凋亡。气相色谱仪分析对MCF-7细胞的n-6 PUFAs/n-3 PUFAs含量影响。结果: 通过基因重组技术,得到预期的重组病毒;fat-1 基因在人乳腺癌细胞MCF-7 中能有效异源表达,2天后,可检测到fat-1 mRNA的条带。与对照细胞相比,fat-1基因有效地抑制了MCF-7细胞的增殖(23%,p<0.05),促进了凋亡(增加35%);同时降低了人乳腺癌细胞MCF-7细胞膜n-6 PUFAs/n-3 PUFAs的比率。结论: 腺病毒介导的fat-1 基因能在人乳腺癌细胞MCF-7内有效异源表达,且抑制了MCF-7细胞的增殖。机理为降低了细胞膜的n-6 PUFAs/n-3 PUFAs的比率。  相似文献   

20.
There is currently considerable interest in the use of the endogenous oestrogen metabolite, 2-methoxyoestradiol (2-MeOE2) for the treatment and prevention of breast cancer. We have previously shown that sulphamoylation of 2-MeOE2 and related derivatives greatly enhances their ability to inhibit the proliferation of ER+ and ER- breast cancer cells. In this study, we have compared the abilities of 2-methoxyoestradiol-bis-sulphamate (2-MeOE2bisMATE) and 2-ethyloestradiol-bis-sulphamate (2-EtE2bisMATE) with that of 2-MeOE2 to inhibit the proliferation of breast cancer cells when grown on three different substrata: plastic, collagen I and Matrigel. The human breast cell line MCF-7 was utilised for these studies together with its doxorubicin resistant variant, MCF-7 DOX40 and mitoxantrone resistant variant, MCF-7 MR, as a longitudinal model of in vitro drug resistance. On a plastic substratum all three cell lines were sensitive to the effects of 2-MeOE2bisMATE and 2-EtE2bisMATE whereas MCF-7 cells and the MCF-MR variant cells were resistant to the effects of 2-MeOE2 at 1 microM. The sensitivity of the cell lines to those compounds also remained significant when grown on more physiological substrata. All of the drugs tested arrested cells in the G2/M phase of the cell cycle. The finding that breast cancer cells that are resistant to conventional chemotherapeutic agents remain sensitive to 2-substituted oestrogen sulphamates offers considerable potential for the treatment of women with drug-resistant breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号