首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present experimental data on the reproduction patterns of three sympatric sibling rotifer species, belonging to the Brachionus plicatilis complex, as they compete for food. Variation existed in the amount and pattern of sexual reproduction among the three cyclical parthenogenetic species. Competitive exclusion between the three Brachionus species was related to a higher investment in sexual reproduction by the inferior competitor. In general, no correlation was found between sexual reproduction and population density in a given species. However, when pairs of competing species were compared, a negative relationship between sexual investment differences (between species) and average population density differences was frequently found. From the results we conclude that: (1) the characteristic sexual pattern of each species has some implications for the competitive outcome; (2) allocation of resources into sexual reproduction does not mediate coexistence; and (3) the response of sexual reproduction to competitive interaction is unlikely to determine competition outcome. Nevertheless, our results suggest that the competitively inferior species invests more in sexual reproduction, as a response to resource limitation, which would accelerate its exclusion.  相似文献   

2.
Reproductive interference is any interspecific sexual interaction that reduces the reproductive success of females through promiscuous reproductive activities of heterospecific individuals. This phenomenon is ubiquitous in nature in both plants and animals, and is frequently observed in biological invasions. However, its effects on interspecific competition remain incompletely understood despite growing concern. To study the interactive effects of resource competition and reproductive interference on species coexistence and exclusion, we analyzed a unified competition model including both processes in symmetric and asymmetric scenarios. The results of our model showed that resource competition and reproductive interference act synergistically to promote competitive exclusion. We also found that when the two processes are asymmetric, the species that is superior in reproductive interference can coexist with or even exclude the species that is superior in resource competition. Therefore, coexistence is possible via an unbalanced trade-off between resource use and reproduction. Our results suggest that integration of reproductive interference and resource competition will contribute to a better understanding of interspecific competition and to more effective biodiversity conservation against management of biological invasions.  相似文献   

3.
The competitive exclusion principle is one of the most influential concepts in ecology. The classical formulation suggests a correlation between competitor species similarity and competition severity, leading to rapid competitive exclusion where species are very similar; yet neutral models show that identical species can persist in competition for long periods. Here, we resolve the conflict by examining two components of similarity – niche overlap and competitive similarity – and modeling the effects of each on exclusion rate (defined as the inverse of time to exclusion). Studying exclusion rate, rather than the traditional focus on binary outcomes (coexistence versus exclusion), allows us to examine classical niche and neutral perspectives using the same currency. High niche overlap speeds exclusion, but high similarity in competitive ability slows it. These predictions are confirmed by a well‐known model of two species competing for two resources. Under ecologically plausible scenarios of correlation between these two factors, the strongest exclusion rates may be among moderately similar species, while very similar and highly dissimilar competitors have very low exclusion rates. Adding even small amounts of demographic stochasticity to the model blurs the line between deterministic and probabilistic coexistence still further. Thus, focusing on exclusion rate, instead of on the binary outcome of coexistence versus exclusion, allows a variety of outcomes to result from competitive interactions. This approach may help explain species coexistence in diverse competitive communities and raises novel issues for future work.  相似文献   

4.
不同栖息地状态下物种竞争模式及模拟研究与应用   总被引:5,自引:3,他引:2  
梁仁君  林振山  陈玲玲 《生态学报》2006,26(10):3308-3316
物种竞争是影响生态系统演化的重要生态过程之一.而物种在受人类影响出现不同程度毁坏的栖息地上的演化又是非常复杂的,因此研究物种演化对栖息地毁坏的响应是非常必要的.在Tilman研究工作的基础上,将竞争系数引入集合种群动力模式,建立了多物种集合种群竞争共存的数学模型,并对5-物种集合种群在不同栖息地状态下的竞争动态进行了计算机模拟研究.结果表明:(1)不同结构的群落(q值不同),物种之间的竞争排斥作用强度不同,优势物种明显的群落,物种之间的排斥强度大;(2)随着栖息地毁坏程度的增加,对优势物种的负面影响逐渐减小,而对弱势物种的负面影响逐渐增加;(3)随着栖息地恢复幅度的增加,优势物种和弱势物种之间的竞争越强烈,优势物种受到的竞争排斥加大,而弱势物种逐渐变强,出现了强者变弱、弱者变强的格局;(4)物种竞争排斥与共存受迁移扩散能力和竞争能力影响很大,竞争共存的条件是其竞争能力与扩散能力呈非线性负相关关系;(5)竞争共存的物种的强弱序列发生了变化.  相似文献   

5.
In this paper, we analyse a discrete stage-structured model which is a generalization of the two-species competition model studied in [2]. Motivated by plant populations, each species is assumed to reproduce both sexually and clonally. We show that this model has a dynamical behaviour that is similar to that of the classical continuous two-dimensional Lotka-Volterra model under weak nonlinearities of the Beverton-Holt type. By allowing the species to have different competition efficiencies, we show that it is possible to obtain different dynamics including coexistence, bistability and competitive exclusion, in contrast with the model studied in [2], which exhibits only competitive exclusion behaviour.  相似文献   

6.
对于非捕食 被捕食(食饵)生态系统,强弱物种之间存在一定的竞争影响.在不考虑栖息地毁坏的情况下,引进双向竞争机制,将Tilman的单向竞争模式推广为n集合种群双向竞争模型,并对6-集合种群的竞争动态进行了计算机模拟研究.结果表明,在平衡态,种群竞争共存的条件是其竞争能力与扩散能力呈现指数型负相关关系,竞争的结果使物种的强弱序列发生变化;物种竞争排除与共存受迁移扩散能力和竞争能力影响很大,在局域斑块上竞争排斥的集合种群在广域尺度上可以竞争共存,即逃亡共存.  相似文献   

7.
It is shown that the lottery competition model permits coexistence in a stochastic environment, but not in a constant environment. Conditions for coexistence and competitive exclusion are determined. Analysis of these conditions shows that the essential requirements for coexistence are overlapping generations and fluctuating birth rates which ensure that each species has periods when it is increasing. It is found that a species may persist provided only that it is favored sufficiently by the environment during favorable periods independently of the extent to which the other species is favored during its favorable periods.Coexistence is defined in terms of the stochastic boundedness criterion for species persistence. Using the lottery model as an example this criterion is justified and compared with other persistence criteria. Properties of the stationary distribution of population density are determined for an interesting limiting case of the lottery model and these are related to stochastic boundedness. An attempt is then made to relate stochastic boundedness for infinite population models to the behavior of finite population models.  相似文献   

8.
T. Czárán  S. Bartha 《Plant Ecology》1989,83(1-2):229-239
The effect of the spatial limits of dispersal and competition on plant community dynamics was studied using Monte-Carlo simulation. The model generates community point patterns, using life-table data, dispersion parameters and radii of competitive effects. These data have been estimated in a field situation, for the 11 most abundant weed species growing on the refuse soil dumps of a strip coal mine. In a simulation experiment, the patterns produced by two versions of the model were compared. The first was based on the field situation as much as possible; the other used the same input parameters except for dispersal, which was randomized in this case. We found considerable differences regarding the temporal changes of species abundances, the realized competitive abilities and the spatial patterns generated by the two versions. An important conclusion of this comparison is that the realized competitive effect (both intra-and interspecific) of a species is dependent not only on constant competition parameters, but on the abundance relations and on the spatial patterns of the competing populations as well. It is concluded that the spatial limits of dispersal and competition may result in the increased persistence of weak competitors, moderate the realized competitive effects of strong species, and shape the spatial coalition structure of the community.  相似文献   

9.
Some empirical consequences of an isomorphism between the Lotka-Volterra competitive model and a coevolutionary competitive model are developed. In both the Lotka-Volterra and coevolutionary models, four competitive outcomes are possible: 1) species one wins, 2) species two wins, 3) indeterminate outcome, and 4) stable coexistence. These two models are isomorphic in the sense that the inequalities associated with a particular competitive outcome of the Lotka-Volterra model correspond in a one-to-one manner with similar inequalities associated with the same competitive outcome of the coevolutionary model. The inequalities of the Lotka-Volterra model involve the competition coefficients themselves, while the inequalities of the coevolutionary model involve the genetic variances and covariances of the competition coefficients. The isomorphism suggests some alternative interpretations of the results of classical laboratory studies of competition. The Lotka-Volterra (or ecological) hypotheses postulate that the competition coefficients are constant and that genetic considerations play no role in determining the competitive outcome. By contrast, the evolutionary hypotheses derived from the coevolutionary model postulate that the competition coefficients are variables and that the genetic variances and covariances of the competition coefficients determine the competitive outcome. The isomorphism is applied to competitive exclusion and coexistence, and to competitive indeterminacy in Tribolium. In particular, the evolutionary hypotheses isomorphic to the two classical explanations of competitive indeterminacy, the demographic stochasticity and genetic founder effect hypotheses, are constructed. The theory developed here and in a previous paper (Pease, 1984) provides one perspective on the relation among the Lotka-Volterra competition theory, quantitative genetics, competitive exclusion, the reversal of competitive dominance, coexistence, competitive indeterminacy in Tribolium, and experiments investigating the relation between genetic variability and the rate of evolution of fitness.  相似文献   

10.
Stochastic competitive models with pollution and without pollution are proposed and studied. For the first system with pollution, sufficient criteria for extinction, nonpersistence in the mean, weak persistence in the mean, strong persistence in the mean, and stochastic permanence are established. The threshold between weak persistence in the mean and extinction for each population is obtained. It is found that stochastic disturbance is favorable for the survival of one species and is unfavorable for the survival of the other species. For the second system with pollution, sufficient conditions for extinction and weak persistence are obtained. For the model without pollution, a partial stochastic competitive exclusion principle is derived.  相似文献   

11.
Ecology has been characterized by a central controversy for decades: namely, whether the distribution and abundance of organisms are determined by species interactions, such as competitive exclusion, or by environmental conditions. In part, this is because competitive exclusion has not been convincingly demonstrated in open, natural systems. In addition, traditional theoretical models cannot predict the outcome of competitive interactions in the presence of environmental variability. In this paper we document the limiting influence of strong interspecific competition on population dynamics and nestling mortality in a mixed population of pied flycatchers (Ficedula hypoleuca) and collared flycatchers (F. albicollis in a narrow zone of sympatry. Whereas the former species was limited mainly by interspecific competition, the latter species was limited by the concerted influences of intraspecific competition and climate. The analysis suggests a march towards competitive exclusion of the pied flycatcher during warm periods. However, competitive exclusion is apparently prohibited on a local scale because intraspecific competition among individual collared flycatchers intensifies when they are forced to cope with severe environmental conditions, promoting the temporary and local presence of pied flycatchers.  相似文献   

12.
A simple differential equation model was developed to describe the competitive interaction that may occur between species through reproductive interference. The model has the form comparable to Volterra's competition equations, and the graphical analysis of the outcome of the two-species interaction based on its zero-growth isoclines proved that: (1) The possible outcome in this model, as in usual models of resource competition, is either stable coexistence of both species or gradual exclusion of one species by the other, depending critically upon the values of the activity overlapping coefficient cij; (2) but, for the same cij-values, competitive exclusion is much more ready to occur here than in resource competition; (3) and moreover, the final result of the competition is always dependent on the initial-condition due to its non-linear isoclines, i.e., even under the parameter condition that generally allows both species to coexist, an extreme bias in intial density to one species can readily cause subsequent complete exclusion of its counterparts. Thus, it may follow that the reproductive interference is likely to be working in nature as an efficient mechanism to bring about habitat partitioning in either time or space between some closely related species in insect communities, even though they inhabit heterogeneous habitats where resource competition rarely occurs so that they could otherwise attain steady coexistence.  相似文献   

13.
We have developed cellular automaton models for two species competing in a patchy environment. We have modeled three common types of competition: facilitation (in which the winning species can colonize only after the losing species has arrived) inhibition (in which either species is able to prevent the other from colonizing) and tolerance (in which the species most tolerant of reduced resource levels wins). The state of a patch is defined by the presence or absence of each species. State transition probabilities are determined by rates of disturbance, competitive exclusion, and colonization. Colonization is restricted to neighboring patches. In all three models, disturbance permits regional persistence of species that are excluded by competition locally. Persistence, and hence diversity, is maximized at intermediate disturbance frequencies. If disturbance and dispersal rates are sufficiently high, the inferior competitor need not have a dispersal advantage to persist. Using a new method for measuring the spatial patterns of nominal data, we show that none of these competition models generates patchiness at equilibrium. In the inhibition model, however, transient patchiness decays very slowly. We compare the cellular automaton models to the corresponding mean-field patch-occupancy models, in which colonization is not restricted to neighboring patches and depends on spatially averaged species frequencies. The patch-occupancy model does an excellent job of predicting the equilibrium frequencies of the species and the conditions required for coexistence, but not of predicting transient behavior.  相似文献   

14.
Alien plant species invasiveness and impact on diversity (i.e. species richness and composition) can be driven by the altered competitive interactions experienced by the invader in its invaded range compared to its native range. Trait-based competition effects on invasiveness can be mediated through size-asymmetric competition, i.e. a trait suit of the invader that drives competitive dominance, and through ‘niche differences', i.e. trait differentiation and thus minimized competition between invader and the invaded community. In terms of invasion impact, size-asymmetric competition is expected to result in competitive exclusion of co-occurring subordinate species, whereas ‘niche differences' might result in competitive exclusion of the most functionally similar co-occurring species. Although observational work does not allow the full disentanglement of both trait-based effects, it does allow to verify the occurrence of expected theoretical trait patters. In this study, we explored the trait-based competition effects on invasiveness and diversity impact for Rosa rugosa in both its invaded range in Belgium and its native range in Japan, based on seven functional traits across 100 vegetation plots. Following the predictions for enhanced invasiveness, we found much lower functional overlap between R. rugosa and the co-occurring species in the invaded range compared to the native range. This likely also explains the absence of diversity impact in its native range. Despite the absence of changes in species richness in the invaded range, the invader did strongly impact species composition of invaded communities. This impact occurred through strong shade tolerance responses, suggesting size-asymmetric competition effects and cover loss of co-occurring dominant species, next to exclusion of co-occurring species most functionally similar to the invader; suggesting niche difference effects. In conclusion, this case-study illustrates how exploring functional trait patterns across a species native and invaded range can help in understanding how trait-based competition processes can affect invasiveness and community impact.  相似文献   

15.
In this paper, we study a two-species competitive system where both the species produce toxin against each other at some cost to their growth rates. A much wider set of outcomes is possible for our system. These outcomes are important contrasts to competitive exclusion or bistable attractors that are often the outcomes for competitive systems. We show that toxin helps to gain an advantage in competition for toxic species whenever the cost of toxin production remains within some moderate value; otherwise it may result in the extinction of the species itself.  相似文献   

16.
1. The patterns of density-dependent resource competition and the mechanisms leading to competitive exclusion in an experimental two-species insect age-structured interaction were investigated. 2. The modes of competition (scramble or contest) and strength of competition (under- to overcompensatory) operating within and between the stages of the two species was found to be influenced by total competitor density, the age structure of the competitor community and whether competition is between stages of single or two species. 3. The effect of imposed resource limitation on survival was found to be asymmetric between stages and species. Environments supporting both dominant and subordinate competitors were found to increase survival of subordinate competitors at lower total competitor densities. Competitive environments during development within individual stage cohorts (i.e. small or large larvae), differed from the competitive environment in lumped age classes (i.e. development from egg-->pupae). 4. Competition within mixed-age, stage or species cohorts, when compared with uniform-aged or species cohorts, altered the position of a competitive environment on the scramble-contest spectrum. In some cases the competitive environment switched from undercompensatory contest to overcompensatory scramble competition. 5. Such switching modes of competition suggest that the relative importance of the mechanisms regulating single-species population dynamics (i.e. resource competition) may change when organisms are embedded within a wider community.  相似文献   

17.
It is widely accepted that niche differentiation plays a key role in coexistence on relatively small scales. With regard to a large community scale, the recently propounded neutral theory suggests that species abundances are more influenced by history and chance than they are by interspecies competition. This inference is mainly based on the probability that competitive exclusion is largely slowed by recruitment limitation, which may be common in species rich communities. In this respect, a theoretical study conducted by Hurtt and Pacala (1995) for a niche differentiated community has been frequently cited to support neutral coexistence. In this paper, we focused on the effect of symmetric recruitment limitation on delaying species competitive exclusion caused by both symmetric and asymmetric competition in a large homogeneous habitat. By removing niche differentiation in space, we found that recruitment limitation could delay competitive exclusion to some extent, but the effect was rather limited compared to that predicted by Hurtt and Pacala's model for a niche differentiated community. Our results imply that niche differentiation may be important for species coexistence even on large scales and this has already been confirmed in some species rich communities.  相似文献   

18.
We tested the hypothesis that temporally autocorrelated variation should increase the abundance of an inferior competitor sustained by immigration. Temporally autocorrelated variability can increase abundance of the inferior species through effects on demography, the strength of competition, and the mean and variance in the abundance of competing species. We allowed the competitive inferior to immigrate into habitats with constant, variable, or temporally autocorrelated temperature regimes. In the absence of immigration, competitive exclusion occurred, in both constant and variable environments. Immigration permitted persistence of the inferior species, and increased immigration rates led to increased abundance. Temporally autocorrelated variability enhanced this effect of immigration. This 'inflationary' effect suggests that the interplay of immigration and environmental variability can jointly influence the outcome of competitive interactions. Our results suggest that an increase in temporal autocorrelation of environmental variability will cause regional processes to increasingly influence local interactions.  相似文献   

19.

Background

Closely related, ecologically similar species often have adjacent distributions, suggesting competitive exclusion may contribute to the structure of some natural communities. In systems such as island archipelagos, where speciation is often tightly associated with dispersal over oceanic barriers, competitive exclusion may prevent population establishment following inter-island dispersal and subsequent cladogenesis.

Methodology/Principal Findings

Using a combination of tools, we test the hypothesis that the distributions of shrew (Crocidura) species in the Philippines are the result of competitive exclusion preventing secondary invasion of occupied islands. We first compare ecological niche models between two widespread, allopatric species and find statistical support for their ecological similarity, implying that competition for habitat between these species is possible. We then examine dispersion patterns among sympatric species and find some signal for overdispersion of body size, but not for phylogenetic branch length. Finally, we simulate the process of inter-island colonization under a stochastic model of dispersal lacking ecological forces. Results are dependent on the geographic scope and colonization probability employed. However, some combinations suggest that the number of inter-island dispersal events necessary to populate the archipelago may be much higher than the minimum number of colonization events necessary to explain current estimates of species richness and phylogenetic relationships. If our model is appropriate, these results imply that alternative factors, such as competitive exclusion, may have influenced the process of inter-island colonization and subsequent cladogenesis.

Conclusions/Significance

We interpret the combined results as providing tenuous evidence that similarity in body size may prevent co-occurrence in Philippine shrews and that competitive exclusion among ecologically similar species, rather than an inability to disperse among islands, may have limited diversification in this group, and, possibly other clades endemic to island archipelagos.  相似文献   

20.
Parasites frequently share their host populations with other parasites. However, little is known about how different parasites respond to competition with diverse competitor species in the within‐host and between‐host environments. We explored the repeatability of competition by simultaneously exposing microcosm populations of the ciliate Paramecium caudatum to pairs of parasites from the Holospora species complex (H. undulata, H. caryophila and H. obtusa). We measured how competition affected the persistence and prevalence of each compared to single infections, across three host genotypes. Three weeks post‐inoculation we identified the presence of each parasite using fluorescence in situ hybridisation (FISH). Competitive exclusion (62/72) was more common than co‐existence (10/72) in populations inoculated with two parasites. There was a clear pattern of competitive superiority, with H. caryophila persisting in all doubly inoculated populations (with either H. undulata or H. obtusa), and H. undulata tending to exclude H. obtusa. This mirrored infection success in single infections, with H. caryophila having a higher infection prevalence in single inoculations, followed by H. undulata then H. obtusa. The probability of persistence in co‐inoculations did not change across the different host genotypes, and prevalence was the same as in single infections. Our results are consistent with superinfection models, which assume the competitive exclusion of parasites upon contact within the same host. Furthermore, such non‐random competitive epidemiological dynamics, where one parasite always wins, may be of interest for public health management, especially if the winning parasite is avirulent, as is seemingly the case here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号