首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Nerve growth factor (NGF) is crucial for the development of sympathetic and small-diameter sensory neurons and for maintenance of their mature phenotype. Its role in generating neuronal pathophysiology is less well understood. After spinal cord injury, central processes of primary afferent fibers sprout into the dorsal horn, contributing to the development of autonomic dysfunctions and pain. NGF may promote these states as it stimulates sprouting of small-diameter afferent fibers and its concentration in the spinal cord increases after cord injury. The cells responsible for this increase must be identified to develop a strategy to prevent the afferent sprouting. Using immunocytochemistry, we identified cells containing NGF in spinal cord sections from intact rats and from rats 1 and 2 weeks after high thoracic cord transection. In intact rats, this neurotrophin was present in a few ramified microglia and in putative Schwann cells in the dorsal root. Within and close to the lesion of cord-injured rats, NGF was in many activated, ramified microglia, in a subset of astrocytes, and in small, round cells that were neither glia nor macrophages. NGF-immunoreactive putative Schwann cells were prevalent throughout the thoracolumbar cord in the dorsal roots and the dorsal root entry zones. Oligodendrocytes were never immunoreactive for this protein. Therapeutic strategies targeting spinal cord cells that produce NGF may prevent primary afferent sprouting and resulting clinical disorders after cord injury.  相似文献   

2.
3.
The tumor-specific localization of an anti-CD74 Ab, LL1, was demonstrated in nude mice bearing xenografts of human B-cell lymphoma. This Ab, conjugated to radionuclides emitting Auger electrons, including 125I and 111In, was previously reported to kill tumor cells in vitro effectively and specifically. The cytotoxic potency of this Ab is due to its uptake and catabolism at a very high level, which also affected the Ab biodistribution experiments. Thus, Ab localization to the tumor was only detected if a “residualizing” radiolabel was used, meaning a label that is trapped within cells, usually within lysosomes, after catabolism of the Ab to which it was conjugated. Similar results were obtained with three different residualizing labels: 111In conjugated via the chelators benzyl diethylenetriaminepentaacetic acid (DTPA) or 1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′-tetraacetic acid (DOTA), or 131I-dilactitol-tyramine, a residualizing form of iodine. The Ab protein dose could be high, 0.5 mg/mouse, without causing a decrease in specific tumor uptake, probably reflecting the high capacity for uptake. Moreover, tumors of moderate size were found to cause rapid, specific removal of the Ab from the blood, also a result of catabolic processes. This induced blood clearance naturally affected the Ab localization experiments, but this factor could be circumvented by increasing the Ab protein dose. Using a different Ab, anti-(mature MHC class II), the ability of Ab to penetrate relatively large solid tumors was investigated. Complete saturation of antigenic sites was observed in tumors up to 0.3 g in size, but quite high Ab protein doses were required, 5.0 mg/mouse. These results provide a rationale for attempting therapy with radiolabeled LL1. Received: 4 November 1999 / Accepted: 19 January 2000  相似文献   

4.
5.
6.
Non-photochemical quenching (NPQ) protects plants against photodamage by converting excess excitation energy into harmless heat. In vitro aggregation of the major light-harvesting complex (LHCII) induces similar quenching, the molecular mechanism of which is frequently considered to be the same. However, a very basic question regarding the aggregation-induced quenching has not been answered yet. Are excitation traps created upon aggregation, or do existing traps start quenching excitations more efficiently in aggregated LHCII where trimers are energetically coupled? Time-resolved fluorescence experiments presented here demonstrate that aggregation creates traps in a significant number of LHCII trimers, which subsequently also quench excitations in connected LHCIIs.  相似文献   

7.
8.
9.
10.

Background

Hepatocellular carcinoma (HCC) associated to infection with hepatitis C virus (HCV) has become the fastest-rising cause of cancer-related deaths. Genetic variations may play an important role in the development of HCC in HCV patients. Ghrelin exerts anti-inflammatory, antifibrotic and hepatoprotective effects on chronically injured hepatic tissues. Ghrelin gene shows several single nucleotide polymorphisms (SNPs) including − 604G/A, Arg51Gln, and Leu72Met. Hemochromatosis gene (HFE) mutations namely C282Y and H63D may cause hepatic iron overload, thus increasing the risk of HCC in HCV patients.

Aim

To investigate the association of progression of HCC with ghrelin and HFE gene polymorphisms in HCV Egyptian patients.

Methods

Seventy-nine chronic HCV patients (thirty-nine developed HCC and forty did not), and forty healthy control subjects were included in the study. The polymorphisms were evaluated by PCR/RFLP analysis, and related protein levels were measured by either ELISA or colorimetric assays.

Results

The three tested SNPs on ghrelin gene were detected in the studied groups, only one SNP (Arg51Gln) showed significantly higher GA, AA genotypes and A allele frequencies in hepatitis C patients who developed HCC than in hepatitis C patients without HCC and controls. Of the two mutations studied on HFE gene only H63D heterozygous allele was detected, and its frequency did not statistically differ among studied groups.

Conclusion

Our results suggest that A allele at position 346 of the ghrelin gene is associated with susceptibility to HCC in hepatitis C patients.  相似文献   

11.
12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号