首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative biogeography of mammals on islands   总被引:1,自引:0,他引:1  
Insular faunas of terrestrial mammals and bats are examined on a worldwide basis to test the adequacy of equilibrium and historical legacy models as explanations for species-area relationships. Species numbers of bats on islands conform to predictions from equilibrium theory, whereby recurrent immigrations and extinctions influence species richness. By contrast, species numbers of terrestrial mammals on islands result from a historical legacy of very low immigration rates on oceanic islands (the faunas are colonization-limited) and by the fragmentation of once contiguous continental faunas to form relictual populations, which subsequently undergo extinctions, on landbridge islands (the faunas are extinction-limited). This explanation is supported by several lines of evidence: (1) z values (slopes of species-area curves) are lower for non-volant mammals on oceanic islands than for those on landbridge islands, but are the opposite for bats; (2) z values for non-volant mammals are lower than those for bats on oceanic islands, but are higher than those for bats on landbridge islands; and (3) landbridge island faunas are attenuated mainland faunas, whereas those on oceanic islands are ecologically incomplete. No support is found for alternative hypotheses to explain low species-area slopes for terrestrial mammals on oceanic islands.  相似文献   

2.
A multiple regression analysis was performed upon selected environmental variables for a series of islands in the British Isles, to establish their effects upon the size of the butterfly fauna, measured as he number of species regularly breeding, SB .
So that the data be normally distributed, the regression analyses were performed upon log10 transformed data only, with the data for outliers, mainland Britain and Ireland, the two largest islands, excluded.
Most highly correlated with the number of butterfly species breeding upon an island is the number breeding within a 25 km radius of the nearest point of the mainland, r 2=0.5941, followed by the correlations with the latitude of the mid-point of the island, r 2=0.5541, the number of plant species comprising the island Hora, r 2=0.5225, and the distance separating the island from the mainland, r 2=0.4514.
A partial correlation analysis confirms the importance of the parameters distance separating the island from the mainland, D 1, and the size of the faunal source S F , and rejects the importance of the size of the flora and the latitude of the island. This is further confirmed by the results of a step-wise regression analysis, the two variables D 1 and SF accounting for 66% of the variation of the butterfly fauna.
If an alternative measure of isolation, D 2, which allows for the geographical clumping of islands, is combined with the variable SF , then 69% of the variation of the butterfly fauna is accounted for.  相似文献   

3.
The increase of island species richness with area can be explained by an increase in habitat diversity or by an equilibrium of species immigration and extinction. We examined vascular plant species richness in 39 sites (24 habitat islands, 7 'habitat peninsulas' and 8 comparable 'mainland' sites). We sampled at three scales: whole sites, meadows within sites and quadrats (4 m × 4 m) within meadows. All sites (10–104 m2) contained natural vegetation within arable fields in eascentral Sweden. There was a strong correlation between species richness and area for whole sites and for meadows There was no correlation, however, between species richness in quadrats and site area. The difference between site and meadow results on one side and quadrat results on the other suggests that species richness increases with whole site area primarily because large sites are more diverse than smaller ones. Speciearea relationships did not differ between islands, peninsula and mainland sites. Thus, patterns of species richness on our sites were more consistent with habitat diversity than an immigratioextinction equilibrium.  相似文献   

4.
Aim To relate variation in the migration capacity and colonization ability of island communities to island geography and species island occupancy. Location Islands off mainland Britain and Ireland. Methods Mean migration (transfer) capacity and colonization (establishment) ability (ecological indices), indexed from 12 ecological variables for 56 butterfly species living on 103 islands, were related to species nestedness, island and mainland source geography and indices using linear regression models, RLQ analysis and fourth‐corner analysis. Random creation of faunas from source species, rank correlation and rank regression were used to examine differences between island and source ecological indices, and relationships to island geography. Results Island butterfly faunas are highly nested. The two ecological indices related closely to island occupancy, nestedness rank of species, island richness and geography. The key variables related to migration capacity were island area and isolation; for colonization ability they were area, isolation and longitude. Compared with colonization ability, migration capacity was found to correlate more strongly with island species occupancy and species richness. For island faunas, the means for both ecological indices decreased, and variation increased, with increasing island species richness. Mean colonization ability and migration capacity values were significantly higher for island faunas than for mainland source faunas, but these differences decreased with island latitude. Main conclusions The nested pattern of butterfly species on islands off mainland Britain and Ireland relates strongly to colonization ability but especially to migration capacity. Differences in colonization ability among species are most obvious for large, topographically varied islands. Generalists with abundant multiple resources and greater migration capacity are found on all islands, whereas specialists are restricted to large islands with varied and long‐lived biotopes, and islands close to shore. The inference is that source–sink dynamics dominate butterfly distributions on British and Irish islands; species are capable of dispersing to new areas, but, with the exception of large and northern islands, facilities (resources) for permanent colonization are limited. The pattern of colonization ability and migration capacity is likely to be repeated for mainland areas, where such indices should provide useful independent measures for assessing the conservation status of faunas within spatial units.  相似文献   

5.
Aim This study aims to explain the patterns of species richness and nestedness of a terrestrial bird community in a poorly studied region. Location Twenty‐six islands in the Dahlak Archipelago, Southern Red Sea, Eritrea. Methods The islands and five mainland areas were censused in summer 1999 and winter 2001. To study the importance of island size, isolation from the mainland and inter‐island distance, I used constrained null models for the nestedness temperature calculator and a cluster analysis. Results Species richness depended on island area and isolation from the mainland. Nestedness was detected, even when passive sampling was accounted for. The nested rank of islands was correlated with area and species richness, but not with isolation. Idiosyncrasies appeared among species‐poor and species‐rich islands, and among common and rare species. Cluster analysis showed differences among species‐rich islands, close similarity among species‐poor and idiosyncratic islands, and that the compositional similarity among islands decreased with increasing inter‐island distance. Thus, faunas of species‐poor, smaller islands were more likely to be subsets of faunas of species‐rich, larger islands if the distance between the islands was short. Main conclusions Species richness and nestedness were related to island area, and nestedness also to inter‐island distances but not to isolation from the mainland. Thus, nestedness and species richness are not affected in the same way by area and distance. Moreover, idiosyncrasies may have been the outcome of species distributions among islands being influenced also by non‐nested distributions of habitats, inter–specific interactions, and differences in species distributions across the mainland. Idiosyncrasies in nested patterns may be as important as the nested pattern itself for conservation – and conservation strategies based on nestedness and strong area effects (e.g. protection of only larger islands) may fail to preserve idiosyncratic species/habitats.  相似文献   

6.
We examined the relationship between plant species richness and biogeographical variables (island area, island maximum elevation, distance from nearest inhabited island, distance from nearest mainland) using a data set comprising 201 islands of the Aegean archipelago. We found that endemic species richness was strongly correlated to total species richness. Single-island endemic species richness was most strongly correlated to island maximum elevation, and then to island area, with an apparent small island effect for islands smaller than 47 km2. Total species richness was most strongly correlated to island area (with no apparent small island effect), and less strongly correlated to island maximum elevation. Distance from the mainland or other inhabited islands displayed limited predictive value in our data set. The slope of the relationship between species richness and geographical factors (island area, elevation, distance from island/mainland) was steeper for endemic species richness than for total richness. Finally, the different scales of endemicity (single-island endemics, island group endemics and Aegean regional endemics) displayed similar qualitative trends and only differed quantitatively. Thus, we conclude that different biogeographical factors act as drivers for total species richness than for endemic species richness.  相似文献   

7.
Isolation effects on species richness of woody plants were investigated in a system of islands that were created by the filling of the Clarks Hill Reservoir, Georgia. This reservoir was built between 1946–1954. Some islands were logged and cleared of woody plants prior to the filling of the reservoir and others were not logged. The presence of logged versus unlogged islands in the same system allowed us to test whether and how geographical isolation interacts with island history and species-specific dispersal properties in determining patterns of among-island variation in species number. Thirty-six years after the islands were created, logged islands had significantly fewer species of woody plants than unlogged ones. On logged islands, total number of woody species was negatively correlated with distance to the closest mainland (r=–0.95). On unlogged islands, variation in species number was very low (CV=4.9%) and was not correlated with distance to the mainland. These results indicate that the studied system as a whole has not yet reached equilibrium. However, the mean number of species on unlogged islands was very close to the intercept of the regression obtained for logged islands, suggesting that islands close to the mainland have already reached their equilibrium species richness. This conclusion is consistent with predictions of island biogeography theory. When species representing different dispersal properties were analyzed separately, statistically significant distance effects were obtained for bird-dispersed species (r=0.88) and for species with no adaptations to bird or wind dispersal (r=0.81). Wind-dispersed species did not show a decrease in species number with increasing isolation, but their relative frequency was positively and significantly correlated with distance to the mainland (r=0.94). Historical factors, as well as differences among species in dispersal properties, are important in explaining patterns of among-island variation in species number.  相似文献   

8.
Aim Islands are widely considered to be species depauperate relative to mainlands but, somewhat paradoxically, are also host to many striking adaptive radiations. Here, focusing on Anolis lizards, we investigate if cladogenetic processes can reconcile these observations by determining if in situ speciation can reduce, or even reverse, the classical island–mainland richness discrepancy. Location Caribbean islands and the Neotropical mainland. Methods We constructed range maps for 203 mainland anoles from museum records and evaluated whether geographical area could account for differences in species richness between island and mainland anole faunas. We compared the island species–area relationship with total mainland anole diversity and with the richness of island‐sized mainland areas. We evaluated the role of climate in the observed differences by using Bayesian model averaging to predict island richness based on the mainland climate–richness relationship. Lastly, we used a published phylogeny and stochastic mapping of ancestral states to determine if speciation rate was greater on islands, after accounting for differences in geographical area. Results Islands dominated by in situ speciation had, on average, significantly more species than similarly sized mainland regions, but islands where in situ speciation has not occurred were species depauperate relative to mainland areas. Results were similar at the scale of the entire mainland, although marginally non‐significant. These findings held even after accounting for climate. Speciation has not been faster on islands; instead, when extinction was assumed to be low, speciation rate varied consistently with geographical area. When extinction was high, there was some evidence that mainland speciation was faster than expected based on area. Main conclusions Our results indicate that evolutionary assembly of island faunas can reverse the general pattern of reduced species richness on islands relative to mainlands.  相似文献   

9.
Slow response of plant species richness to habitat loss and fragmentation   总被引:13,自引:0,他引:13  
We examined the response of vascular plant species richness to long-term habitat loss and fragmentation of Estonian calcareous grasslands (alvars). The current number of habitat specialist species in 35 alvars was not explained by their current areas and connectivities but it was explained by their areas and connectivities 70 years ago ( R 2 = 0.27). We estimated the magnitude of extinction debt in local communities by assuming an equilibrium species richness in 14 alvars that had lost only a small amount of area and by applying this model to the remaining alvars, in which the average area has declined from 3.64 km2 in the 1930s to 0.21 km2 at present. The extinction debt estimated for individual alvars was around 40% of their current species number. Our conclusions are applicable to temperate grasslands in general, which have lost much area because of agricultural intensification and cessation of traditional management.  相似文献   

10.
Island communities are exposed to several evolutionary and ecological processes that lead to changes in their diversity and structure compared to mainland biotas. These phenomena have been observed for various taxa but not for parasitoids, a key group in terms of community diversity and functioning. Here we use the parasitoid communities associated with the moth Acroclita subsequana (Lepidoptera: Tortricidae) in the Macaronesian region, to test whether species richness differs between islands and mainland, and whether island parasitoid faunas are biased towards generalist species. Host larvae were collected on several islands and adjacent mainland, carefully searched for ectoparasitoid larvae and dissected to recover any endoparasitoids. Parasitoids were classified as idiobionts, which usually have a wide host range (i.e. generalists), or koinobionts that are considered specialists. Mainland species richness was lower than expected by chance, with most of the species being koinobionts. On the other hand, island communities showed a greater proportion of idiobiont species. Overall parasitism rates were similar between islands and mainland, but islands had higher rates of parasitism by idiobionts than expected by chance, and mainland areas showed the highest koinobiont parasitism rates. These results suggest that island parasitoid communities are dominated by generalists, in comparison to mainland communities. Several hypotheses may explain this pattern: (1) generalist parasitoids might have better dispersal abilities; (2) they may be less constrained by ‘sequential dependencies’; and (3) island parasitoids probably have fewer competitors and/or predators, thus favouring the establishment of generalists. New studies including multiple hosts, other habitats, and/or more islands are necessary to identify which of these processes shape island parasitoid communities.  相似文献   

11.
Determinants of avian species richness at different spatial scales   总被引:10,自引:1,他引:9  
ABSTRACT. Studies of factors influencing avian biodiversity yield very different results depending on the spatial scale at which species richness is calculated. Ecological studies at small spatial scales (plot size 0.0025–0.4 km2) emphasize the importance of habitat diversity, whereas biogeographical studies at large spatial scales (quadrat size 400–50,000 km2) emphasize variables related to available energy such as temperature. In order to bridge the gap between those two approaches the bird atlas data set of Lake Constance was used to study factors determining avian species diversity at the intermediate spatial scales of landscapes (quadrat size 4–36 km2). At these spatial scales bird species richness was influenced by habitat diversity and not by variables related to available energy probably because, at the landscape scale, variation in available energy is small. Changing quadrat size between 4 and 36 km2, but keeping the geographical extension of the study constant resulted in profound changes in the degree to which the amount of different habitat types was correlated with species richness. This suggests that high species diversity is achieved by different management regimes depending on the spatial scale at which species richness is calculated. However, generally, avian species diversity seems to be determined by spatial heterogeneity at the corresponding spatial scale. Thus, protecting the diversity of landscapes and ecosystems appears to ensure also high levels of species diversity.  相似文献   

12.
Axioms developed from island biogeography theory (i.e. species–area relationships, effects of fragmentation and isolation) are central to the development of conservation strategy. Within this context, the 'extinction debt' hypothesis brings into question an often assumed relationship between species richness and present-day spatial habitat structure (i.e. extent, fragmentation), suggesting instead that the richness and composition of biological communities may lag behind spatial changes in habitat. We examined evidence for an extinction debt among epiphytic lichens, a highly diverse biological group of significant conservation concern. Using sites in Scotland, we compared epiphyte species richness in smaller-scale habitat units (aspen stands) to larger-scale woodland structure (extent and fragmentation) measured at two spatial scales (1 km2 and 4 km2) and for two timeframes, modern (1990s to 2000s) and historic (1860s to 1880s). Species richness was positively related to woodland extent and negatively related to woodland fragmentation; however, richness was explained better by historic woodland structure at a 1-km2 scale, than by modern woodland structure. The results indicate: (1) a coupling of stand-scale epiphyte assembly and dynamics of the wider woodland ecosystem, and (2) a significant lag in the response of epiphyte species richness to habitat spatial structure. However, the effect of spatial habitat structure is different between species groups with contrasting traits. The effect of decreasing woodland extent on epiphyte richness is generally more severe for microlichens (comprising a greater number of rare and specialist species) than the more generalist macrolichens.  相似文献   

13.
Aims To investigate the relative explanatory power of source faunas and geographical variables for butterfly incidence, frequency, richness, rarity, and endemicity on offshore islands. Location The western Italian offshore islands (Italy and Malta). Methods Thirty‐one islands were examined. Data were taken from our own field surveys and from the literature. Two approaches were undertaken, described as island‐focused and species‐focused, respectively. Offshore islands were allocated to their neighbouring source landmasses (Italian Peninsula, Sicily and Sardinia–Corsica) and compared with each other for faunal attributes, source and island geography. Generalized linear and stepwise multiple regression models were then used to determine the relationships of island species richness, rarity and endemicity with potential geographical predictors and source richness, rarity, and endemicity (island‐focused). Species frequency and incidence were assessed in relation to geographical and source predictors using stepwise linear and logistic regression, and inter‐island associations were examined using K‐Means clustering and non‐metric scaling (species‐focused). Results The analysis reveals firm evidence for the influence of the nearest large landmass sources on island species assemblages, richness, rarity and endemicity. A clear distinction in faunal affinities occurs between the Sardinian islands and islands lying offshore from the Italian mainland and Sicily. Islands neighbouring these three distinct sources differ significantly in richness, rarity and endemicity. Source richness, rarity, and endemicity have explanatory power for island richness, rarity, and endemicity, respectively, and together with island geography account for a substantial part of the variation in island faunas (richness 59%, rarity 60% and endemicity 64%). Source dominates the logistic regression parameters predicting the incidence of island species [13 (38%) of 34 species that could be analysed]; three ecological factors (source frequency, flight period and maximal altitude at which species live) explained 75% of the variation in the occurrence of species on the islands. Species found more frequently on islands occurred more frequently at sources, had longer flight periods, and occurred at lower altitudes at the sources. The incidence of most species on islands (84%) is correctly predicted by the same three variables. Main conclusions The Italian region of the Mediterranean Sea has a rich butterfly fauna comprising endemics and rare species as well as more cosmopolitan species. Analysis of island records benefited from the use of two distinct approaches, namely island‐focused and species‐focused, that sift distinct elements in island and source faunas. Clear contemporary signals appear in island–source relationships as well as historical signals. Differences among faunas relating to sources within the same region caution against assuming that contemporary (ecological) and historical (evolutionary) influences affect faunas of islands in different parts of the same region to the same extent. The implications of source–island relationships for the conservation of butterflies within the Italian region are considered, particularly for the long‐term persistence of species.  相似文献   

14.
Estimating species richness in large biomes is a central challenge in ecology and conservation biology. However, accurate census data is often available only from small discrete plots distributed within the biome. Using tree species richness data collected from 48 plots (0.25 ha each) widely distributed through 60 000 km2 in the rainforests of the Western Ghats of southern India, we test the application of a proposed method for estimating species richness at large scales from measured species commonalities between pairs of censused plots. We show that the method allows extrapolation of species richness from a scale of 0.25 ha plots to that of the entire biome, or 105 km2.  相似文献   

15.
We examined the species-area relationship for three historically distinct subsets of Lesser Antillean birds identified by molecular phylogenetic analysis of island and continental populations. The groups comprised recent colonists from continental or Greater Antillean source populations, old taxa having recently expanded distributions within the Lesser Antilles, and old endemic taxa lacking evidence of recent dispersal between islands. The number of young taxa was primarily related to distance from the source of colonists in South America. In a multiple regression, the logarithmic slope of the species-area relationship for this group was shallow (0.066+/-0.016). Old endemic taxa were restricted to islands with high elevation, and within this subset, species richness was related primarily to island area, with a steep slope (0.719+/-0.110). The number of recently spread endemic taxa was related primarily to island elevation, apparently reflecting the persistence of such populations on islands with large areas of forested and montane habitats. Historical analysis of the Lesser Antillean avifauna supports the dynamic concept of island biogeography of MacArthur and Wilson, rather than the more static view of David Lack, in that colonists exhibit dispersal limitation and extinction plays a role in shaping patterns of diversity. However, the avifauna of the Lesser Antilles is probably not in equilibrium at present, and the overall species-area relationship might reflect changing proportions of historically distinguishable subsets of species.  相似文献   

16.
作为典型的陆桥岛屿, 千岛湖成为检验栖息地片段化理论的自然研究平台。2011年5月1日至2014年3月31日, 我们在千岛湖32个岛屿和1个大陆对照样点布设了60台红外相机, 对千岛湖体型较大的地栖兽类及其最小监测时长进行了监测和研究。在27,798个相机日的监测中, 共获得动物影像照片23,639张, 照片清晰、可进行物种鉴定的有2,414张, 占照片总数的10.2%; 其中体型较大的地栖兽类独立照片988张, 识别为9个物种: 穿山甲(Manis pentadactyla)、黄麂(Muntiacus reevesi)、野猪(Sus scrofa)、华南兔(Lepus sinensis)、马来豪猪(Hystrix brachyuran)、猪獾(Arctonyx collaris)、鼬獾(Melogale moschata)、花面狸(Paguma larvata)和豹猫(Prionailurus bengalensis), 平均独立照片拍摄率为40.9%。种-面积曲线研究表明, 岛屿上的地栖兽类物种丰富度随着岛屿面积的增大而增大, 曲线的z值为0.27。大岛(>10 ha)中, 最小监测时长随面积增加而增加, 而小岛没有明显趋势; 最小监测时长随隔离度增加而减小, 但关系不显著(d.f. = 20, F = 3.067, P = 0.095), 表明建湖后栖息地的片段化与岛屿化导致了一些对面积或栖息地较为敏感的大型兽类在小岛屿上的局部灭绝。因此, 我们建议对于面积较大的片段化栖息地, 红外相机应保证较长的最小监测时长, 而面积较小的片段化栖息地在监测中应根据隔离度、基质性质、物种种类适时调整调查强度, 以完整反映当地物种实际情况。  相似文献   

17.
Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities.  相似文献   

18.
If the immigration of species from a mainland or among islands is taken into account, each island of an archipelago can be regarded as a sample from a species pool. When two or more islands are combined so as to give larger samples, the resultant species-area relation does not differ from that observed in a continuous and homogeneous habitat on a mainland. This relation can be described by either of the two mathematical models proposed before (Kobayashi , 1975, 1976). A power function seems to be insufficient because the discrepancy between the observed and the calculated values becomes larger with the increasing area. In a log-log plot, the slope values for these alternatives to a power function vary continuously from 1 to 0 as the area increases. Owing to the spatially clumped distribution of each species, the number of species found on a single island is less than that found on several smaller islands of equivalent total area. Hence the species-area relation for individual islands has a smaller slope value than that obtained by combining the different numbers of islands and approaches a power function in form. From these results, it is concluded that the species-area data on archipelago biotas are equivalent to the case where separate samples of different sizes are drawn from a universe in which each species is spatially distributed in clumps. The properties of archipelago biotas which have so far been evidenced or predicted are consistent with this conclusion.  相似文献   

19.
Global diversity of island floras from a macroecological perspective   总被引:1,自引:0,他引:1  
Islands harbour a significant portion of all plant species worldwide. Their biota are often characterized by narrow distributions and are particularly susceptible to biological invasions and climate change. To date, the global richness pattern of islands is only poorly documented and factors causing differences in species numbers remain controversial. Here, we present the first global analysis of 488 island and 970 mainland floras. We test the relationship between island characteristics (area, isolation, topography, climate and geology) and species richness using traditional and spatial models. Area is the strongest determinant of island species numbers ( R 2 = 0.66) but a weaker predictor for mainlands ( R 2 = 0.25). Multivariate analyses reveal that all investigated variables significantly contribute to insular species richness with area being the strongest followed by isolation, temperature and precipitation with about equally strong effects. Elevation and island geology show relatively weak yet significant effects. Together these variables account for 85% of the global variation in species richness.  相似文献   

20.
High islands, with potentially greater habitat diversity, are expected to have greater species richness and diversity compared to low islands, typically atolls and coral islands of lower habitat diversity, within the same geographical area. Patterns of species similarity, richness, and diversity were compared among coral reef fishes between the low island of the Southwest Palau Islands (SWPI), and the low and high islands of the Main Palauan Archipelago (MPA). Data from diurnal visual transects accounted for approximately 64% and 69% of the shorefish faunas known from the SWPI and MPA, respectively. Two distinct fish faunas were representative of low and high islands. The first was confined to the coral islands of the SWPI. The second was partitioned into both low and high islands of the MPA, and Helen Reef, a large atoll in the SWPI. The second type was clustered into atolls, low islands with atoll-like barrier reef systems, a coral island, and three high island systems, one with an extensive barrier reef system. Contrary to the prediction that high islands, with relatively greater habitat diversity, would have greater species richness and diversity, species richness and diversity were greatest at Kossol, a large atoll-like low island locality at the northern end of a high island in the MPA, followed by two atolls, Kayangel (MPA, north of Kossol) and Helen Reef. In contrast, species richness and diversity were lower at high island localities and lowest at small coral islands. These results suggest that habitat diversity for reef fishes increases as a function of increasing area regardless of whether the locality is a high or low island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号