首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
 Although major histocompatibility complex (Mhc) genes have been identified in a number of species, little is yet known about their organization in species other than human and mouse. The zebrafish, Danio rerio, is a good candidate for full elucidation of the organization of its Mhc. As a step toward achieving this goal, a commercially available zebrafish BAC library was screened with probes specific for previously identified zebrafish class I and class II genes, as well as for genes controlling the proteasome subunits LMP7 and LMP2. Restriction maps of the individual positive clones were prepared and the Mhc (LMP7) genes localized to specific fragments. The total length of genomic DNA fragments with Mhc genes was approximately 1700 kilobases (kb) (200 kb of fragments bearing class I loci and 1500 kb of fragments bearing class II loci). One of the two class I loci (Dare-UCA) is closely associated with the LMP7 locus; the second class I locus (Dare-UAA) is more than 50 kb distant from the UCA locus and has no LMP genes associated with it. None of the class II genes are linked to the class I or the LMP genes. All six of the previously identified class II B genes and one of the three class II A genes were found to be present in the BAC clones; no new Mhc loci could be identified in the library. Each of the six previously identified class II B loci was found to be borne by a separate group of BAC clones. The Dare-DAB and -DAA loci were found on the same clone, approximately 15 kb apart from each other. An expansion of DCB and DDB loci was detected: the zebrafish genome may contain at least five closely related DCB and two closely related DDB loci which are presumably the products of relatively recent tandem duplication. These results are consistent with linkage studies and indicate that in the zebrafish, the class I and class II loci are on different chromosomes, and the class II loci are in three different regions, at least two of which are on different chromosomes. Received: 14 August 1997 / Revised: 16 September 1997  相似文献   

2.
3.
Evolutionary relationships among the primate Mhc-DQA1 and DQA2 alleles   总被引:4,自引:0,他引:4  
The variation of the Mhc-DQA1 and DQA2 loci of ten different primate species (hominoids and Old World monkeys) was studied in order to obtain an insight in the processes that generate polymorphism of major histocompatibility complex (Mhc) class II genes and to establish the evolutionary relationships of their alleles. To that end nucleotide sequences of 36 Mhc class II DQA1 and seven DQA2 second exons were determined and phylogenetic trees that illustrate their evolutionary relationships were constructed. We demonstrate the existence of four primate Mhc-DQA1 allele lineages, two of which probably existed before the separation of the ancestors of the hominoids and Old World monkeys (approximately 22–28 million years ago). Mhc-DQA2 sequences were found only in the hominoid species and showed little diversity. We found no evidence for a major contribution of recombinational events to the generation of allelic diversity of the primate Mhc-DQA1 locus. Instead, our data suggest that the primate Mhc-DQA1 and DQA2 loci are relatively stable entities that mutated primarily as a result of point mutations.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M76186-M76229.  相似文献   

4.
TheHLA-D region of the major histocompatibility complex (MHC) is characterized by a remarkable diversity. Most of theHLA class II genes are highly polymorphic, and in addition, the number and organization of individual loci in that region varies in different haplotypes. This extensive allelic polymorphism of immune response genes has well-known functional implications. Within theHLA-D region, two loci,DQA2 andDQB2 (formerly calledDX andDX), represent a very special case: the detailed structure of these two genes is entirely compatible with expression, yet their expression has never been demonstrated in any tissue. Consequently, there exists no known corresponding protein product. Pseudogenes are known to accumulate mutations, as observed for instance in the case ofHLA-DPA2,-DPB2, or-DRB2 genes. We have therefore investigated the extent of DQ2 genes' polymorphism by DNA sequence comparison and by oligonucleotide hybridization across a large number of different haplotypes, and compared it with other genes in theHLA-D region. We show here that, contrary to the adjacentDQ1 genes,DQ2 genes exhibit little and possibly no polymorphism. This conservation ofDQ2 genes in many haplotypes indicates that the DQ 1-DQ2 duplication event must have preceeded the extensive diversification ofDQ1 genes and raises the puzzling question of whyDQ2 genes have remained nonpolymorphic. This suggests that either these genes correspond to an unusually invariant region of the MHC or they are under a strong selective pressure for the conservation of the amino acid sequence of a putative DQ2 gene product. The latter would imply that theHLA-DQ2 genes are expressed into a protein product endowed with essential functional properties.  相似文献   

5.
The major histocompatibility complex (MHC) plays an important role in the immune system of vertebrates. We used the second exon of four MHC class II genes (DRA, DQA1, DQA2 and DRB3) to assess the overall MHC variation in forest musk deer (Moschus berezovskii). We also compared the MHC variation in captive and wild populations. We observed 22 alleles at four loci (four at DRA, four at DQA1, four at DQA2 and 10 at DRB3), 15 of which were newly identified alleles. Results suggest that forest musk deer maintain relatively high MHC variation, which may result from balancing selection. Moreover, considerable diversity was observed at the DRA locus. We found a high frequency of Mobe‐DRA*02, Mobe‐DQA1*01 and Mobe‐DQA2*05 alleles, which may be important for pathogen resistance. A Ewens–Watterson test showed that the DRB3 locus in the wild population had experienced recent balancing selection. We detected a small divergence at the DRA locus, suggesting the effect of weak positive selection on the DRA gene. Alternatively, this locus may be young and not yet adapted a wide spectrum of alleles for pathogen resistance. The significant heterozygosity deficit observed at the DQA1 and DRB3 loci in the captive population and at all four loci in the wild population may be the result of a population bottleneck. Additionally, MHC genetic diversity was higher in the wild population than in the captive, suggesting that the wild population may have the ability to respond to a wider range of pathogens.  相似文献   

6.
 Class I genomic clones of the quail (Coturnix japonica) major histocompatibility complex (MhcCoja) were isolated and characterized. Two clusters spanning the 90.8 kilobase (kb) and 78.2 kb class I gene regions were defined by overlapping cosmid clones and found to contain at least twelve class I loci. However, unlike in the chicken Mhc, no evidence for the existence of any Coja class II gene was obtained in these two clusters. Based on comparative analysis of the genomic sequences with those of the cDNA clones, Coja-A, Coja-B, Coja-C, and Coja-D (Shiina et al. 1999), these twelve loci were assigned to represent one Coja-A gene, two Coja-B genes (Coja-B1 and -B2), four Coja-C genes (Coja-C1-C4), four Coja-D genes (Coja-D1-D4), and one new Coja-E gene. A class I gene-rich segment of 24.6 kb in which five of these genes (Coja-B1, -B2, -D1, -D2 and -E) are densely packed were sequenced by the shotgun strategy. All of these five class I genes are very compact in size [2089 base pairs (bp)–2732 bp] and contain no apparent genetic defect for functional expression. A transporter associated with the antigen processing (TAP) gene was identified in this class I gene-rich segment. These results suggest that the quail class I region is physically separated from the class II region and characterized by a large number of the expressible class I loci (at least seven) in contrast to the chicken Mhc, where the class I and class II regions are not clearly differentiated and only at most three expressed class I loci so far have been recognized. Received: 9 March 1998 / Revised: 12 October 1998  相似文献   

7.
To gain an understanding of the genomic structure and evolutionary history of the giant panda major histocompatibility complex (MHC) genes, we determined a 636,503-bp nucleotide sequence spanning the MHC class II region. Analysis revealed that the MHC class II region from this rare species contained 26 loci (17 predicted to be expressed), of which 10 are classical class II genes (1 DRA, 2 DRB, 2 DQA, 3 DQB, 1 DYB, 1 DPA, and 2 DPB) and 4 are non-classical class II genes (1 DOA, 1 DOB, 1 DMA, and 1 DMB). The presence of DYB, a gene specific to ruminants, prompted a comparison of the giant panda class II sequence with those of humans, cats, dogs, cattle, pigs, and mice. The results indicated that birth and death events within the DQ and DRB-DY regions led to major lineage differences, with absence of these regions in the cat and in humans and mice respectively. The phylogenetic trees constructed using all expressed alpha and beta genes from marsupials and placental mammals showed that: (1) because marsupials carry loci corresponding to DR, DP, DO and DM genes, those subregions most likely developed before the divergence of marsupials and placental mammals, approximately 150 million years ago (MYA); (2) conversely, the DQ and DY regions must have evolved later, but before the radiation of placental mammals (100 MYA). As a result, the typical genomic structure of MHC class II genes for the giant panda is similar to that of the other placental mammals and corresponds to BTNL2∼DR1∼DQ∼DR2∼DY∼DO_box∼DP∼COL11A2. Over the past 100 million years, there has been birth and death of mammalian DR, DQ, DY, and DP genes, an evolutionary process that has brought about the current species-specific genomic structure of the MHC class II region. Furthermore, facing certain similar pathogens, mammals have adopted intra-subregion (DR and DQ) and inter-subregion (between DQ and DP) convergent evolutionary strategies for their alpha and beta genes, respectively.  相似文献   

8.
9.
The MHC of cattle encodes two distinct isotypes of class II molecules, DR and DQ. Unlike humans, cattle lack the DP locus and about half the common haplotypes express duplicated DQ genes. The number and frequency of DQA and DQB alleles means that most cattle are heterozygous. If inter- and/or intrahaplotype pairing of DQA and DQB molecules occurs, cattle carrying DQ-duplicated haplotypes may express more restriction elements than would be predicted by the number of expressed alleles. We are investigating whether duplicated haplotypes cause differences in immune response, particularly in terms of generating protective immunity. We have analyzed the Ag-presenting function of DQ molecules in two heterozygous animals, one of which carries a duplicated haplotype. We compared the class II isotype specificity of T cell clones recognizing a putative vaccinal peptide from foot-and-mouth disease virus (FMDV15). We show for the first time that bovine T cells can recognize Ag in the context of DQ molecules. We also present evidence that interhaplotype pairings of DQA and DQB molecules form functional restriction elements. Both animals showed distinct biases to usage of particular restriction elements. Mainly DQ-restricted clones were derived from the animal with duplicated DQ genes, whereas the majority of clones from the animal with a single DQ gene pair were DR restricted. Furthermore, haplotype bias was observed with both animals. These experiments show that understanding of class II chain pairing in addition to knowledge of the genotype may be important in vaccine design where effective epitope selection is essential.  相似文献   

10.
Structure and evolution of the promoter regions of the DQA genes   总被引:3,自引:3,他引:0  
HLA-DQ antigens are unique among the class II antigens in that their chains are highly polymorphic. In the present study, we characterized the general structure of the promoter regions of the DQA genes derived from different DR haplotypes and defined their nucleotide sequence polymorphisms. The promoter of each DQA1 allele contains three sequence motifs which are not present in non-DQA related class II genes: one identical to a tumor necrosis factor (TNF) response element, one similar to an NFB binding element, and one similar to a W motif. All DQA alleles lack TATA and CCAAT boxes in the proximal promoter region but carry other sequence elements characteristic of MHC class II genes, including S, X, X2, and Y boxes, and a pyrimidine-rich tract upstream of the X box. Nucleotide sequence polymorphisms among the various DQA1 alleles were noted within the promoter region, with some of the differences mapping within, or close to, regulatory elements that are important for the expression of MHC class II genes. All DQA1 alleles carry an unrearranged, full length, Alu-Sx related repeat immediately upstream of the proximal promoter region. This repeat was not present in the DQA2 (DXA) genes analyzed, confirming that DQ locus duplication probably occurred before integration of the Alu repeat into the primordial DQA1 locus, some 31–43 million years (myr) ago. The DQA2 promoter region is highly conserved between DR4 and DR3 haplotypes, with the degree of conservation exceeding that expected from the neutral mutation rate.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence data base and have been assigned the accession numbers M97 454-M97 464. Correspondence to: E. Morzycka-Wroblewska.  相似文献   

11.
The populations that colonized Siberia diverged from one another in the Paleolithic and evolved in isolation until today. These populations are therefore a rich source of information about the conditions under which the initial divergence of modern humans occurred. In the present study we used the HLA system, first, to investigate the evolution of the human major histocompatibility complex (MHC) itself, and second, to reveal the relationships among Siberian populations. We determined allelic frequencies at five HLA class II loci (DRB1, DQA1, DQB1, DPA1, and DPB1) in seven Siberian populations (Ket, Evenk, Koryak, Chukchi, Nivkh, Udege, and Siberian Eskimo) by the combination of single-stranded conformational polymorphism and DNA sequencing analysis. We then used the gene frequency data to deduce the HLA class II haplotypes and their frequencies. Despite high polymorphism at four of the five loci, no new alleles could be detected. This finding is consistent with a conserved evolution of human class II MHC genes. We found a high number of HLA class II haplotypes in Siberian populations. More haplotypes have been found in Siberia than in any other population. Some of the haplotypes are shared with non-Siberian populations, but most of them are new, and some represent “forbidden” combinations of DQA1 and DQB1 alleles. We suggest that a set of “public” haplotypes was brought to Siberia with the colonizers but that most of the new haplotypes were generated in Siberia by recombination and are part of a haplotype pool that is turning over rapidly. The allelic frequencies at the DRB1 locus divide the Siberian populations into eastern and central Siberian branches; only the former shows a clear genealogical relationship to Amerinds. Received: 18 August 1997 / Accepted: 6 October 1997  相似文献   

12.
MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, trans-encoded class II MHC molecules, where the α- and β-chain are encoded on opposite chromosomes, can also be expressed. We have studied the trans-encoded class II HLA molecule DQ2.3 (DQA1*03:01/DQB1*02:01) that has received particular attention as it may explain the increased risk of certain individuals to type 1 diabetes. We report the x-ray crystal structure of this HLA molecule complexed with a gluten epitope at 3.05 Å resolution. The gluten epitope, which is the only known HLA-DQ2.3-restricted epitope, is preferentially recognized in the context of the DQ2.3 molecule by T-cell clones of a DQ8/DQ2.5 heterozygous celiac disease patient. This preferential recognition can be explained by improved HLA binding as the epitope combines the peptide-binding motif of DQ2.5 (negative charge at P4) and DQ8 (negative charge at P1). The analysis of the structure of DQ2.3 together with all other available DQ crystal structures and sequences led us to categorize DQA1 and DQB1 genes into two groups where any α-chain and β-chain belonging to the same group are expected to form a stable heterodimer.  相似文献   

13.
B. C. Clarke  Y. Mukai  R. Appels 《Chromosoma》1996,105(5):269-275
This paper describes a detailed sequence analysis of the ω-secalin gene array at theSec-1 locus on the short arm of chromosome 1 of rye. The analysis shows that the genes are separated by 8 kb of spacer sequence and that the gene/spacer units are arranged in a head to tail fashion. The boundaries of the array are identified, and a fragment containing the majority of the genes in the array is separated by PFG analysis. The sequence data of one 9.2 kb gene unit have been determined, and because of the similarity of the gene units within the array these data provide a detailed sequence analysis of 140 kb of theSec-1 locus. Fluorescence in situ hybridization, using lambda clones isolated for the structural analysis, identifies the position of the array on the rye chromosomes relative to the 5S rRNA genes. Edited by: W. Hennig  相似文献   

14.
Polymorphism at the ovine major histocompatibility complex class II loci   总被引:2,自引:0,他引:2  
Southern hybridization analysis of the ovine major histocompatibility complex (MHC) ( MhcOvar ) class II region, using sheep-specific probes for the DQA1, DQA2, DQB and DRA loci, has revealed extensive polymorphism. DQA1 and DQAP had eight and 16 alleles respectively, DQB had six and DRA had three alleles. Little information was derived from the DRB locus owing to extensive cross-hybridization between the DRB probe and the DQB locus. Differences in allele frequency between breeds were revealed. At the DQA1 locus a null allele (DQA1-N) was observed with a frequency of between 27% and 45%, making this the most common DQA1 allele in all breeds examined. The frequency of DQA1-N homozygotes was between 11% and 18%, raising questions as to the functional significance of the DQA1 gene. Linkage analysis between the DQA1, DQA2, DQB and DRA loci did not reveal any recombination.  相似文献   

15.
The major histocompatibility complex (MHC) class II region of ruminants appears to have a structure broadly similar to that of the human class II or HLA-D region. Restriction fragment length polymorphism (RFLP) studies of class II genes in cattle (Andersson et al. 1988; Anderson and Rask 1988; Sigurdardottir et al. 1988, 1991 b), and in sheep (Scott et al. 1987), have provided an estimate of the number and type of class II genes in these species. The subsequent cloning and sequencing of sheep and cattle class II genes (Muggli-Cockett and Stone 1989; Groenen et al. 1990; van der Poel et al. 1990; Andersson et al. 1991; Scott et al. 1991 a, b; Ballingall et al. 1992; Sigurdardottir et al. 1991 a, 1992), have demonstrated that they are highly homologous to their human counterparts. Of more interest, therefore, are loci within the ruminant MHC which differ from the HLA class II region.Three distinguishing features of the ruminant class II region described to date are, firstly, the apparent absence of a DP-like isotype, secondly, the variability in the number of DQ genes between haplotypes (Andersson and Rask 1988), and thirdly, the presence of class II genes presumed to be unique to the ruminant (Andersson et al. 1988). The presence of two such genes, designated DYA and DYB, was deduced from RFLP studies of cattle DNA. These genes were shown to segregate together with the DOB gene in one region separated by a recombination distance of 17 cM from the region which contains the DQA, DQB, DRB, DRA, and C4 loci (Andersson et al. 1988). Subsequently, Bota-DYA was cloned from a phage library and sequenced (van der Poel et al. 1990; Acc. Nos. m30119 and m30118). The sequence of part of a similar gene in the goat, obtained by PCR by using primers derived from the cattle sequence, has recently been reported (Mann et al. 1993; Acc. No. m94325). However, there has been no report of the cloning of a B gene partner for the DYA gene. A novel cattle class II B gene designated Bota-DIB was cloned from a phage library and sequenced by Stone and Muggli-Cockett (1990). This was shown to be a single copy gene of limited polymorphism, which on the basis of RFLP analysis was probably not Bota-DYB but did appear to be distinct from other known cattle class II genes. The species distribution of this B gene was shown to be restricted to Cervidae, Giraffidae, and Bovidae (Stone and Muggli-Cockett 1993). However, it is not known whether any of these novel genes are functional.Expressed human class II genes usually occur as A/B gene pairs situated close to each other on the chromosome. This is also the case with Bota-DQ genes (Groenen et al. 1990) and Ovar-DQ genes (Deverson et al. 1991; Wright and Ballingall 1994). We used the techniques of cosmid cloning and DNA-mediated gene transfection to determine whether there is a sheep equivalent of the Bota-DYA gene, whether there is a DYB gene partner, and whether there is a protein product.A cosmid library was constructed from DNA prepared from a Finnish Landrace ram. The library was screened with Ovar-DQA, Ovar-DQB, HLA-DQA, and HLA-DQB gene probes at low stringency. A cosmid clone, 365, was obtained which hybridized weakly to both the Ovar gene probes. Restriction maps of the clone were produced for the enzymes Eco R1, Bam HI, Hin dIII, Sac I and Sma I. When the maps were compared to those published for the phage clones containing the Bota-DYA (van der Poel et al. 1990) and the Bota-DIB gene (Stone and Muggli-Cockett 1990), there was an imperfect match (Figure 1 shows the Eco RI maps). However, the sequence data for the A and B genes in cosmid 365 are more convincing. The sequences of exons 2 and 3 of the A gene in cosmid 365 and the Bota-DYA gene, together with the partial sequence from the third exon of the Cahi-DYA gene are shown in Figure 2 A. The predicted amino acid translations of these genes together with those of other published sheep MHC class II A genes are shown in Figure 2 B. The A gene in cosmid 365 had all the salient features of an MHC class II A gene. It showed a high sequence similarity to the cattle and caprine DYA genes and much less so to the Ovar-DRA gene (Ballingall et al. 1992; Acc. No z11600) and the Ovar-DQA1 and DQA2 (Scott et al. 1991 a; Acc. Nos. m33304 and m33305), as detailed in Table 1. The cosmid A gene showed low sequence similarity to the sheep DNA (formerly DZA) gene (unpublished observations). The A gene described here is clearly the sheep homologue of the Bota-DYA gene.The sequences of the second, third, and fourth exons of the B gene in cosmid 365 are shown in Figure 3 A together with those of the Bota-DIB gene (Stone and Muggli-Cockett 1990). Unfortunately, the presence of a Bam HI site in exon 2 of the sheep gene caused a truncation at this point, during the cloning procedure and so a part of exon 2, the whole of exon 1, and all the upstream regulatory elements were missing. The predicted amino acid translations of exons 2, 3, and 4 are shown together with those of an Ovar-DQB (Scott et al. 1991 a; Acc. No. m33323) and an expressed Ovar-DRB gene (Ballingall et al. 1992; Acc. No. z11522) in Figure 3 B.  相似文献   

16.
Summary The nucleolus organizer region located on the short arm of chromosome 1R of rye consists of a large cluster of genes that code for ribosomal RNA (designated the Nor-R1 locus). The genes in the cluster are separated by spacer regions which can vary in length in different rye lines. Differences in the spacer regions were scored in two families of F2 progeny. Segregation also occurred, in one or both of the families, at two seed protein loci and at two isozyme loci also located on chromosome 1R. The seed protein loci were identified as the Sec 1 locus controlling -secalins located on the short arm of chromosome 1R and the Sec 3 locus controlling high-molecular-weight secalins located on the long arm of 1R. The two isozyme loci were the Gpi-R1 locus controlling glucose-phosphate isomerase isozymes and the Pgd 2 locus controlling phosphogluconate dehydrogenase isozymes. The data indicated linkage between all five loci and map distances were calculated. The results indicate a gene order: Pgd 2 ... Sec 3 ... [centromere] ... Nor-R1 ... Gpi-R1 ... Sec 1. Evidence was obtained that rye possesses a minor 5S RNA locus (chromosome location unknown) in addition to the major 5S RNA locus previously shown to be located on the short arm of chromosome 1R.  相似文献   

17.
Nucleic acid sequences of the second exons of HLA-DRB1, –DRB3/4/5, –DQB1, and –DQA1 genes were determined from 43 homozygous cell lines, representing each of the known class II haplotypes, and from 30 unrelated Caucasian subjects, comprising 60 haplotypes. This systematic sequence analysis was undertaken in order to a) determine the existence of sequence microheterogeneity among cell lines which type as identical by methods other than sequencing; b) determine whether direct sequencing of class II genes will identify the presence of more extensive sequence polymorphism at the population level than that identified with other typing methods; c) accurately determine the molecular composition of the known class II haplotypes; and d) study their evolutionary relatedness by maximum parsimony analysis. The identification of seven previously unidentified haplotypes carrying five new allelic amino acid sequences suggests that sequence microheterogeneity at the population level may be more frequent than previously thought. Maximum parsimony analysis of these haplotypes allowed their evolutionary classification and indicates that the higher mutation rate at DRB1 compared to DQB1 loci in most haplotypic groups is inversed in specific haplotype lineages. Furthermore, the extent and localization of gene conversions and point mutations at class II loci in the evolution of these haplotypes is significantly different at each locus. Identification of additional HLA class II molecular microheterogeneity suggests that direct sequence analysis of class II HLA genes can uncover new allelic sequences in the population and may represent a useful alternative to current typing methodologies to study the effects of sequence allelism in organ transplantation.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M35890 through M35953.  相似文献   

18.
 Studying the genetic polymorphism of the major histocompatibility complex class II genes in cattle, we identified a sequence (KUH1) which resembles those encoding class II β chains. The gene was shown to be transcribed in peripheral blood leukocytes. Sequence comparisons, Southern blot, and phylogenetic analyses indicate that (1) KUH1 represents a distinct DQB locus, which we propose to designate BoLA-DQB5, (2) DQB5 constitutes an ancient DQB locus which diverged from a common ancestor gene prior to the duplication resulting in DQB1 and DQB2, (3) DQB5 is associated with haplotypes which contain DQA5 and a duplicated DQ region. Received: 26 January 1999 / Revised: 20 April 1999  相似文献   

19.
20.
Wheat flowering is controlled by numerous genes, which respond to environmental signals such as photoperiod and vernalization. Earliness per se (Eps) genes control flowering time independently of these environmental cues and are responsible for the fine tuning of flowering time. We recently mapped the Eps-A m 1 gene on the end of Triticum monococcum chromosome arm 1AmL. As a part of our efforts to clone Eps-A m 1 we developed PCR markers flanking this gene within a 2.7 cM interval. We screened more than one thousand gametes with these markers and identified 27 lines with recombination between them. Recombinant lines were used to generate a high-density map and to investigate the microcolinearity between wheat and rice in this region. We mapped ten genes from a 149 kb region located at the distal part of rice chromosome 5 (cdo393 – Ndk3) on a 3.7 cM region on wheat chromosome one. This region is part of an ancient duplication between rice chromosomes 5 and 1. Genes present in both rice chromosomes were less similar to each other than to the closest wheat orthologues, suggesting that this duplication preceded the divergence between wheat and rice. This hypothesis was supported by the presence of 18 loci duplicated both in rice chromosomes 5 and 1 and in the colinear wheat chromosomes from homoeologous groups 1 and 3. Independent gene deletions in wheat and rice lineages explain the alternations of colinearity between rice chromosome 5 and wheat chromosomes 1 and 3. Colinearity between the end of rice chromosome 5 and wheat chromosome 1 was also interrupted by a small inversion, and several non-colinear genes. These results suggest that the distal region of the long arm of wheat chromosome 1 was involved in numerous changes that differentiated wheat and rice genomes. This comparative study provided sufficient markers to saturate the Eps-A m 1 gene region and to precisely map this gene within a 0.9 cM interval flanked by the VatpC and Smp loci. Sequences obtained in this study: DQ196178, DQ196179, DQ196180, DQ196181, DQ196182, DQ196183, DQ196184, DQ196185, DQ196186, DQ196187, DQ196488, DQ198537, DQ308530, DQ308531, DQ308532, DQ308533, DQ308534, DQ308535, DQ308536, DQ308537, DQ308538, DQ308539, DQ308540  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号