首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadmium is toxic and carcinogenic to humans and animals. The testis and lung are the target organs for cadmium carcinogenesis. Heat shock proteins (HSPs) as well as metallothionein (MT) and glutathione (GSH) play an important role in protection against its toxicity. HSP32, also known as heme oxygenase-1, is a 32-kDa protein induced by heme, heavy metals, oxidative stresses, and heat. We investigated expression of the Hsp32 gene of various organs (the liver, lung, heart, stomach, kidney, and testis) in transgenic mice deficient in the MT-I and -II genes (MT-KO) and in control mice (MT-W) after an injection of cadmium chloride (CdCl2). Survival of MT-W mice after a subcutaneously injection of CdCl2 was higher than that of MT-KO mice, while no significant difference was observed in the level of GSH in each organ between MT-W and MT-KO mice. Northern blot analysis showed that the MT-I mRNA was more extensively induced in the liver, kidney, and heart than other organs 6 h after an injection of CdCl2 (30 micromol/kg body wt, sc). There was little increase of the MT-I mRNA in the testis when induced by CdCl2. Expression of the Hsp32 gene in the liver and kidney in response to CdCl2 was more extensively augmented in MT-KO mice than in MT-W mice. In the lung and testis, there was little induction and no augmentation in expression of the Hsp32 gene induced by CdCl2 in both MT-W and MT-KO mice. In the stomach, there was little induction of the Hsp32 mRNA in MT-W mice, but was increased in MT-KO mice. Immunohistochemical staining revealed that the HSP32 protein was strongly expressed in the kidney and liver of MT-W mice 24 h after an injection of CdCl2 (20 micromol/kg body wt, sc), while the expression of HSP32 protein was not increased in the testis. In metabolically active organs such as the liver and kidney, expression of the Hsp32 gene as well as the MT-I gene was extensively induced by cadmium in MT-W mice, and more eminently induced in MT-KO mice. We suggest that organs of low stress response to cadmium such as the testis and lung may be vulnerable target sites for cadmium toxicity and carcinogenesis.  相似文献   

2.
3.
小鼠泛素结合酶UBE2W的抗体制备及组织表达谱分析   总被引:1,自引:0,他引:1  
泛素结合酶(E2)是蛋白泛素化修饰所需的第二个连接酶, 在泛素转移和底物特异性识别过程中发挥着重要作用。UBE2W是一种新发现的E2酶, 其果蝇属同源蛋白可能在光转导或视网膜变性过程中发挥作用, 鼠和人同源蛋白功能未见报道。生物信息学分析UBE2W鼠源氨基酸序列, 发现UBE2W具有典型的UBC结构域并在多种物种高度保守。通过构建UBE2W原核表达质粒, 在大肠杆菌中表达并纯化了GST-UBE2W融合蛋白。以此纯化蛋白作为抗原免疫新西兰白兔制备抗UBE2W多抗血清, 并利用制备的UBE2W抗原柱亲和纯化UBE2W多抗。为了检测纯化抗体特异性, 在真核细胞中瞬时表达了myc-UBE2W融合蛋白, 分别用myc单抗和UBE2W多抗进行Western blotting分析, 结果表明获得了特异性的UBE2W抗体。利用此特异性抗体在小鼠脑、心脏、肾脏、肝脏、肺、肌肉、脾脏和睾丸等组织中均检测到了UBE2W的表达, 且在小鼠睾丸中成年期表达最高。  相似文献   

4.
小鼠泛素结合酶UBE2W的抗体制备及组织表达谱分析   总被引:1,自引:0,他引:1  
泛素结合酶(E2)是蛋白泛素化修饰所需的第二个连接酶, 在泛素转移和底物特异性识别过程中发挥着重要作用。UBE2W是一种新发现的E2酶, 其果蝇属同源蛋白可能在光转导或视网膜变性过程中发挥作用, 鼠和人同源蛋白功能未见报道。生物信息学分析UBE2W鼠源氨基酸序列, 发现UBE2W具有典型的UBC结构域并在多种物种高度保守。通过构建UBE2W原核表达质粒, 在大肠杆菌中表达并纯化了GST-UBE2W融合蛋白。以此纯化蛋白作为抗原免疫新西兰白兔制备抗UBE2W多抗血清, 并利用制备的UBE2W抗原柱亲和纯化UBE2W多抗。为了检测纯化抗体特异性, 在真核细胞中瞬时表达了myc-UBE2W融合蛋白, 分别用myc单抗和UBE2W多抗进行Western blotting分析, 结果表明获得了特异性的UBE2W抗体。利用此特异性抗体在小鼠脑、心脏、肾脏、肝脏、肺、肌肉、脾脏和睾丸等组织中均检测到了UBE2W的表达, 且在小鼠睾丸中成年期表达最高。  相似文献   

5.
FANCL是一个范可尼氏贫血新蛋白,它作为泛素E3连接酶催化FANCD2的单一泛素化,在修复DNA损伤、维持染色体稳定的FA途径中起着关键作用。胚胎期FANCL与小鼠原始生殖细胞增殖密切相关,成年睾丸中FANCL与几个生殖细胞特异性蛋白形成一个睾丸特异网络,可能参与影响精子的生成。采用RT-PCR方法从小鼠总RNA中扩增克隆FancL全长cDNA片段,构建表达质粒,在大肠杆菌中表达了6His-FANCL蛋白,用表达蛋白作为抗原免疫新西兰白兔制备了抗FANCL多抗血清。采用镍离子金属螯合柱纯化6His-FANCL蛋白后,通过与活性基团-NHS交联制备了FANCL抗原柱,亲和纯化了FANCL多抗。为了验证抗体活性和特异性,在HEK293T细胞中瞬时表达了HA-FANCL融合蛋白,分别用HA单抗和纯化多抗进行Western印迹分析,结果表明获得了特异性的FANCL抗体。为了观察FANCL在组织中的表达谱,制备了多种小鼠组织匀浆蛋白,使用纯化的FANCL多抗进行Western印迹分析,在脑、心、肺、肝、脾、肾、睾丸、卵巢、子宫和肌肉组织中都检测到FANCL蛋白的表达,说明FANCL在小鼠组织中是广泛表达的,这与其是DNA修复复合物中的重要成员相一致。  相似文献   

6.
A novel member of the G protein-coupled receptor (GPCR) family was cloned and characterized, which is unique, among the members, in its long extracellular domain comprising Ig-like repeats and in its high expression predominantly in the lung. The clone (Ig-Hepta) was first identified as a polymerase chain reaction product generated with primers designed to amplify secretin receptor family members including the parathyroid hormone-related peptide receptors. Analysis of the open reading frame of cDNAs isolated from a rat lung cDNA library indicated that Ig-Hepta is a protein of 1389 amino acid residues and has two Ig-like repeats in the N-terminal extracellular domain (exodomain) of 1053 amino acid residues and 7 transmembrane spans in the C-terminal region. Northern blot analysis revealed very high expression of its mRNA in the lung and low but detectable levels in the kidney and heart. The mRNA expression in the lung was found to be strongly induced postnatally. Biochemical analysis indicated that Ig-Hepta is a highly glycosylated protein and exists as a disulfide-linked dimer. Immunohistochemistry on rat lung and kidney sections revealed dense localization of Ig-Hepta in alveolar walls and intercalated cells in the collecting duct, respectively, suggesting a role in the regulation of acid-base balance. Ig-Hepta defines a new subfamily of GPCRs.  相似文献   

7.
Vitamin K is involved in the γ-carboxylation of the vitamin K-dependent proteins, and vitamin K epoxide is a by-product of this reaction. Due to the limited intake of vitamin K, its regeneration is necessary and involves vitamin K 2,3-epoxide reductase (VKOR) activity. This activity is known to be supported by VKORC1 protein, but recently a second gene, VKORC1L1, appears to be able to support this activity when the encoded protein is expressed in HEK293T cells. Nevertheless, this protein was described as being responsible for driving the vitamin K-mediated antioxidation pathways. In this paper we precisely analyzed the catalytic properties of VKORC1L1 when expressed in Pichia pastoris and more particularly its susceptibility to vitamin K antagonists. Vitamin K antagonists are also inhibitors of VKORC1L1, but this enzyme appears to be 50-fold more resistant to vitamin K antagonists than VKORC1. The expression of Vkorc1l1 mRNA was observed in all tissues assayed, i.e. in C57BL/6 wild type and VKORC1-deficient mouse liver, lung, and testis and rat liver, lung, brain, kidney, testis, and osteoblastic cells. The characterization of VKOR activity in extrahepatic tissues demonstrated that a part of the VKOR activity, more or less important according to the tissue, may be supported by VKORC1L1 enzyme especially in testis, lung, and osteoblasts. Therefore, the involvement of VKORC1L1 in VKOR activity partly explains the low susceptibility of some extrahepatic tissues to vitamin K antagonists and the lack of effects of vitamin K antagonists on the functionality of the vitamin K-dependent protein produced by extrahepatic tissues such as matrix Gla protein or osteocalcin.  相似文献   

8.
A novel adenylylcyclase cDNA (type V) was isolated from a canine heart cDNA library. Northern blotting indicates that the expression of this message is most abundant in heart with a lesser amount in brain but is absent in a variety of other tissues including lung, kidney, skeletal muscle, lymphocyte, and testis. The putative protein product predicted from the cDNA sequence has the motif of tandem six-transmembrane spans separated by a large hydrophilic cytoplasmic loop as seen in other members of the adenylylcyclase family. When this protein is expressed using a CMT cell transient expression system, the adenylylcyclase activity was stimulated by NaF, GTP gamma S, and forskolin, but not by calmodulin. The activity was inhibited in a concentration-dependent manner with either P-site active agents such as adenosine or in the presence of calcium. These data indicate that the protein encoded by this cDNA is adenylylcyclase with the biochemical features characteristic of the cardiac isoform.  相似文献   

9.
A high glutathione peroxidase activity toward phospholipid hydroperoxides is present in rat testis. The attribution of this activity to the selenoenzyme phospholipid hydroperoxide glutathione peroxidase (PHGPX) was supported by cross-reactivity with antibodies raised against pig heart PHGPX which had been purified and characterized. Rat testis PHGPX is partially cytosolic and partially linked to nuclei and mitochondria. The soluble and organelle-bound enzymes appear identical by Western blot analysis. PHGPX, but neither selenium-dependent nor non-selenium-dependent glutathione peroxidase activity, is expressed in testes only after puberty, disappears after hypophysectomy, and is partially restored by gonadotropin treatment. Specific immunostaining of testes by antiserum against PHGPX appears as a fine granular brown pattern localized throughout the cytoplasm in more immature cells but is confined to the peripheral part of the cytoplasm, the nuclear membrane, and mitochondria in maturating spermatogenic cells. As expected, immunostaining of spermatogenic cells in hypophysectomized animals was negative, but gonadotropin treatment only marginally increased the immunoreactivity. The expression of PHGPX in testes is consistent with the previously described specific requirement for selenium for synthesis of a 15-20-kDa selenoprotein which is related to the production of functional spermatozoa.  相似文献   

10.
Fanconi anemia complementation group L (FANCL) is a novel Fanconi anemia protein, which mono-ubiquitinates FANCD2 as a ubiquitin E3 ligase, and plays a crucial role in DNA damage repair and chromosome stability maintenance. FANCL is involved in the proliferation of primordial germ cells (PGC) in early embryonic stages, and may play a role in the development of germ cells by forming a novel testis-specific network with testis-specific proteins in the adult testis. FancL cDNA sequence was cloned by RT-PCR from mouse testis total RNA, and expressed in E. coli BL21(DE3). Rabbit FANCL polyclonal antiserum was generated using the recombinant protein as the antigen. To prepare an antigen column for affinity purification of FANCL-specific antibody, recombinant His-tagged FANCL was purified by Ni2+-charged HiTrap Chelating HP column and coupled to an NHS-activated HiTrap column. To confirm the activity and specificity of the FANCL antibody, we constructed plasmid pCMV-HA/FANCL to transfect HEK 293T cells. Transiently expressed HA-FANCL fusion protein was analyzed by immunoblotting with both the FANCL antibody and HA monoclonal antibody. The antibody was used in Western blotting to check the expression of FANCL protein in mouse tissues. We found wide expression of FANCL in brain, muscle, heart, lung, liver, spleen, kidney, testis, ovary and uterus, indicating the functional importance of this novel protein.  相似文献   

11.
Tissue-specific expression of the rat glutathione S-transferases   总被引:9,自引:0,他引:9  
Tissue-specific patterns of rat glutathione S-transferase expression have been demonstrated by in vitro translation of purified poly(A) RNAs and by protein purification. Poly(A) RNAs from six rat tissues including heart, kidney, liver, lung, spleen, and testis were used to program in vitro translation with the rabbit reticulocyte lysate system and [35S]methionine. The glutathione S-transferase subunits synthesized in vitro were purified from the translation products by affinity chromatography on S-hexylglutathione-linked Sepharose 6B columns. The affinity bound fractions were analyzed by Na dodecyl SO4-polyacrylamide gel electrophoresis and fluorography. A subunit of Mr = 22,000 detected in the in vitro translation products of poly(A) RNAs from heart, kidney, lung, spleen, and testis is missing from the translation products of liver poly(A) RNAs. This Mr = 22,000 subunit is present only in the anionic glutathione S-transferase fraction purified from rat heart, kidney, lung, spleen, and testis. Purified anionic glutathione S-transferase from rat liver does not contain this subunit. The relative specific activities toward a dozen different substrates also demonstrate the nonidentity between liver and kidney anionic glutathione S-transferases. In addition, among the glutathione S-transferase subunits expressed in the liver, some of them could not be detected in the other tissues investigated. Our results indicate that tissue-specific expression of rat glutathione S-transferases may occur pretranslationally.  相似文献   

12.
The 25-kDa heat-shock protein (Hsp25) is a member of the small heat-shock protein family but its function remains largely unknown. In the present study we examined the expression and cellular localization of Hsp25 mRNA in mice under physiological, unstressed conditions using Northern blot and in situ hybridization analyses with specific oligonucleotide probes. At the organ level, high amounts of Hsp25 mRNA were detected in the oesophagus, skin,eye, stomach, lung and urinary bladder, with moderate amounts in the heart, skeletal muscle, aorta, adrenal gland, ovary, testis, uterus, large intestine, and thymus. At the cellular level, intense to moderate signals for Hsp25 mRNA were localized in the muscle cells of smooth, heart and skeletal types, in the epithelial cells of stratified squamous and transitional types and of the oviduct, in the steroid endocrine cells of the adrenal cortex and corpus luteum, as well as in the spermatocytes of the testis. In contrast, the signal was scarcely detectable in the nervous tissues, lymphatic tissues, the columnar epithelial cells of the digestive tract, or the parenchymal cells of the liver, pancreas and kidney. These results suggest some significant role for Hsp25 in distinct populations of mouse cells under physiological conditions.  相似文献   

13.
14.
Citrullination, the conversion of peptidylarginine to peptidylcitrulline is catalyzed by peptidylarginine deiminases (PAD). The expression of PAD isoforms displays great variation among different tissues as demonstrated by PAD mRNA analyses. Here we have analyzed the differential expression of PAD2, PAD4 and PAD6 in mouse tissues at the protein level and by enzymatic activity assays using PAD2 and PAD4 knock-out strains. As expected, no PAD2 expression was detected in the PAD2−/− mice. In contrast, the PAD4 protein was observed in several tissues of the PAD4 knock-out mice, albeit at reduced levels in most tissues, and are therefore referred to as PAD4-low mice. In material from PAD2−/− mice, except for leukocyte lysates, hardly any PAD activity was found and no citrullinated proteins were detected after incubation in the presence of calcium. PAD activity in the PAD4-low mice was similar to that in wild-type mice. In both PAD knock-out strains the expression of PAD6 appeared to be up-regulated in all tissues analyzed, with the exception of spleen and testis. Our data demonstrate that the PAD2 protein is expressed in brain, spinal cord, spleen, skeletal muscle and leukocytes, but not detectably in liver, lung, kidney and testis. PAD4 was detected in each of these tissues, although the expression levels varied. In all tissues where PAD2 was detected, except for blood cells, this PAD isoform appeared to be responsible for virtually all peptidylarginine deiminase activity.  相似文献   

15.
16.
Rat gene for renin-binding protein (RnBP) was shown to be expressed in the kidney, adrenal gland, brain, lung, spleen, ovary, testis, and heart. On sodium depletion and captopril administration, the rat showed a marked increase in the adrenal RnBP mRNA level and a slight decrease in the kidney RnBP mRNA level. In two-kidney, one clip hypertensive rats, the RnBP mRNA levels of the clipped and contralateral kidneys were unchanged and also its adrenal mRNA level was maintained at the control level. The recombinant rat RnBP was synthesized in Escherichia coli cells and purified to apparent homogeneity. The RnBP existed as a homodimer and formed a heterodimer with rat renin to inhibit renin activity extensively. Intravenous injection of the RnBP into rats resulted in a rapid and strong inhibition of plasma renin activity, which persisted at least for 2 h. These results suggest that the expression of RnBP gene in the kidney and adrenal gland is regulated independently, and the function of RnBP is related to electrolyte homeostasis, probably through the interaction with renin.  相似文献   

17.
9 alpha,11 beta-prostaglandin F2 was formed from prostaglandin D2 by its 11-ketoreductases in 100,000 x g supernatants of various bovine tissues in the presence of an NADPH-generating system. The reductase activities were high in liver (51.09 nmol/h/mg of protein), lung (24.99), and spleen (14.20); moderate in heart and pancreas (3.09-3.61); weak in stomach, intestine, colon, kidney, uterus, adrenal gland, and thymus (0.11-2.63); and undetectable in brain, retina, carotid artery, and blood (less than 0.10). No formation of prostaglandin F2 alpha from prostaglandin D2 was detected in all tissues. In immunotitration analyses with a polyclonal antibody specific for prostaglandin F synthetase, the reductase activities in lung and spleen showed identical titration curves to that of the purified synthetase and decreased to less than 15% of the initial activity under the condition of antibody excess. Prostaglandin F synthetase-immunoreactive protein in these two tissues showed peptide fingerprints identical to that of the purified enzyme after partial digestion with Staphylococcus aureus V8 protease. The antibody was partially cross-reactive to the reductase in liver (about 20% of that to the synthetase) but not to the reductase(s) in other tissues. The Km value for prostaglandin D2 of the reductase activity was the same in lung and spleen as that of the purified prostaglandin F synthetase (120 microM) but differed in liver (6 microM), heart, and pancreas (15 microM). The predominant distribution of prostaglandin F synthetase in lung and spleen was confirmed by radioimmunoassay (2.8 and 1.0 micrograms/mg protein, respectively) and Northern blot analyses. In immunoperoxidase staining, this enzyme was localized in alveolar interstitial cells and nonciliated epithelial cells in lung, histiocytes and/or dendritic cells in spleen, and a few interstitial cells in kidney and adrenal cortex.  相似文献   

18.
A kinin-directed monoclonal antibody to kininogens has been developed by the fusion of murine myeloma cells with mouse splenocytes immunized with bradykinin-conjugated hemocyanin. The hybrid cells were screened by an enzyme-linked immunosorbent assay (ELISA) and a radioimmunoassay (RIA) for the secretion of antibodies to bradykinin. Ascitic fluids were produced and purified by a bradykinin-agarose affinity column. The monoclonal antibody (IgG1) bound to bradykinin, Lys-bradykinin, Met-Lys-bradykinin, and kininogens in ELISA. Further, this target-directed monoclonal antibody recognized purified low and high molecular weight bovine, human, or rat kininogens and T-kininogen in Western blotting. After turpentine-induced acute inflammation, rat kininogen levels increased dramatically in liver and serum as well as in the perfused pituitary, heart, lung, kidney, thymus, and other tissues, as identified by the kinin-directed kininogen antibody in Western blot analyses. The results were confirmed by measuring kinin equivalents of kininogens with a kinin RIA. During an induced inflammatory response, rat kininogens were localized immunohistochemically with the kinin-directed monoclonal antibody in parenchymal cells of liver, in acinar cells and some granular convoluted tubules of submandibular gland, and in the collecting tubules of kidney. Northern and cytoplasmic dot blot analyses using a kinin oligonucleotide probe showed that kininogen mRNA levels in liver but not in other tissues increase after turpentine-induced inflammation. The results indicated that rat kininogens are distributed in various tissues in addition to liver and only liver kininogen is induced by acute inflammation. The target-directed kininogen monoclonal antibody is a useful reagent for studying the structure, localization, and function of kininogens or any protein molecule containing the kinin moiety.  相似文献   

19.
Mouse kallikrein 24 is thought to encode a functional serine protease belonging to the mouse glandular kallikrein gene family. Preliminary results suggest that this kallikrein may play a role in testis function in adult mice. In order to obtain insights into its physiological functions, we undertook molecular and biochemical analyses of this enzyme. We cloned a cDNA for kallikrein 24 from the adult mouse testis cDNA library. Kallikrein 24 was expressed in the kidney, submandibular glands, ovary, epididymis, and testis of the mouse. In the testis, kallikrein 24 mRNA was detectable at 4 weeks of postnatal development, and became more prominent thereafter. The kallikrein 24 gene was expressed exclusively in the Leydig cells of adult mice. When Leydig cells isolated from a 2-week-old mouse testis were cultured in the presence of testosterone, kallikrein 24 expression was induced. Active recombinant enzyme showed trypsin-like specificity, favorably cleaving Arg-X bonds of synthetic peptide substrates. The enzymatic activity was strongly inhibited by typical serine protease inhibitors. Mouse kallikrein 24 degraded casein, gelatin, fibronectin and laminin. These results suggest that the enzyme may play a role in the degradation of extracellular matrix proteins in the interstitial area surrounding the Leydig cells of the adult mouse testis. The present findings should contribute to future physiological studies of this mouse testis protease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号