首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R Duff  F Rapp 《Journal of virology》1975,15(3):490-496
The interaction of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) with Swiss/3T3 cells was investigated. Virus-induced cytopathic effects developed in the absence of production of infectious virus. HSV-2 inactivated with UV light (2, 4, 6, and 8 min) also induced cell death in the absence of virus replication. Cell death was not detectable after infection by HSV-2 that had been inactivated by UV irradiation for 10, 12, and 14 min. 3T3 cells infected with UV-inactivated virus (10 and 12 min) continued to replicate past the contact-inhibited monolayer normally associated with these cells. Infection of 3T3 cells with UV-irradiated USV-2 also induced the development of transformed foci. Transformed cells with an epithelioid of fibroblastoid morphology were identified and isolated. All HSV-2-transformed cell lines contained HSV-2-specific antigens detectable by immunofluorescence techniques. The maximum frequency of HSV-2-induced transformation was 3 times 105 PFU per transformed focus, and the observed transformation could be inhibited by pretreatment of the virus with specific antiserum. No type C particles were detected within five cell culture passages after transformation by HSV-2. Type C virus particles were detected after 10 cell culture passages of the HSV-2-transformed cell lines.  相似文献   

2.
Human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of herpes simplex virus type 1 (HSV-1). A delay in HSV replication of 15 h as well as a consistent, almost 3 log inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 h after superinfection were observed compared with controls infected with HSV alone. Treatment of HCMV-infected HEL cells with cycloheximide (100 micrograms/ml) for 3 or 24 h, conditions known to result in accumulation of HCMV immediate-early and early mRNA, was demonstrated effective in blocking HCMV protein synthesis, as shown by immunoprecipitation with HCMV antibody-positive polyvalent serum. Cycloheximide treatment of HCMV-infected HEL cells and removal of the cycloheximide block before superinfection inhibited HSV-1 replication more efficiently than non-drug-treated superinfected controls. HCMV DNA-negative temperature-sensitive mutants restricted HSV as efficiently as wild-type HCMV suggesting that immediate-early and/or early events which occur before viral DNA synthesis are sufficient for inhibition of HSV. Inhibition of HSV-1 in HCMV-infected HEL cells was unaffected by elevated temperature (40.5 degrees C). However, prior UV irradiation of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HSV-2 replication was similarly inhibited in HCMV-infected HEL cells. However, replication of adenovirus, another DNA virus, was not restricted in these cells under the same conditions. Superinfection of HCMV-infected HEL cells with HSV-1 labeled with [3H]thymidine provided evidence that the labeled virus could penetrate to the nucleus of cells after superinfection. Evidence for penetration of superinfecting HSV into HCMV-infected cells was also provided by blot hybridization of HSV DNA synthesized in cells infected with HSV alone versus superinfected cell cultures at 0 and 48 h after superinfection. In addition, superinfection with vesicular stomatitis virus ruled out a role for interferon in restriction of HSV replication in this system.  相似文献   

3.
We describe the use of herpesvirus promoters to regulate the expression of a Sindbis virus replicon (SINrep/LacZ). We isolated cell lines that contain the cDNA of SINrep/LacZ under the control of a promoter from a herpesvirus early gene which requires regulatory proteins encoded by immediate-early genes for expression. Wild-type Sindbis virus and replicons derived from this virus cause death of most vertebrate cells, but the cells discussed here grew normally and expressed the replicon and β-galactosidase only after infection with a herpesvirus. Vero cell lines in which the expression of SINrep/LacZ was regulated by the herpes simplex virus type 1 (HSV-1) infected-cell protein 8 promoter were generated. One Vero cell line (V3-45N) contained, in addition to the SINrep/LacZ cDNA, a Sindbis virus-defective helper cDNA which provides the structural proteins for packaging the replicon. Infection of V3-45N cells with HSV-1 resulted in the production of packaged SINrep/LacZ replicons. HSV-1 induction of the Sindbis virus replicon and packaging and spread of the replicon led to enhanced expression of the reporter gene, suggesting that this type of cell could be used to develop sensitive assays to detect herpesviruses. We also isolated a mink lung cell line that was transformed with SINrep/LacZ cDNA under the control of the promoter from the human cytomegalovirus (HCMV) early gene UL45. HCMV carries out an abortive infection in mink lung cells, but it was able to induce the SINrep/LacZ replicon. These results, and those obtained with an HSV-1 mutant, demonstrate that this type of signal amplification system could be valuable for detecting herpesviruses for which a permissive cell culture system is not available.  相似文献   

4.
We have previously described an in vitro system in which the function lacking for herpes simplex virus type 2 (HSV-2) replication can be induced by human cytomegalovirus (HCMV). The mechanism of this reactivation of quiescent HSV-2 by HCMV has been further defined. The HCMV function(s) responsible for HSV-2 stimulation was examined temporally, and the fraction of cells in quiescent cultures producing HSV-2 after superinfection was determined. Using independent biological, genetic and molecular techniques we have made the following observations. (i) As early as 12 h after HCMV superinfection, HSV-2 RNA was expressed in latently infected cells. (ii) At 24 h after HCMV superinfection, a time when newly synthesized HCMV was not yet apparent, infectious HSV-2 was produced by reactivated cultures. (iii) Four HCMV temperature-sensitive mutants, which are DNA-negative at nonpermissive temperature and represent four different complementation groups, induced reactivation of HSV-2 at 39.5 degrees C. (iv) Early after HCMV superinfection, 1.6% of quiescent cells could be induced to transcribe HSV-2 information. (v) Early after HCMV superinfection, 0.3% of cells in the quiescent cultures could be induced to yield infectious HSV-2. The finding that a significant interaction can occur between HCMV and quiescent HSV-2 in an in vitro model is noteworthy in light of the knowledge that both of these herpesviruses often reside simultaneously in the human host.  相似文献   

5.
Both methyglyoxal bis(guanylhydrazone), an inhibitor of S-adenosyl-L-methionine decarboxylase (EC.4.1.1.50) and DL-α-methylornithine, an inhibitor of ornithine decarboxylase (EC.4.1.1.17), are shown to be potent inhibitors of the replication of human cytomegalovirus (HCMV) in MRC-5 cells. These compounds, both inhibitors of polyamine biosynthesis, do not affect the replication of either herpes simplex virus type 1 (HSV-1) or herpes simplex virus type 2 (HSV-2). This difference in antiviral effect is shown to be related to the stimulation of spermidine and spermine synthesis in host cells following HCMV infection and the inhibition of polyamine metabolism in HSV-1 or HSV-2-infected cells. Inhibition of HCMV replication by the inhibitors of polyamine biosynthesis is accompanied by a marked decrease in the formation of intranuclear, DNA-containing inclusions characteristic of HCMV infection. These results suggest significant differences in the mechanisms of replication of different herpesviruses.  相似文献   

6.
7.
Herpes simplex virus type 2 (HSV-2) DNA has been detected by molecular hybridization in hamster fibroblast cells oncogenically transformed by ultraviolet-irradiated virus. At early passages after cloning in soft agar, about 40% of the HSV-2 genome was present in all the transformed cell lines at one to six copies per cell. In cell lines derived from tumors induced by these cells, the same percentage of the HSV-2 genome was also found with more uniform number of copies (between two and three). Thus the presence of viral DNA seems to be necessary for the maintenance of the transformed state in these cell lines.  相似文献   

8.
Hyperimmune rabbit antiserum to an early, nonstructural herpes simplex virus type 2 (HSV-2)-induced polypeptide (VP143) reacted in immunofluorescence tests with a variety of cell lines transformed by HSV-2. Cytoplasmic fluorescence was observed in 10 to 50% of HSV-2-transformed cells, whereas no fluorescence was observed in cells transformed by other oncogenic DNA viruses or by a chemical carcinogen. VP143-specific reactivity could be absorbed from anti-VP143 serum with HSV-2-transformed cells but not with cells transformed by other agents. When HSV-2-transformed cells were synchronized in mitosis and examined at various times postmitosis for VP143-specific fluorescence, the expression of VP143 was shown to be cell cycle dependent.  相似文献   

9.
The interaction between herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) and two neural cell lines, mouse neuroblastoma (N1E-115) and rat glioma (C6-BU-1), was investigated. N1E-115 cells were permissive to both types of HSV. In C6-BU-1 cells, on the other hand, all the HSV-1 strains tested so far showed persistent infection, and the infectious virus of HSV-2 strains disappeared spontaneously. The HSV-2-infected C6-BU-1 cells were positive for HSV-2-specific DNA sequences, virus-specific RNA, HSV-2-specific antigens and thymidine kinase activity, when no infectious virus was detected. The HSV-2 was reactivated from those C6-BU-1 cells by superinfection with murine cytomegalovirus (MCMV), but not with UV-irradiated MCMV or human cytomegalovirus. The reactivated HSV-2 was identical to the parental virus, when examined by restriction endonuclease cleavage analysis.  相似文献   

10.
Rat embryo fibroblasts transformed by herpes simplex virus type 2 (HSV-2) were assayed for the expression of certain virus-specific glycoproteins on the surface membranes. Monospecific antisera to HSV-2-specific glycoproteins, designated gAgB, gC, and gX, were used in membrane immunofluorescence studies with HSV-2-transformed cell lines tREF-G-1, tREF-G-2, and a tumor-derived rat fibrosarcoma cells line produced in syngeneic rats inoculated with tREF-G-1 cells. Analysis of the three HSV-2-transformed cell lines showed that antisera to the gAgB and gX glycoproteins were reactive with these cells. In contrast, no significant reactivity was observed when anti-gC serum was reacted with the HSV-2-transformed cell lines. All three antiglycoprotein sera reacted positively with rat cells productively infected with HSV-2. Additionally, the HSV-2-transformed and tumor-derived cell lines showed positive internal immunofluorescence after reaction with antiserum to an early, nonstructural viral protein designated VP143 (molecular weight, 143,000). Infectivity of HSV-2 in standard plaque assays was neutralized by hyperimmune rat antisera to tREF-G-2 or rat fibrosarcoma cells and to HSV-2 virions and by sera from rats bearing the fibrosarcoma. Adsorption of rat-anti-HSV-2 serum with tREF-G-2 or rat fibrosarcoma cells reduced neutralizing activity to 10 and 12%, respectively, compared with 90% neutralization by antiserum adsorbed with nontransformed rat embryo fibroblast cells and 100% neutralization with unadsorbed antiserum. In summary, HSV-2-transformed rat cells retained and expressed genetic information necessary for the production of HSV-2 glycoproteins and a nonstructural protein after high passage in tissue culture or in the syngeneic host.  相似文献   

11.
Two cell lines biochemically transformed by UV-irradiated herpes simplex virus (HSV) each contain virus DNA. A comparison of the kinetics of reassociation of 3H-labeled HSV DNA in the presence and absence of either clone 139 (HSV-1 transformed) or clone 207 (HSV-2 transformed) DNA showed that the presence of transformed cell DNA increased the rate of reassociation of approximately 10% of the viral genome while having no effect on the remaining 90%. The Cot1/2 of this reaction was approximately 1,000 in each cell type, as compared to approximately 3,000 for the cellular unique sequences. These results suggest the presence of four to six copies of a 10% fragment of the virus DNA per cell. The DNA from a hamster fibroblast cell line morphologically transformed by UV-irradiated HSV-2 (333-8-9) did not affect the rate of reassociation of HSV-2 DNA, indicating that these cells had less than 3% of a viral genome present.  相似文献   

12.
The 4-oxo-dihydroquinolines (PNU-182171 and PNU-183792) are nonnucleoside inhibitors of herpesvirus polymerases (R. J. Brideau et al., Antiviral Res. 54:19-28, 2002; N. L. Oien et al., Antimicrob. Agents Chemother. 46:724-730, 2002). In cell culture these compounds inhibit herpes simplex virus type 1 (HSV-1), HSV-2, human cytomegalovirus (HCMV), varicella-zoster virus (VZV), and human herpesvirus 8 (HHV-8) replication. HSV-1 and HSV-2 mutants resistant to these drugs were isolated and the resistance mutation was mapped to the DNA polymerase gene. Drug resistance correlated with a point mutation in conserved domain III that resulted in a V823A change in the HSV-1 or the equivalent amino acid in the HSV-2 DNA polymerase. Resistance of HCMV was also found to correlate with amino acid changes in conserved domain III (V823A+V824L). V823 is conserved in the DNA polymerases of six (HSV-1, HSV-2, HCMV, VZV, Epstein-Barr virus, and HHV-8) of the eight human herpesviruses; the HHV-6 and HHV-7 polymerases contain an alanine at this amino acid. In vitro polymerase assays demonstrated that HSV-1, HSV-2, HCMV, VZV, and HHV-8 polymerases were inhibited by PNU-183792, whereas the HHV-6 polymerase was not. Changing this amino acid from valine to alanine in the HSV-1, HCMV, and HHV-8 polymerases alters the polymerase activity so that it is less sensitive to drug inhibition. In contrast, changing the equivalent amino acid in the HHV-6 polymerase from alanine to valine alters polymerase activity so that PNU-183792 inhibits this enzyme. The HSV-1, HSV-2, and HCMV drug-resistant mutants were not altered in their susceptibilities to nucleoside analogs; in fact, some of the mutants were hypersensitive to several of the drugs. These results support a mechanism where PNU-183792 inhibits herpesviruses by interacting with a binding determinant on the viral DNA polymerase that is less important for the binding of nucleoside analogs and deoxynucleoside triphosphates.  相似文献   

13.
Mo X  Xu L  Yang Q  Feng H  Peng J  Zhang Y  Yuan W  Wang Y  Li Y  Deng Y  Wan Y  Chen Z  Li F  Wu X 《Current molecular medicine》2011,11(6):481-488
To study the common molecular mechanisms of various viruses infections that might result in congential cardiovascular diseases in perinatal period, changes in mRNA expression levels of ECV304 cells infected by rubella virus (RUBV), human cytomegalovirus (HCMV), and herpes simplex virus type 2 (HSV-2) were analyzed using a microarray system representing 18,716 human genes. 99 genes were found to exhibit differential expression (80 up-regulated and 19 down-regulated). Biological process analysis showed that 33 signaling pathways including 22 genes were relevant significantly to RV, HCMV and HSV-II infections. Of these 33 biological processes, 28 belong to one-gene biological processes and 5 belong to multiple-gene biological processes. Gene annotation indicated that the 5 multiple-gene biological processes including regulation of cell growth, collagen fibril organization, mRNA transport, cell adhesion and regulation of cell shape, and seven down- or up-regulated genes [CRIM1 (cysteine rich transmembrane BMP regulator 1), WISP2 (WNT1 inducible signaling pathway protein 2), COL12A1 (collagen, type XII, alpha 1), COL11A2 (collagen, type XI, alpha 2), CNTN5 (contactin 5), DDR1 (discoidin domain receptor tyrosine kinase 1), VEGF (vascular endothelial growth factor precursor)], are significantly correlated to RUBV, HCMV and HSV-2 infections in ECV304 cells. The results obtained in this study suggested the common molecular mechanisms of viruses infections that might result in congential cardiovascular diseases.  相似文献   

14.
《Research in virology》1990,141(1):17-30
We have investigated the effect of Epstein-Barr virus nuclear antigen 1 (EBNA-1), a nuclear protein encoded by EBV, on herpes simplex virus type 1 (HSV-1) infection either in cells constitutively expressing EBNA-1 or in transient expression assays. Rat-1 cells and rat embryo fibroblasts (REF) immortalized by c-myc or E1A were transfected with a specific EBV DNA fragment coding for EBNA-1. Cloned cell lines which constitutively expressed this antigen were infected with HSV-1. Our results indicate that in EBNA-1-expressing cells, virus growth was higher than in control cells for different virus strains or rodent cell lines. This increase was maximal when cells were infected at low multiplicity, as determined by virus growth, and correlated with the stimulation of viral DNA synthesis. REF + c-myc and Vero cells were contransfected by an EBNA-1 expression vector driven by Moloney murine leukaemia virus LTR and HSV-1 immediate-early (α0) or early thymidine kinase upstream promoter regulatory regions linked to chloramphenicol acetyltransferase (CAT) coding sequences as effectors. In both cell lines, stimulation of CAT expression by EBNA-1 was observed only with the immediate-early promoter. These results suggest that EBNA-1 can transactivate immediate-early HSV-1 expression.  相似文献   

15.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2),varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and-methenyl derivatives (A-5021 and synguanol) and the 6-membered D-and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5′-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- andL-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

16.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2), varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and -methenyl derivatives (A-5021 and synguanol) and the 6-membered D- and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5'-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

17.
Antiserum prepared against herpes simplex virus type 1 (HSV-1)-infected L cells, i.e., lytic antiserum, was shown by an indirect immunofluorescence test to stain 90 percent of HSV-transformed L or HeLa cells. Immunofluorescence in these cells was always most intense in the perinuclear cytoplasmic region. Similar results were obtained with antiserum prepared against HSV-transformed L cells. These data indicate that HSV-transformed cells (both L and HeLa) express HSV-related antigens. Antiserum prepared against HSV-1-transformed L cells, i.e., transformed-cell antiserum, was found to agglutinate purified HSV type 1 virions but failed to neutralize infectivity. This suggests that HSV-1 structural antigens are expressed in HSV-1-transformed L cells. Immunodiffusion studies showed that at least two HSV-related antigens could be demonstrated with antigens from HSV-1-transformed L cells and transformed-cell antiserum. These two antigens were shown to be present in all clonal lines of HSV-1-transformed cells examined, six L cell lines and one HeLa cell line. Therefore, we conclude that transformation of cells by HSV-1, which is known to be associated with acquisition of viral thymidine kinase, must also be associated with the presence of these two antigens. We performed experiments showing that there are species of HSV-related antibody in HSV-transformed cell antiserum that could not be absorbed out with antigens from HSV-infected L cells. Antibodies present in lytic antiserum were completely removed by antigen preparations from cells lytically infected with HSV-1. Also, lytic antiserum failed to block HSV-related staining of transformed L cells in a direct immunofluorescence test. These results are compatible with one of two notions: either (i) certain genes are expressed during transformation that are not expressed during lytic infection, or (ii) these genes are expressed to a much more reduced extent during lytic infection than in transformed cells.  相似文献   

18.
Quantitative assays for the morphological transformation of 3T3 Swiss mouse cells by herpes simplex type 2 virus (HSV-2) were employed to examine the effect on cell transformation of chemical carcinogens and suspected carcinogens. Exposure of the cells to the chemical compound, followed by virus infection, resulted in enhancement of transformation when compared to that observed with chemical or virus alone. Enhancement occurred in tests utilizing either UV light-inactivated HSV-2 (strain 333) or a temperature-sensitive (ts) mutant of HSV-2 [A8(293)]. A series of seven ts-mutants were tested and exhibited varying degrees of transformation. Enhancement of transformation occurred in cells treated with hydrazine (HZ) and 1,2-dimethylhydrazine (SDMH). No enhancement occurred when cells were treated with monomethylhydrazine, 1,1-dimethylhydrazine and the jet fuels JP-5, JP-10, RJ-4 and RJ-5. A strong time dependence after treatment was demonstrated with some enhancement seen at 6 h after chemical treatment but the greatest enhancement appeared when virus infection began after 24 h of chemical exposure.  相似文献   

19.
C L Reed  F Rapp 《Journal of virology》1976,19(3):1028-1033
The interaction of endogenous type C viruses with superinfecting herpes simplex virus type 2 (HSV-2) was investigated in two murine cell lines. Replication of HSV-2 was suboptimal in random-bred Swiss/3T3A cells and, in initial experiments, infection with a low virus-to-cell ratio resulted in carrier cultures with enhanced murine leukemia virus (MuLV) p30 expression. Immunofluorescence tests with Swiss/3T3A cells productively infected with HSV-2 also showed HSV-associated cytoplasmic antigens and enhanced MuLV p30 expression when compared with uninfected controls. Inactivation of HSV-2 with UV light did not abolish this reaction, although the number of cells expressing p30 was reduced. HSV-2 replicated more efficiently in a line of NIH Swiss cells (N c1 A c1 10). These cells are not readily inducible for type C expression by conventional methods; however, untreated and UV-inactivated HSV-2 induced both HSV-2-associated antigens and MuLV p30 in these cells. Although the Birch strain of human cytomegalovirus induced MuLV p30, neither mouse cytomegalovirus nor vesicular stomatitis virus induced MuLV p30 in either cell line.  相似文献   

20.
The immunoglobulin-like receptors that mediate entry of herpes simplex virus type 1 (HSV-1) into human cells were found to mediate the direct cell-to-cell spread of wild-type virus. The receptors here designated Nectin1alpha and -delta and Nectin2alpha were originally designated HIgR, PRR1/HveC, and PRR2alpha/HveB, respectively. We report the following. (i) Wild-type HSV-1 spreads from cell to cell in J cells expressing nectin1alpha or nectin1delta but not in parental J cells that are devoid of entry receptors. A monoclonal antibody to nectin1, which blocks entry, also blocked cell-to-cell spread in nectin1-expressing J cells. Moreover, wild-type virus did not spread from a receptor-positive to a receptor-negative cell. (ii) The antibody to nectin1 blocked transmission of wild-type virus in a number of human cell lines, with varying efficiencies, suggesting that nectin1 is the principal mediator of wild-type virus spread in a variety of human cell lines. (iii) Nectin1 did not mediate cell fusion induced by the syncytial strains HSV-1(MP) and HFEM-syn. (iv) Nectin2alpha could serve as a receptor for spread of a mutant virus carrying the L25P substitution in glycoprotein D, but not of wild-type virus, in agreement with its ability to mediate entry of the mutant but not of wild-type virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号