共查询到20条相似文献,搜索用时 8 毫秒
1.
Background
Dendritic cells (DCs), which can be used as anti-cancer vaccines, are generally obtained in vitro from isolated CD14+ monocytes (MoDCs). This generates high cell numbers and allows instructing DCs to guarantee effective antitumor responses. However, the impact of the monocyte isolation step in the antitumor effectiveness of the generated MoDCs is still unknown. Here, we compared the most used immunomagnetic technologies for monocyte isolation: magnetic activated cell sorting (MACS) from Miltenyi Biotec and EasySep from STEM CELL.Results
MACS technology allowed a higher monocyte yield and purity and, by flow cytometry, monocytes displayed higher size and lower granularity. In the resting state, EasySep_MoDCs showed a higher basal expression of HLA-DR, and no significant response to stimulation by LPS and TNF-α. When stimulated with whole tumor cells lysates, both MoDCs expressed similar levels of maturation and co-stimulatory markers. However, when cultured with autologous T cells, MACS_MoDCs induced significantly higher IFN-γ secretion than EasySep_MoDCs, indicating a stronger induction of Th1 cell response profile. Concordantly, T cells induced by MACS_MoDCs also showed a higher release of cytotoxic granules when in contact with tumor cells.Conclusions
Overall, both the MACS and the EasySep isolation immunomagnetic technologies provide monocytes that differentiate into viable and functional MoDCs. In our experimental settings, resting EasySep_MoDCs showed a higher basal level of maturation but show less responsivity to stimuli. On the other hand, MACS_MoDCs, when stimulated with tumor antigens, showed better ability to stimulate Th1 responses and to induce T cell cytotoxicity against tumor cells. Thus, monocyte isolation techniques crucially affect MoDCs’ function and, therefore, should be carefully selected to obtain the desired functionality.2.
Mieke Gouwy Pieter Ruytinx Egle Radice Federico Claudi Katrien Van Raemdonck Raffaella Bonecchi Massimo Locati Sofie Struyf 《PloS one》2016,11(11)
Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology. 相似文献
3.
本文探讨蒺藜皂苷(STT)对糖基化终产物(AGEs)形成及AGEs诱导的内皮细胞功能障碍的影响。以荧光法检测AGEs体外形成,MTT法检测细胞存活率,试剂盒方法检测细胞及培养上清液中的一氧化氮(NO)水平、诱导型NO合酶(iNOS)活力和超氧阴离子水平(O2-.)。结果显示STT促进AGEs形成,并加剧AGEs诱导的内皮细胞生长抑制,提高细胞NO分泌,增加iNOS活力和O2-.水平。与海可、替告皂苷元作用进行比较,发现STT的细胞损伤作用可能是海可皂苷元引起的。提示STT未能抑制体外AGEs形成,对AGEs引起的内皮细胞功能障碍无明显保护作用,反而可能通过增强iNOS酶活加剧细胞损伤。 相似文献
4.
To generate longer-term changes in behavior, experiences must be producing stable changes in neuronal morphology and synaptic connectivity. Tactile stimulation is a positive early experience that mimics maternal licking and grooming in the rat. Exposing rat pups to this positive experience can be completed easily and cost-effectively by using highly accessible materials such as a household duster. Using a cross-litter design, pups are either stroked or left undisturbed, for 15 min, three times per day throughout the perinatal period. To measure the neuroplastic changes related to this positive early experience, Golgi-Cox staining of brain tissue is utilized. Owing to the fact that Golgi-Cox impregnation stains a discrete number of neurons rather than all of the cells, staining of the rodent brain with Golgi-Cox solution permits the visualization of entire neuronal elements, including the cell body, dendrites, axons, and dendritic spines. The staining procedure is carried out over several days and requires that the researcher pay close attention to detail. However, once staining is completed, the entire brain has been impregnated and can be preserved indefinitely for ongoing analysis. Therefore, Golgi-Cox staining is a valuable resource for studying experience-dependent plasticity. 相似文献
5.
稀土离子对磷脂酰胆碱脂质体及人红细胞膜自由基氧化的影响 总被引:1,自引:0,他引:1
通过荧光和电泳方法研究了稀土离子对磷脂酰胆碱(PC)脂质体及人红细胞膜脂质过氧化的影响.结果表明稀土离子(除钇外)都能够强烈的抑制膜的脂质过氧化,其作用强度随不同的稀土离子可有较大的差别.稀土离子对分离的人红细胞膜的脂质过氧化的抑制作用比对PC脂质体更强.但是,对完整红细胞用稀土离子处理反而会导致膜的脂质过氧化大大加强. 相似文献
6.
Recent studies have highlighted that early enhancement of the glycolytic pathway is a mode of maintaining the pro-inflammatory status of immune cells. Thiamine, a well-known co-activator of pyruvate dehydrogenase complex, a gatekeeping enzyme, shifts energy utilization of glucose from glycolysis to oxidative phosphorylation. Thus, we hypothesized that thiamine may modulate inflammation by alleviating metabolic shifts during immune cell activation. First, using allithiamine, which showed the most potent anti-inflammatory capacity among thiamine derivatives, we confirmed the inhibitory effects of allithiamine on the lipopolysaccharide (LPS)-induced pro-inflammatory cytokine production and maturation process in dendritic cells. We applied the LPS-induced sepsis model to examine whether allithiamine has a protective role in hyper-inflammatory status. We observed that allithiamine attenuated tissue damage and organ dysfunction during endotoxemia, even when the treatment was given after the early cytokine release. We assessed the changes in glucose metabolites during LPS-induced dendritic cell activation and found that allithiamine significantly inhibited glucose-driven citrate accumulation. We then examined the clinical implication of regulating metabolites during sepsis by performing a tail bleeding assay upon allithiamine treatment, which expands its capacity to hamper the coagulation process. Finally, we confirmed that the role of allithiamine in metabolic regulation is critical in exerting anti-inflammatory action by demonstrating its inhibitory effect upon mitochondrial citrate transporter activity. In conclusion, thiamine could be used as an alternative approach for controlling the immune response in patients with sepsis. 相似文献
7.
Jalaluddin Mohammad Ashraf Gulam Rabbani Saheem Ahmad Qambar Hasan Rizwan Hasan Khan Khursheed Alam Inho Choi 《PloS one》2015,10(6)
Advanced glycation end products (AGEs) culminate from the non-enzymatic reaction between a free carbonyl group of a reducing sugar and free amino group of proteins. 3-deoxyglucosone (3-DG) is one of the dicarbonyl species that rapidly forms several protein-AGE complexes that are believed to be involved in the pathogenesis of several diseases, particularly diabetic complications. In this study, the generation of AGEs (Nε-carboxymethyl lysine and pentosidine) by 3-DG in H1 histone protein was characterized by evaluating extent of side chain modification (lysine and arginine) and formation of Amadori products as well as carbonyl contents using several physicochemical techniques. Results strongly suggested that 3-DG is a potent glycating agent that forms various intermediates and AGEs during glycation reactions and affects the secondary structure of the H1 protein. Structural changes and AGE formation may influence the function of H1 histone and compromise chromatin structures in cases of secondary diabetic complications. 相似文献
8.
Before carrying out a clinical trial in humans in which a cell-based therapeutic anti-hepatitis C virus lipopeptide vaccine
candidate is to be evaluated, a limited toxicological study was carried out. Murine bone marrow-derived dendritic cells (DCs)
were loaded with lipopeptides containing HLA A2.1-restricted epitopes recognised by cytotoxic T lymphocytes (CTL) and then
injected into C57BL6 mice by intradermal and intravenous routes. No significant behavioural changes, clinical symptoms or
changes in body weight were observed when compared with a control group of animals receiving no treatment. One week after
the third dose of lipopeptide-pulsed DC, mice were killed and blood samples taken for biochemical and hematological analyses.
The liver, spleen and skin at the injection site were also collected and processed for histological analysis. Mild eosinophilia
was observed at intradermal injection sites of animals receiving untreated as well as lipopeptide-loaded DCs. Despite a slight
decrease in the size of livers of animals receiving lipopeptide-pulsed DCs, there was no evidence of inflammatory infiltrate
or histological change. The only biochemical or hematological abnormality associated with the injection of lipopeptide-pulsed
DC was a slight reduction in potassium levels. The evidence indicates that the lipopeptide vaccines per se are not cytotoxic and do not induce adverse events. On this basis, the TGA has granted clinical trial by exemption (CTX)
approval for the proposed study using HCV lipopeptide-pulsed autologous DC to proceed in humans. This is the first approval
of its kind in Australia setting a precedent for somatic cell immunotherapy of infectious disease. 相似文献
9.
Maarit Neuvonen Moutusi Manna Sini Mokkila Matti Javanainen Tomasz Rog Zheng Liu Robert Bittman Ilpo Vattulainen Elina Ikonen 《PloS one》2014,9(8)
Bacterial cholesterol oxidase is commonly used as an experimental tool to reduce cellular cholesterol content. That the treatment also generates the poorly degradable metabolite 4-cholesten-3-one (cholestenone) has received less attention. Here, we investigated the membrane partitioning of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either cholesterol oxidase treated or part of cellular cholesterol was exchanged for cholestenone with cyclodextrin, cell migration during 22 h was markedly inhibited. Instead, when a similar fraction of cholesterol was removed using cyclodextrin, cells replenished their cholesterol content in 3 h and migrated similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone. 相似文献
10.
11.
Bob Eisenberg 《Biophysical journal》2018,114(2):256-258
12.
Chi-Chen Lin I-Hong Pan Yi-Rong Li Yi-Gen Pan Ming-Kuem Lin Yi-Huang Lu Hsin-Chieh Wu Ching-Liang Chu 《PloS one》2015,10(2)
The biological activity of the edible basidiomycete Antrodia cinnamomea (AC) has been studied extensively. Many effects, such as anti-cancer, anti-inflammatory, and antioxidant activities, have been reported from either crude extracts or compounds isolated from AC. However, research addressing the function of AC in enhancing immunity is rare. The aim of the present study is to investigate the active components and the mechanism involved in the immunostimulatory effect of AC. We found that polysaccharides (PS) in the water extract of AC played a major role in dendritic cell (DC) activation, which is a critical leukocyte in initiating immune responses. We further size purified and identified that the high-molecular weight PS fraction (greater than 100 kDa) exhibited the activating effect. The AC high-molecular weight PSs (AC hmwPSs) promoted pro-inflammatory cytokine production by DCs and the maturation of DCs. In addition, DC-induced antigen-specific T cell activation and Th1 differentiation were increased by AC hmwPSs. In studying the molecular mechanism, we confirmed the activation of the MAPK and NF-κB pathways in DCs after AC hmwPSs treatment. Furthermore, we demonstrated that TLR2 and TLR4 are required for the stimulatory activity of AC hmwPSs on DCs. In a mouse tumor model, we demonstrated that AC hmwPSs enhanced the anti-tumor efficacy of the HER-2/neu DNA vaccine by facilitating specific Th1 responses. Thus, we conclude that hmwPSs are the major components of AC that stimulate DCs via the TLR2/TLR4 and NF-κB/MAPK signaling pathways. The AC hmwPSs have potential to be applied as adjuvants. 相似文献
13.
Joanne K. Gardner Cyril D. S. Mamotte Priya Patel Teong Ling Yeoh Connie Jackaman Delia J. Nelson 《PloS one》2015,10(4)
Dendritic cells (DCs) play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs) were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay), upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+CD8α- DCs, CD4-CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses. 相似文献
14.
Dendritic cells (DC) are multi-functional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets directly ex vivo, without further in vitro manipulation. Multi-color flow cytometric analysis revealed that three DC subsets could be identified. Bovine plasmacytoid DC were phenotypically identified by a unique pattern of cell surface protein expression including CD4, exhibited an extensive endoplasmic reticulum and Golgi apparatus, efficiently internalized and degraded exogenous antigen, and were the only peripheral blood cells specialized in the production of type I IFN following activation with Toll-like receptor (TLR) agonists. Conventional DC were identified by expression of a different pattern of cell surface proteins including CD11c, MHC class II, and CD80, among others, the display of extensive dendritic protrusions on their plasma membrane, expression of very high levels of MHC class II and co-stimulatory molecules, efficient internalization and degradation of exogenous antigen, and ready production of detectable levels of TNF-alpha in response to TLR activation. Our investigations also revealed a third novel DC subset that may be a precursor of conventional DC that were MHC class II+ and CD11c−. These cells exhibited a smooth plasma membrane with a rounded nucleus, produced TNF-alpha in response to TLR-activation (albeit lower than CD11c+ DC), and were the least efficient in internalization/degradation of exogenous antigen. These studies define three bovine blood DC subsets with distinct phenotypic and functional characteristics which can be analyzed during immune responses to pathogens and vaccinations of cattle. 相似文献
15.
16.
Inmoo Rhee Ming-Chao Zhong Boris Reizis Cheolho Cheong André Veillette 《Molecular and cellular biology》2014,34(5):888-899
Dendritic cells (DCs) capture and process antigens in peripheral tissues, migrate to lymphoid tissues, and present the antigens to T cells. PTPN12, also known as PTP-PEST, is an intracellular protein tyrosine phosphatase (PTP) involved in cell-cell and cell-substratum interactions. Herein, we examined the role of PTPN12 in DCs, using a genetically engineered mouse lacking PTPN12 in DCs. Our data indicated that PTPN12 was not necessary for DC differentiation, DC maturation, or cytokine production in response to inflammatory stimuli. However, it was needed for full induction of T cell-dependent immune responses in vivo. This function largely correlated with the need of PTPN12 for DC migration from peripheral sites to secondary lymphoid tissues. Loss of PTPN12 in DCs resulted in hyperphosphorylation of the protein tyrosine kinase Pyk2 and its substrate, the adaptor paxillin. Pharmacological inhibition of Pyk2 or downregulation of Pyk2 expression also compromised DC migration, suggesting that Pyk2 deregulation played a pivotal role in the migration defect caused by PTPN12 deficiency. Together, these findings identified PTPN12 as a key regulator in the ability of DCs to induce antigen-induced T cell responses. This is due primarily to the role of PTPN12 in DC migration from peripheral sites to secondary lymphoid organs through regulation of Pyk2. 相似文献
17.
血红素加氧酶-1、树突状细胞和调节性T细胞在慢性气道炎症中的作用及相互关系 总被引:1,自引:0,他引:1
慢性气道炎症是多种肺部疾病的共同病理生理过程,是由多种炎症细胞、炎症介质及细胞因子相互作用所致的气道病变。血红素加氧酶(HO)-1、树突状细胞(DC)和调节性T细胞(Treg)参与了气道炎症并发挥不同的作用,表现在HO-1具有抗炎抗氧化及保护细胞的作用;DC除可导致或持续气道炎症反应外,也具有负向调控作用,可诱导免疫耐受而抑制炎症的发展;而Treg可发挥免疫调抑功能,以此维持免疫稳态及抑制气道炎症。HO-1、DC和Treg相互作用,影响着气道炎症的发生发展。现对三者在气道炎症中的作用及相互关系进行综述。 相似文献
18.
Glycation is an important protein modification that could potentially affect bioactivity and molecular stability, and glycation of therapeutic proteins such as monoclonal antibodies should be well characterized. Glycated protein could undergo further degradation into advance glycation end (AGE) products. Here, we review the root cause of glycation during the manufacturing, storage and in vivo circulation of therapeutic antibodies, and the current analytical methods used to detect and characterize glycation and AGEs, including boronate affinity chromatography, charge-based methods, liquid chromatography-mass spectrometry and colorimetric assay. The biological effects of therapeutic protein glycation and AGEs, which ranged from no affect to loss of activity, are also discussed. 相似文献
19.
Lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, has been shown to have a strong adjuvant effect towards inhaled antigens contributing to airway inflammation. Isoflavones are anti-inflammatory molecules present in abundant quantities in soybeans. We investigated the effect of isoflavones on human dendritic cell (DC) activation via LPS stimulation and subsequent DC-mediated effector cell function both in vitro and in a mouse model of upper airway inflammation. Human monocyte-derived DCs (MDDC) were matured with LPS (or TNF-α) +/− isoflavones (genistein or daidzein). The surface expression levels of DC activation markers were analyzed by flow cytometry. Mature DCs +/− isoflavones were washed and cultured with freshly-isolated allogenic naïve CD4+ T cells for 5 days or with autologous natural killer (NK) cells for 2 hours. The percentages of proliferating IFN-γ+ CD4+ T cells and cytokine levels in culture supernatants were assessed. NK cell degranulation and DC cytotoxicity were measured by flow cytometry. Isoflavones significantly suppressed the activation-induced expression of DC maturation markers (CD83, CD80, CD86) and MHC class I but not MHC class II molecules in vitro. Isoflavone treatment inhibited the ability of LPS-DCs to induce IFN-γ in CD4+ T cells. NK cell degranulation and the percentage of dead DCs were significantly increased in isoflavone-treated DC-NK co-culture experiments. Dietary isoflavones suppressed the mucosal immune response to intra-nasal sensitization of mice to ovalbumin. Similar results were obtained when isoflavones were co-administered during sensitization. These results demonstrate that soybean isoflavones suppress immune sensitization by suppressing DC-maturation and its subsequent DC-mediated effector cell functions. 相似文献
20.
目的:观察慢性乙型肝炎患者外周血树突状细胞表面共刺激分子B7-H1 的表达及对免疫功能的影响。方法:检测慢性乙型肝炎患者肝功能、HBV-DNA 水平,将患者分为高病毒载量高ALT 组(A 组)、高病毒载量低ALT 组(B 组)、低病毒载量组(C 组)及正常对照组(D 组)。流式细胞术检测各组患者外周血树突状细胞表面HLA-DR、CD80、CD86、CD83、CD1a、B7-H1 表达,酶联免疫吸附试验(ELISA)检测DC 培养上清液和混合淋巴细胞培养上清液中细胞因子IL-12、IL-10 水平。结果:慢性乙肝患者的树突状细胞膜表面分子HLA-DR、CD80、CD86、CD83、CD1a的表达均明显降低(A、B、C组与D组比较分别为42.3± 4.9 %、46.7± 7.0%、52.5± 6.3 %vs 94.5± 3.5 %;34.5± 5.3 %、39.9± 6.4 %、45.6± 5.2 %vs 90.6± 6.5 %;38.2± 8.6 %、36.1± 5.4 %、42.5± 6.8 % vs87.7± 5.1 %;28.3± 6.5 %、25.6± 3.4 %、33.5± 4.3% vs 82.6± 4.8 %;32.3± 5.8 %、29.3± 5.3 %、48.3± 4.9 % vs 68.2± 5.2 % P〈0.05),B7-H1 表达水平明显升高(27.48± 21.4 %、21.83± 20.2 %、15.43± 10.32 %vs 4.23± 2.2%P〈0.05)。B7-H1 表达水平与ALT呈正相关,与IL-12 水平呈负相关。结论:慢性乙型肝炎患者树突状细胞功能低下,其机制可能与树突状细胞高表达B7-H1 有关。B7-H1 高表达抑制了淋巴细胞的功能,导致乙型肝炎病毒持续感染。 相似文献