首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
人神经母细胞瘤细胞SH-SY5Y细胞可以表达神经元特异性的酪氨酸羟化酶、多巴胺-β-羟化酶以及多巴胺转运体等,因此可用于建立帕金森病的体外模型。虽然帕金森综合症发病的确切机制至今尚不清楚,但众多的病理学资料证实该病患者存在中脑黑质多巴胺能神经元的凋亡。自由基、兴奋性  相似文献   

3.
目的:研究沙眼衣原体抑制宿主细胞凋亡活性与MAPK/ERK信号通路的关系。方法:利用化学抑制剂U0126阻断MAPK/ERK信号通路,然后分别采用流式细胞术、Caspase-3活性检测试剂盒和Western Blot实验检测沙眼衣原体感染细胞在凋亡诱导剂Etoposide作用下细胞凋亡率和Caspase-3活性变化,以及PARP是否发生裂解。结果:当MAPK/ERK信号通路被阻断时,在Etoposide的作用下,沙眼衣原体感染细胞凋亡率明显上升,同时Caspase-3被活化和PARP发生裂解。结论:沙眼衣原体抑制宿主细胞凋亡活性与MAPK/ERK信号通路激活有关。  相似文献   

4.
Anticancer effects of dendropanoxide (DP) newly isolated from leaves and stem of Dendropanax morbifera Leveille were firstly investigated in this study. DP inhibited cell proliferation and induced apoptosis in dose- and time-dependent manner in MG-63 human osteosarcoma cells, which was dependent on the release of cytochrome c to the cytosol and the activation of caspases. Moreover, the DP-treated cells exhibited autophagy, as characterized by the punctuate patterns of microtubule-associated protein 1 light chain 3 (LC3) by confocal microscopy and the appearance of autophagic vacuoles by MDC staining. The expression levels of ATG7, Beclin-1 and LC3-II were also increased by DP treatment. Inhibition of autophagy by 3-methyladenine (3-MA) and wortmannin (Wort) significantly enhanced DP-induced apoptosis. DP treatment also caused a time-dependent increase in protein levels of extracellular signal-regulated kinase 1 and 2 (ERK1/2), and inhibition of ERK1/2 phosphorylation with U0126 resulted in a decreased DP-induced autophagy that was accompanied by an increased apoptosis and a decreased cell viability. These results indicate a cytoprotective function of autophagy against DP-induced apoptosis and suggest that the combination of DP treatment with autophagy inhibition may be a promising strategy for human osteosarcoma control. Taken together, this study demonstrated for the first time that DP could induce autophagy through ERK1/2 activation in human osteosarcoma cells and autophagy inhibition enhanced DP-induced apoptosis.  相似文献   

5.
Chen T  Cao L  Dong W  Luo P  Liu W  Qu Y  Fei Z 《Neurochemical research》2012,37(5):983-990
Several previous studies utilizing selective pharmacological antagonists have demonstrated that type 5 metabotropic glutamate receptors (mGluR5) are potential therapeutic targets for the treatment of numerous disorders of the central nervous system, but the role of mGluR5 activation in traumatic brain injury (TBI) is not fully understood. Here in an in vitro TBI model, the mGluR5 agonist (RS)-2-chloro-5- hydroxyphenylglycine (CHPG) and the positive allosteric modulators 3-cyano-N-(1,3- diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) were used to investigate the neuroprotective potency of mGluR5 activation. Data showed that CHPG and CDPPB suppressed the increase of LDH release and caspase-3 activation induced by traumatic neuronal injury in a dose-dependent manner, and the salutary effects were also present when these compounds were added 1 h after injury. Western blot was used to examine the activation of three members of mitogen-activated protein kinases: extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase (p38). CHPG and CDPPB enhanced the activation of ERK after traumatic neuronal injury, and PD98059 and U0126, two selective MEK/ERK inhibitors, partly revised the protective effects. Furthermore, we also investigated the role of protein kinase C (PKC) in CHPG and CDPPB-induced neuroprotection. With the pretreatment of chelerythrine chloride, a PKC inhibitor, the surpressing effects of CHPG and CDPPB on traumatic injury-evoked LDH release and caspase-3 activation were blocked. All of these findings extended the protective role of mGluR5 activation in an in vitro model of TBI and suggested that these protective effects might be mediated by the PKC-dependent activation of MEK/ERK pathway. These results may have important implications for the development of mGluR5 modulators to treat TBI.  相似文献   

6.

Background

Viruses interact with and exploit the host cellular machinery for their multiplication and propagation. The MEK/ERK signaling pathway positively regulates replication of many RNA viruses. However, whether and how this signaling pathway affects hepatitis C virus (HCV) replication and production is not well understood.

Methods and Results

In this study, we took advantage of two well-characterized MEK/ERK inhibitors and MEK/ERK dominant negative mutants and investigated the roles of the MEK/ERK signaling pathway in HCV gene expression and replication. We showed that inhibition of MEK/ERK signaling enhanced HCV gene expression, plus- and minus-strand RNA synthesis, and virus production. In addition, we showed that this enhancement was independent of interferon-α (IFN-α) antiviral activity and did not require prior activation of the MEK/ERK signaling pathway. Furthermore, we showed that only MEK and ERK-2 but not ERK-1 was involved in HCV replication, likely through regulation of HCV RNA translation.

Conclusions

Taken together, these results demonstrate a negative regulatory role of the MEK/ERK signaling pathway in HCV replication and suggest a potential risk in targeting this signaling pathway to treat and prevent neoplastic transformation of HCV-infected liver cells.  相似文献   

7.
Abstract

Human neuroblastoma (NB) tumours represent a major therapeutic challenge due to the lack of drugs effective in controlling cell proliferation. We previously reported that the synthetic retinoid Fenretinide (HPR) inhibits NB cell growth through the induction of programmed cell death. More recently, various NB cell lines have been shown to be partially resistant, in vitro, to HPR used at in vivo achievable concentrations (1-3 μmol/L). To significantly increase the dose, half-life, and stability of this promising anticancer agent we studied a system of conventional or long-circulating liposomes.

In this study, we showed that HPR can be efficiently and stable encapsulated in conventional (CL-HPR) and stabilized liposomes (SL-HPR). Since the leakage of the drug from the liposomes under the experimental conditions used is negligible, it seems that HPR is entering cells via uptake of intact liposomes. Liposome-entrapped HPR completely arrested the growth of NB cells. The effect was dose- and time-dependent. Indeed, SL-HPR at 30 (imol/ L induced, in the cell lines partially resistant to free HPR, a very rapid (24-48 h) fall in thymidine uptake (> 95 %), whereas at 3 μmol/L it exhibited cytostatic effects.

Time lapse photomicroscopy showed that NB cells treated with SL-HPR underwent a death process highly reminiscent of apoptosis, with progressive condensation of the cytoplasm around the nucleus and intense cell shrinkage. The cells then rounded up and detached from the plate. Furthermore, propidium iodide staining of the DNA showed that a high proportion of cells treated with SL-HPR displayed a small and brightly staining nucleus; chromatin appeared aggregated into dense masses at the nuclear periphery, a typical feature of apoptotic cells. These findings were confirmed by electronic microscopy, DNA fragmentation assay, DNA content analysis and by a quantitative assay for evaluating programmed cell death based upon the labeling of DNA breaks with tritiated thymidine. HPLC analysis showed that HPR did not become metabolized after uptake into NB cells cultured in vitro, thus indicating that SL-HPR-induced apoptosis results from the action of HPR, itself, and not from its metabolite(s). In conclusion, our study demonstrates that Fenretinide entrapped in conventional or sterically stabilized liposomes dramatically suppresses NB cell growth by inducing programmed cell death.  相似文献   

8.
为了探讨ERK1/2信号通路在他莫昔芬(tamoxifen, TAM)所致胶质瘤细胞凋亡中的作用,以C6和U87MG胶质瘤细胞为研究对象,经TAM处理后,采用MTT法检测细胞的存活率;倒置显微镜和DAPI染色观察细胞的形态;流式细胞术检测细胞凋亡; Western-blot法检测细胞内ERK1/2磷酸化水平。最后应用ERK1/2抑制剂(PD98059)与TAM共同作用,观察其对胶质瘤细胞内ERK1/2磷酸化水平和细胞凋亡的影响。实验结果显示:TAM可呈浓度和时间依赖性地抑制胶质瘤细胞生长; TAM处理组的细胞凋亡明显增加且呈浓度依赖性;TAM能增加细胞内ERK1/2磷酸化水平;以PD98059阻断ERK1/2的激活,能增强TAM诱导细胞凋亡的作用。实验结果表明TAM能够抑制胶质瘤细胞生长和促进其细胞凋亡, ERK1/2信号通路的激活参与调控TAM所致胶质瘤细胞凋亡。  相似文献   

9.
The PI3K/Akt/mTOR signal transduction pathway plays a central role in multiple myeloma (MM) disease progression and development of therapeutic resistance. mTORC1 inhibitors have shown limited efficacy in the clinic, largely attributed to the reactivation of Akt due to rapamycin induced mTORC2 activity. Here, we present promising anti-myeloma activity of MK-2206, a novel allosteric pan-Akt inhibitor, in MM cell lines and patient cells. MK-2206 was able to induce cytotoxicity and inhibit proliferation in all MM cell lines tested, albeit with significant heterogeneity that was highly dependent on basal pAkt levels. MK-2206 was able to inhibit proliferation of MM cells even when cultured with marrow stromal cells or tumor promoting cytokines. The induction of cytotoxicity was due to apoptosis, which at least partially was mediated by caspases. MK-2206 inhibited pAkt and its down-stream targets and up-regulated pErk in MM cells. Using MK-2206 in combination with rapamycin (mTORC1 inhibitor), LY294002 (PI3K inhibitor), or U0126 (MEK1/2 inhibitor), we show that Erk- mediated downstream activation of PI3K/Akt pathway results in resistance to Akt inhibition. These provide the basis for clinical evaluation of MK-2206 alone or in combination in MM and potential use of baseline pAkt and pErk as biomarkers for patient selection.  相似文献   

10.
Cerebral ischemia increases neural progenitor cell proliferation and neurogenesis. However, the precise molecular mechanism is poorly understood. The present study was undertaken to determine roles of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt and their signaling pathways in neural progenitor cells exposed to hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion. Neural progenitor cells were isolated from postnatal mouse brain. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of MEK, but not by LY294002, a specific inhibitor of PI3K, whereas the Akt activation was blocked by LY294002, but not by U0126. Reoxygenation following 4-h hypoxia stimulated cell proliferation, which was dependent on ERK and Akt activation. Inhibitors of growth factor receptor (AG1478) and Src (PP2) and the antioxidant N-acetylcysteine did not affect activation of ERK and Akt, while the Ras and Raf inhibitors inhibited activation of ERK, but not Akt. PKC inhibitors inhibited both ERK and Akt activation. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt survival signaling pathways through a PKC-dependent mechanism. These pathways may be responsible for the repair process during ischemia/reperfusion.  相似文献   

11.
摘要 目的:分析富含半胱氨酸的酸性分泌蛋白类似蛋白1(SPARCL1)对非小细胞肺癌(NSCLC)细胞增殖、凋亡、侵袭的影响,并探讨分裂原活化抑制剂(MEK)/细胞外调节蛋白激酶(ERK)通路在其中发挥的作用。方法:收集2019年9月~2021年6月期间本院接受手术治疗的84例NSCLC患者癌组织与相应癌旁组织,实时定量逆转录聚合酶链反应(qRT-PCR)法测定并比较各组织以及正常肺上皮细胞HBEpiC、NSCLC细胞A549、HCC827、H1299、H292中SPARCL1 信使RNA(mRNA)表达水平,选取A549、HCC827培养并分组,分为对照组、NC siRNA组、SPARCL1 siRNA组、U0126组(MEK/ERK特异性抑制剂)、SPARCL1 siRNA加U0126组,细胞计数法(CCK8)以及平板克隆法测定A549、HCC827细胞增殖,流式细胞仪测定A549、HCC827细胞凋亡,Transwell小室法测定A549、HCC827细胞侵袭能力,蛋白质印迹法(western blot)检测SPARCL1、p-MEK、MEK、p-ERK1/2、ERK1/2蛋白表达。结果:SPARCL1在NSCLC组织中mRNA表达水平低于癌旁组织(P<0.05);与HBEpiC细胞相比,NSCLC细胞A549、HCC827、H1299、H292细胞中SPARCL1 mRNA表达水平降低(P<0.05);与对照组相比,SPARCL1 siRNA组A549、HCC827细胞SPARCL1 mRNA表达水平与蛋白表达、凋亡率降低(P<0.05),OD450、克隆形成数、侵袭细胞数、p-MEK/MEK、p-ERK1/2/ERK1/2蛋白表达升高(P<0.05),U0126组A549、HCC827细胞SPARCL1 mRNA表达水平与蛋白表达、凋亡率升高(P<0.05),OD450、克隆形成数、侵袭细胞数、p-MEK/MEK、p-ERK1/2/ERK1/2蛋白表达降低(P<0.05);与SPARCL1 siRNA组相比,SPARCL1 siRNA加U0126组A549、HCC827细胞SPARCL1 mRNA表达水平与蛋白表达、凋亡率升高(P<0.05),OD450、克隆形成数、侵袭细胞数、p-MEK/MEK、p-ERK1/2/ERK1/2蛋白表达降低(P<0.05)。结论:SPARCL1可能通过调控MEK/ERK通路影响NSCLC A549、HCC827细胞增殖、侵袭与凋亡。  相似文献   

12.
Du K  Zheng Q  Zhou M  Zhu L  Ai B  Zhou L 《Current microbiology》2011,63(4):341-346
Chlamydiae are obligate intracellular bacteria that cause variety of human diseases. Chlamydia-infected host cells are profoundly resistant to apoptosis induced by many different apoptotic stimuli. The inhibition of apoptosis is thought to be an important immune escape mechanism allowing chlamydiae to productively complete their obligate intracellular growth cycle. Infection with chlamydiae can activate the Raf/MEK/ERK pathway. Because the survival pathway can modulate apoptosis, we used MEK-specific inhibitor U0126 and Raf-specific inhibitor GW5074 to examine the role of Raf/MEK/ERK pathway in chlamydial antiapoptotic activity. Apoptosis was induced by staurosporine (STS) and detected by morphology, DNA fragmentation, caspase-3 activation, and poly (ADP-ribose) polymerase cleavage. Inhibition of the pathway sensitized Chlamydia-infected cells to STS-mediated cell apoptosis. The data indicate that chlamydial antiapoptotic activity involves activation of the Raf/MEK/ERK survival pathway.  相似文献   

13.
本文通过体外培养肝癌HepS细胞,以不同浓度原花色素处理12—72h后,MTT法测定细胞生长抑制作用,采用DNA片断分析、DNA琼脂糖凝胶电泳、荧光染色以及流式细胞技术等方法来探讨原花色素体外抑制肝癌HepS细胞及诱导其凋亡的作用。实验结果显示原花色素能抑制HepS细胞的生长,并且呈现出明显的时效和量效关系,DNA电泳出现典型的凋亡DNA梯形带,在荧光显微镜下,凋亡细胞呈亮绿色,H和AnnexinV.FIFC双染后,经流式细胞仪检测、分析显示凋亡细胞明显增多。因此原花色素能抑制肝癌HepS细胞株的生长,可能与诱导其细胞凋亡有关。  相似文献   

14.
Metabotropic (slow) and ionotropic (fast) neurotransmission are integrated by intracellular signal transduction mechanisms involving protein phosphorylation/dephosphorylation to achieve experience-dependent alterations in brain circuitry. ERK is an important effector of both slow and fast forms of neurotransmission and has been implicated in normal brain function and CNS diseases. Here we characterize phosphorylation of the ERK-activating protein kinase MEK1 by Cdk5, ERK, and Cdk1 in vitro in intact mouse brain tissue and in the context of an animal behavioral paradigm of stress. Cdk5 only phosphorylates Thr-292, whereas ERK and Cdk1 phosphorylate both Thr-292 and Thr-286 MEK1. These sites interact in a kinase-specific manner and inhibit the ability of MEK1 to activate ERK. Thr-292 and Thr-286 MEK1 are phosphorylated in most mouse brain regions to stoichiometries of ∼5% or less. Phosphorylation of Thr-292 MEK1 is regulated by cAMP-dependent signaling in mouse striatum in a manner consistent with negative feedback inhibition in response to ERK activation. Protein phosphatase 1 and 2A contribute to the maintenance of the basal phosphorylation state of both Thr-292 and Thr-286 MEK1 and that of ERK. Activation of the NMDA class of ionotropic glutamate receptors reduces inhibitory MEK1 phosphorylation, whereas forced swim, a paradigm of acute stress, attenuates Thr-292 MEK1 phosphorylation. Together, the data indicate that these inhibitory MEK1 sites phosphorylated by Cdk5 and ERK1 serve as mechanistic points of convergence for the regulation of ERK signaling by both slow and fast neurotransmission.  相似文献   

15.
The Raf/MEK/extraceUular signal-regulated kinase (ERK) pathway has a pivotal role in facilitating cell proliferation, and its deregulated activation is a central signature of many epithelial cancers. However paradoxically, sustained activity of Raf/MEK/ERK can also result in growth arrest in many different cell types. This anti-proliferative Raf/MEK/ERK signaling also has physiological significance, as exemplified by its potential as a tumor suppressive mechanism. Therefore, significant questions include in which cell types and by what mechanisms this pathway can mediate such an opposing context of signaling. Particularly, our understating of the role of ERK1 and ERK2, the focal points of pathway signaling, in growth arrest signaling is still limited. This review discusses these aspects of Raf/MEK/ ERK-mediated growth arrest signaling.  相似文献   

16.
17.
Diffuse intrinsic pontine glioma (DIPG) is a devastating disease with an extremely poor prognosis. Recent studies have shown that platelet-derived growth factor receptor (PDGFR) and its downstream effector pathway, PI3K/AKT/mTOR, are frequently amplified in DIPG, and potential therapies targeting this pathway have emerged. However, the addition of targeted single agents has not been found to improve clinical outcomes in DIPG, and targeting this pathway alone has produced insufficient clinical responses in multiple malignancies investigated, including lung, endometrial, and bladder cancers. Acquired resistance also seems inevitable. Activation of the Ras/Raf/MEK/ERK pathway, which shares many nodes of cross talk with the PI3K/AKT pathway, has been implicated in the development of resistance. In the present study, perifosine, a PI3K/AKT pathway inhibitor, and trametinib, a MEK inhibitor, were combined, and their therapeutic efficacy on DIPG cells was assessed. Growth delay assays were performed with each drug individually or in combination. Here, we show that dual inhibition of PI3K/AKT and MEK/ERK pathways synergistically reduced cell viability. We also reveal that trametinib induced AKT phosphorylation in DIPG cells that could not be effectively attenuated by the addition of perifosine, likely due to the activation of other compensatory mechanisms. The synergistic reduction in cell viability was through the pronounced induction of apoptosis, with some effect from cell cycle arrest. We conclude that the concurrent inhibition of the PI3K/AKT and MEK/ERK pathways may be a potential therapeutic strategy for DIPG.  相似文献   

18.
19.
Bone morphogenetic proteins (BMPs) have been implicated in the generation and postnatal differentiation of cerebellar granule cells (CGCs). Here, we examined the eventual role of BMPs on the survival of these neurons. Lack of depolarization causes CGC death by apoptosis in vivo, a phenomenon that is mimicked in vitro by deprivation of high potassium in cultured CGCs. We have found that BMP-6, but not BMP-7, is able to block low potassium–mediated apoptosis in CGCs. The neuroprotective effect of BMP-6 is not accompanied by an increase of Smad translocation to the nucleus, suggesting that the canonical pathway is not involved. By contrast, activation of the MEK/ERK/CREB pathway by BMP-6 is necessary for its neuroprotective effect, which involves inhibition of caspase activity and an increase in Bcl-2 protein levels. Other pathways involved in the regulation of CGC survival, such as the c-Jun terminal kinase and the phosphatidylinositol 3-kinase (PI3K)-Akt/PKB, were not affected by BMP-6. Moreover, failure of BMP-7 to activate the MEK/ERK/CREB pathway could explain its inability to protect CGCs from low potassium–mediated apoptosis. Thus, this study demonstrates that BMP-6 acting through the noncanonical MEK/ERK/CREB pathway plays a crucial role on CGC survival.  相似文献   

20.
目的:探究Rab11a在胰腺癌中的表达模式及其对肿瘤生长和转移的影响.方法:通过免疫组织化学法、RT-PCR和Western blot检测60例胰腺癌患者的癌组织和癌旁组织中Rab11a的表达.通过对人胰腺癌细胞系PANC1转染靶向Rab11a的小干扰RNA或过表达Rab11a的pcDNA3.1质粒考察Rab11a对细...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号