首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nasal epithelial barrier dysfunction is associated with the pathogenesis of nasal allergy; the causative factors are to be further elucidated. Ubiquitin E3 ligase TNFIAP3 (TNFIAP3, in short) plays a role in the maintenance of the homeostasis in the body. This study aims to elucidate the role of TNFIAP3 in the degradation of endocytic substances in nasal epithelial cells. The nasal epithelial cell line, RPMI 2650 cells (RPC), was cultured into monolayers in transwells. The endocytosis of staphylococcal enterotoxin B (SEB) by RPC monolayers was assessed by enzyme-linked immunoassay. The endocytosis of SEB-triggered endosome/lysosome fusion was observed by immunocytochemistry. The results showed that RPC monolayers expressed TNFIAP3 upon the endocytosis of SEB. Deficiency of TNFIAP3 resulted in abundant SEBs being transported to the basal chambers of transwells via the intracellular pathway. In the TNFIAP3-sufficient RPC, SEB-carrying endosomes fused with lysosomes were observed. The TNFIAP3-deficient RPC showed few SEB-carrying endosomes fused with lysosomes. In summary, TNFIAP3 plays an important role in tethering endosomes to lysosomes in RPC.  相似文献   

2.

Background and Aims

The enterocytes have the potential to absorb noxious substances, such as microbial products, from the gut lumen. How the enterocytes process the substances to harmless materials is not fully understood. This study aims to elucidate the role of ubiquitin E3 ligase TNFAIP3 (TNFAIP3) in facilitating the degradation of endocytic microbial products in enterocytes.

Methods

Human intestinal epithelial cell line, HT-29 cells, was cultured to monolayers using as an in vitro model to observe the endocytosis and degradation of microbial products, Staphylococcal enterotoxin B (SEB) in epithelial cells. The RNA interference was employed to knock down the TNFAIP3 gene in HT-29 cells to observe the role of TNFAIP3 in the degradation of endocytic SEB. The role of TNFAIP3 in facilitating the endosome/lysosome fusion was observed by immunocytochemistry.

Results

Upon the absorption of SEB, the expression of TNFAIP3 was increased in HT-29 cells. Silencing the TNFAIP3 gene in HT-29 cells resulted in a large quantity of SEB to be transported across the HT-29 monolayers to the transwell basal chambers; the transportation was via the intracellular pathway. TNFAIP3 was required in the fusion of SEB-carrying endosomes and lysosomes.

Conclusions

TNFAIP3 plays a critical role in the degradation of endocytic SEB in enterocytes.  相似文献   

3.

Background

Epithelial barrier dysfunction is associated with the pathogenesis of a number of immune inflammations; the etiology is not fully understood. The fusion of endosome/lysosome is a critical process in the degradation of endocytic antigens in epithelial cells. Recent reports indicate that myosin VI (myo6) is involved in the activities of endosomes. The present study aims to investigate the role of myo6 in epithelial barrier dysfunction.

Results

The endosome accumulation was observed in myo6-deficient Rmcs. More than 80% endosomes were fused with lysosomes in naïve Rmcs while less than 30% endosomes were fused with lysosomes in the myo6-deficient Rmcs. The myo6-deficient Rmc monolayers showed high permeability to a macromolecular antigen, ovalbumin, the latter still conserved the antigenicity, which induced strong T cell activation.

Conclusions

We conclude that myo6 plays a critical role in the fusion of endosome/lysosome in Rmc epithelial cells. Deficiency of myo6 compromises the epithelial barrier function.  相似文献   

4.
5.
Molecules travel through the yeast endocytic pathway from the cell surface to the lysosome-like vacuole by passing through two sequential intermediates. Immunofluorescent detection of an endocytosed pheromone receptor was used to morphologically identify these intermediates, the early and late endosomes. The early endosome is a peripheral organelle that is heterogeneous in appearance, whereas the late endosome is a large perivacuolar compartment that corresponds to the prevacuolar compartment previously shown to be an endocytic intermediate. We demonstrate that inhibiting transport through the early secretory pathway in sec mutants quickly impedes transport from the early endosome. Treatment of sensitive cells with brefeldin A also blocks transport from this compartment. We provide evidence that Sec18p/N-ethylmaleimide-sensitive fusion protein, a protein required for membrane fusion, is directly required in vivo for forward transport early in the endocytic pathway. Inhibiting protein synthesis does not affect transport from the early endosome but causes endocytosed proteins to accumulate in the late endosome. As newly synthesized proteins and the late steps of secretion are not required for early to late endosome transport, but endoplasmic reticulum through Golgi traffic is, we propose that efficient forward transport in the early endocytic pathway requires delivery of lipid from secretory organelles to endosomes.  相似文献   

6.
The endosomal system functions as a network of protein and lipid sorting stations that receives molecules from endocytic and secretory pathways and directs them to the lysosome for degradation, or exports them from the endosome via retrograde trafficking or plasma membrane recycling pathways. Retrograde trafficking pathways describe endosome‐to‐Golgi transport while plasma membrane recycling pathways describe trafficking routes that return endocytosed molecules to the plasma membrane. These pathways are crucial for lysosome biogenesis, nutrient acquisition and homeostasis and for the physiological functions of many types of specialized cells. Retrograde and recycling sorting machineries of eukaryotic cells were identified chiefly through genetic screens using the budding yeast Saccharomyces cerevisiae system and discovered to be highly conserved in structures and functions. In this review, we discuss advances regarding retrograde trafficking and recycling pathways, including new discoveries that challenge existing ideas about the organization of the endosomal system, as well as how these pathways intersect with cellular homeostasis pathways.  相似文献   

7.
Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome-lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome-lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome-lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome-lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages.  相似文献   

8.
Lysosomes are the main degradative compartments of eukaryotic cells. The CORVET and HOPS tethering complexes are well known for their role in membrane fusion in the yeast endocytic pathway. Yeast Vps33p is part of both complexes, and has two mammalian homologues: Vps33A and Vps33B. Vps33B is required for recycling of apical proteins in polarized cells and a causative gene for ARC syndrome. Here, we investigate whether Vps33B is also required in the degradative pathway. By fluorescence and electron microscopy we show that Vps33B depletion in HeLa cells leads to significantly increased numbers of late endosomes that together with lysosomes accumulate in the perinuclear region. Degradation of endocytosed cargo is impaired in these cells. By electron microscopy we show that endocytosed BSA‐gold reaches late endosomes, but is decreased in lysosomes. The increase in late endosome numbers and the lack of internalized cargo in lysosomes are indicative for a defect in late endosomal–lysosomal fusion events, which explains the observed decrease in cargo degradation. A corresponding phenotype was found after Vps33A knock down, which in addition also resulted in decreased lysosome numbers. We conclude that Vps33B, in addition to its role in endosomal recycling, is required for late endosomal–lysosomal fusion events.   相似文献   

9.
The neonatal Fc receptor for IgG (FcRn) transfers maternal IgG to the offspring and protects IgG from degradation. The FcRn resides in an acidic intracellular compartment, allowing it to bind IgG. In this study, we found the association of FcRn and invariant chain (Ii). The interaction was initiated within the endoplasmic reticulum by Ii binding to either the FcRn H chain alone or FcRn H chain-beta(2)-microglobulin complex and appeared to be maintained throughout the endocytic pathway. The CLIP in Ii was not required for FcRn-Ii association. The interaction was also detected in IFN-gamma-treated THP-1, epithelial and endothelial cells, and immature mouse DCs. A truncated FcRn without the cytoplasmic tail was unable to traffic to early endosomes; however, its location in early endosomes was restored by Ii expression. FcRn was also detected in the late endosome/lysosome only in the presence of Ii or on exposure to IFN-gamma. In immature human or mouse DCs, FcRn was barely detected in the late endosome/lysosome in the absence of Ii. Furthermore, the cytoplasmic tail of Ii conferred tailless FcRn to route to both the early endosome and late endosome/lysosome in a hybrid molecule. Because the FcRn is expressed in macrophages and DCs or epithelial and endothelial cells where Ii is induced under inflammation and infection, these results reveal the complexity of FcRn trafficking in which Ii is capable of expanding the boundary of FcRn trafficking. Taken together, the intracellular trafficking of FcRn is regulated by its intrinsic sorting information and/or an interaction with Ii chain.  相似文献   

10.
The small rab-GTPase RAB-7 acts in endosome and endosome to lysosome traffic. We identified SAND-1 as a protein required for RAB-7 function based on similarities between SAND-1 and RAB-7 RNAi phenotypes. Although the initial uptake of yolk protein in oocytes, or of soluble secreted (ss) GFP in coelomocytes, appeared normal, further transport along the endocytic traffic route was delayed in the absence of SAND-1 function, and yolk proteins failed to reach yolk granules efficiently. Moreover, in coelomocytes, ssGFP and BSA-Texas-Red were endocytosed but not transported to lysosomes. We show that SAND-1 is essential for RAB-7 function at the transition from early to late endosomes, but not for RAB-7 function at lysosomes.  相似文献   

11.
spinster (spin) is a late endosome/lysosome membrane protein with the amino acid sequence of a lysosomal sugar carrier and expressed in the glial cells. Spin is required for autophagy and lysosome reformation by releasing lysosomal degradation products of autolysosome into the cytosol in Drosophila larvae and adults. However, such kind of function has not been investigated in embryos yet. In this study, for the first time, we examined the effects of spin mutation on the endocytic pathway and autophagy during embryogenesis. Loss-of-function spin mutation led to the abnormal process of early endosome/recycling endosome and the accumulation of enlarged autophagosome/autolysosome. These abnormal endocytic pathway and autophagy subsequently caused the malformation of head at embryonic stages. These results show that Spin is involved in the endocytic pathway and autophagy during embryogenesis as well as larval and adult stages.  相似文献   

12.
Niemann-Pick type C1 (NPC1) is a late endosomal/lysosomal transmembrane protein involved in the cellular transport of glycosphingolipids and cholesterol that is mutated in a majority of patients with Niemann-Pick C neurodegenerative disease. We found that NPC1-deficient mice lacked Valpha14-Jalpha18 NKT cells, a major population of CD1d-restricted T cells that is conserved in humans. NPC1-deficient mice also exhibited marked defects in the presentation of Sphingomonas cell wall Ags to NKT cells and in bacterial clearance in vivo. A synthetic fluorescent alpha-glycosylceramide analog of the Sphingomonas Ag trafficked to the lysosome of wild-type cells but accumulated in the late endosome of NPC1-deficient cells. These findings reveal a blockade of lipid trafficking between endosome and lysosome as a consequence of NPC1 deficiency and suggest a common mechanism for the defects in lipid presentation and development of Valpha14-Jalpha18 NKT cells.  相似文献   

13.
ESCRT (endosomal sorting complex required for transport) proteins were originally identified for their role in delivering endocytosed proteins to the intraluminal vesicles of late-endosomal structures termed multivesicular bodies. Multivesicular bodies then fuse with lysosomes, leading to degradation of the internalized proteins. Four ESCRT complexes interact to concentrate cargo on the endosomal membrane, induce membrane curvature to form an intraluminal bud and finally pinch off the bud through a membrane-scission event to produce the intraluminal vesicle. Recent work suggests that ESCRT proteins are also required downstream of these events to enable fusion of multivesicular bodies with lysosomes. Autophagy is a related pathway required for the degradation of organelles, long-lived proteins and protein aggregates which also converges on lysosomes. The proteins or organelle to be degraded are encapsulated by an autophagosome that fuses either directly with a lysosome or with an endosome to form an amphisome, which then fuses with a lysosome. A common machinery is beginning to emerge that regulates fusion events in the multivesicular body and autophagy pathways, and we focus in the present paper on the role of ESCRT proteins. These fusion events have been implicated in diseases including frontotemporal dementia, Alzheimer's disease, lysosomal storage disorders, myopathies and bacterial pathogen invasion, and therefore further examination of the mechanisms involved may lead to new insight into disease pathogenesis and treatments.  相似文献   

14.
Delivery of endocytosed macromolecules to mammalian cell lysosomes occurs by direct fusion of late endosomes with lysosomes, resulting in the formation of hybrid organelles from which lysosomes are reformed. The molecular mechanisms of this fusion are analogous to those of homotypic vacuole fusion in Saccharomyces cerevisiae. We report herein the major roles of the mammalian homolog of yeast Vps18p (mVps18p), a member of the homotypic fusion and vacuole protein sorting complex. When overexpressed, mVps18p caused the clustering of late endosomes/lysosomes and the recruitment of other mammalian homologs of the homotypic fusion and vacuole protein sorting complex, plus Rab7-interacting lysosomal protein. The clusters were surrounded by components of the actin cytoskeleton, including actin, ezrin, and specific unconventional myosins. Overexpression of mVps18p also overcame the effect of wortmannin treatment, which inhibits membrane traffic out of late endocytic organelles and causes their swelling. Reduction of mVps18p by RNA interference caused lysosomes to disperse away from their juxtanuclear location. Thus, mVps18p plays a critical role in endosome/lysosome tethering, fusion, intracellular localization and in the reformation of lysosomes from hybrid organelles.  相似文献   

15.
16.
MLN64 is a late endosomal cholesterol-binding membrane protein of an unknown function. Here, we show that MLN64 depletion results in the dispersion of late endocytic organelles to the cell periphery similarly as upon pharmacological actin disruption. The dispersed organelles in MLN64 knockdown cells exhibited decreased association with actin and the Arp2/3 complex subunit p34-Arc. MLN64 depletion was accompanied by impaired fusion of late endocytic organelles and delayed cargo degradation. MLN64 overexpression increased the number of actin and p34-Arc-positive patches on late endosomes, enhanced the fusion of late endocytic organelles in an actin-dependent manner, and stimulated the deposition of sterol in late endosomes harboring the protein. Overexpression of wild-type MLN64 was capable of rescuing the endosome dispersion in MLN64-depleted cells, whereas mutants of MLN64 defective in cholesterol binding were not, suggesting a functional connection between MLN64-mediated sterol transfer and actin-dependent late endosome dynamics. We propose that local sterol enrichment by MLN64 in the late endosomal membranes facilitates their association with actin, thereby governing actin-dependent fusion and degradative activity of late endocytic organelles.  相似文献   

17.
Using cationic liposomes to mediate gene delivery by transfection has the advantages of improved safety and simplicity of use over viral gene therapy. Understanding the mechanism by which cationic liposome:DNA complexes are internalized and delivered to the nucleus should help identify which transport steps might be manipulated in order to improve transfection efficiencies. We therefore examined the endocytosis and trafficking of two cationic liposomes, DMRIE-C and Lipofectamine LTX, in CHO cells. We found that DMRIE-C-transfected DNA is internalized via caveolae, while LTX-transfected DNA is internalized by clathrin-mediated endocytosis, with both pathways converging at the late endosome or lysosome. Inhibition of microtubule-dependent transport with nocodazole revealed that DMRIE-C:DNA complexes cannot enter the cytosol directly from caveosomes. Lysosomal degradation of transfected DNA has been proposed to be a major reason for poor transfection efficiency. However, in our system dominant negatives of both Rab7 and its effector RILP inhibited late endosome to lysosome transport of DNA complexes and LDL, but did not affect DNA delivery to the nucleus. This suggests that DNA is able to escape from late endosomes without traversing lysosomes and that caveosome to late endosome transport does not require Rab7 function. Lysosomal inhibition with chloroquine likewise had no effect on transfection product titers. These data suggest that DMRIE-C and LTX transfection complexes are endocytosed by separate pathways that converge at the late endosome or lysosome, but that blocking lysosomal traffic does not improve transfection product yields, identifying late endosome/lysosome to nuclear delivery as a step for future study.  相似文献   

18.
Microbial products play a role in the pathogenesis of allergic diseases; ubiquitin E3 ligase A20 (A20) is an important molecule in regulating inflammation in the body. The present study aims to elucidate the role of A20 in processing the absorbed microbial products in nasal epithelial cells. Human nasal mucosal specimens were collected from patients with or without chronic rhinitis and analyzed by immunohistochemistry. Human nasal epithelial cell line, RPMI2650 cell, was employed to assess the role of A20 in processing the absorbed staphylococcal enterotoxin B (SEB). The RPMI2650 cells absorbed SEB in the culture. The increase in A20 was observed in RPMI2650 cells in parallel to the absorption of SEB. A20 is a critical molecule in the degradation of SEB in the nasal epithelial cells by promoting the tethering of endosomes and lysosomes. A20 plays a critical role in processing of the absorbed SEB in nasal epithelial cells.  相似文献   

19.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play key roles in membrane fusion, but their sorting to specific membranes is poorly understood. Moreover, individual SNARE proteins can function in multiple membrane fusion events dependent upon their trafficking itinerary. Synaptosome-associated protein of 25 kDa (SNAP25) is a plasma membrane Q (containing glutamate)-SNARE essential for Ca2+-dependent secretory vesicle-plasma membrane fusion in neuroendocrine cells. However, a substantial intracellular pool of SNAP25 is maintained by endocytosis. To assess the role of endosomal SNAP25, we expressed botulinum neurotoxin E (BoNT E) light chain in PC12 cells, which specifically cleaves SNAP25. BoNT E expression altered the intracellular distribution of SNAP25, shifting it from a perinuclear recycling endosome to sorting endosomes, which indicates that SNAP25 is required for its own endocytic trafficking. The trafficking of syntaxin 13 and endocytosed cargo was similarly disrupted by BoNT E expression as was an endosomal SNARE complex comprised of SNAP25/syntaxin 13/vesicle-associated membrane protein 2. The small-interfering RNA-mediated down-regulation of SNAP25 exerted effects similar to those of BoNT E expression. Our results indicate that SNAP25 has a second function as an endosomal Q-SNARE in trafficking from the sorting endosome to the recycling endosome and that BoNT E has effects linked to disruption of the endosome recycling pathway.  相似文献   

20.
M C Kielian  M Marsh    A Helenius 《The EMBO journal》1986,5(12):3103-3109
The fusogenic properties of Semliki Forest virus (SFV) and its mutants were used to follow the kinetics of acidification during the endocytic uptake of virus by BHK-21 cells. It has previously been shown that the low pH of endocytic vacuoles triggers a conformational change in the SFV spike glycoprotein, activating membrane fusion and initiating virus infection. This conformational alteration was here shown to occur in endosomes and to follow the same time course as the intracellular fusion reaction, demonstrating that fusion occurs rapidly after virus exposure to endosome acidity. The kinetics of endosome acidification were monitored using wild type (wt) SFV and fus-1, an SFV mutant with a lower fusion pH threshold. The results presented here demonstrated that wt and mutant virus were internalized with a t1/2 of 10 min, and that endosomes were acidified to the wt threshold of pH 6.2 with a t1/2 of 15 min. In contrast, endosome pH reached the fus-1 threshold of 5.3 with a much longer t1/2 of 45 min. The subsequent degradation of SFV in lysosomes had a t1/2 of 90 min. It was found that after the initial uptake of virus from the plasma membrane, its transit through the endocytic pathway, exposure to endosome acidity and eventual delivery to lysosomes were markedly asynchronous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号