首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme rhodanese in the form without transferred sulfur, (E), was inactivated by carboxymethylation with iodoacetic acid (E.IAA), and its conformation was compared with that of E inactivated by oxidative processes (Eox). Formation of E.IAA led to the exposure of binding sites for the fluorescent apolar probe 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid (BisANS). The dissociation constant for BisANS decreased as the concentration of E.IAA decreased and ranged from approximately 200 microM at 1 mg/ml protein to approximately 2 microM at protein concentrations below 0.1 mg/ml. Centrifugation confirmed that E.IAA, but not the underivatized enzyme, could associate. E.IAA was proteolyzable by chymotrypsin or endoproteinase Glu C (V8), while rhodanese containing bound sulfur, ES, was totally refractory, and E was only clipped to a small extent. This constellation of consequences was only previously observed with oxidatively inactivated rhodanese. Fluorescence depolarization measurements of bound BisANS were consistent with exposure of apolar surfaces and association of the protein. The fluorescence spectra of BisANS bound to E.IAA or Eox were identical and distinct from the spectrum of BisANS bound to phenylglyoxal-inactivated ES. Digestion with chymotrypsin was followed using protein and BisANS fluorescence and showed a similar response for E.IAA and Eox. These results indicate that the consequences of forming Eox and E.IAA are very similar. Thus, reaction of the active site sulfhydryl group apparently triggers a conformational change leading to increased protein flexibility and increased exposure of hydrophobic surfaces. In the case of oxidation, the trigger might involve initial formation of an active site sulfenic acid which ultimately gives higher oxidation states that could include disulfides.  相似文献   

2.
The enzyme rhodanese (thiosulfate sulfurtransferase; EC 2.8.1.1) is inactivated with a half-time of approximately 3 min when incubated with 50 mM NADH. NAD+, however, has virtually no effect on the activity. Inactivation can be prevented by the inclusion of the substrate thiosulfate. The concentration of thiosulfate giving half-protection is 0.038 mM. In addition, NADH, but not NAD+, is a competitive inhibitor with respect to thiosulfate in the catalyzed reaction (Ki = 8.3 mM). Fluorescence studies are consistent with a time-dependent oxidation of NADH in the presence of rhodanese. The sulfur-free form of rhodanese is more rapidly inactivated than the sulfur-containing form. Spectrophotometric titrations show that inactivation is accompanied by the loss of two free SH groups per enzyme molecule. Inactivation is prevented by the exclusion of air and the inclusion of EDTA (1 mM), and the enzyme activity can be largely protected by incubation with superoxide dismutase or catalase. Rhodanese, inactivated with NADH, can be reactivated by incubation with the substrate thiosulfate (75 mM) for 48 h or more rapidly, but only partially, by incubating with 180 mM dithiothreitol. It is concluded that, in the presence of rhodanese, NADH can be oxidized by molecular oxygen and produce intermediates of oxygen reduction, such as superoxide and/or hydrogen peroxide, that can inactivate the enzyme with consequent formation of an intraprotein disulfide. In addition, NADH, but not NAD+, can reversibly bind to the active site region in competition with thiosulfate. These data are of interest in view of x-ray studies that show structural similarities between rhodanese and nucleotide binding proteins.  相似文献   

3.
For the first time, the enzyme rhodanese has been proteolytically cleaved to give species that most likely correspond to individual domains. This indicates cleavage can occur in the interdomain tether. Further, the conditions for cleavage show that availability of the susceptible bond(s) depends on conformational changes triggered by oxidative inactivation. Rhodanese, without persulfide sulfur (E), was oxidized consequent to incubation with phenylglyoxal, NADH, or hydrogen peroxide. The oxidized enzyme (Eox) was probed using the proteolytic enzymes endoproteinase glutamate C (V8), trypsin, chymotrypsin, or subtilisin. The proteolytic susceptibility of Eox, formed using hydrogen peroxide, was compared with that of E and the form of the enzyme containing transferred sulfur, ES. ES was totally refractory to proteolysis, while E was only clipped to a small extent by trypsin or V8 and not at all by chymotrypsin or subtilisin. Eox was susceptible to proteolysis by all the proteases used, and, although there were some differences among the proteolytic patterns, there was always a band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis corresponding to Mr = 16,500. This was the only band observed in addition to the parent species (Mr = 33,000) when Eox was digested with chymotrypsin, and conservation of total protein was observed after digestion up to 90 min. No additional species were observable on silver staining, although there was some indication that the band at 16,500 might be a doublet. The results are consistent with the occurrence of a conformational change after oxidation that results in increased exposure and/or flexibility of the interdomain tether which contains residues that meet the specificity requirements of the proteases used.  相似文献   

4.
The NADH: nitrate reductase from durum wheat leaves was inactivated by cyanide and its activity restored by thiosulphate and beef kidney rhodanese. Rhodanese and thiosulphate, added to NADH-nitrate reductase before cyanide treatment protected NADH-nitrate reductase activity. No oxidizing agent was required for the protection or restoration of cyanide treated NADH-nitrate reductase.  相似文献   

5.
The enzyme rhodanese (thiosulfate sulfurtransferase, EC 2.8.1.1) is inactivated on incubation with reducing sugars such as glucose, mannose, or fructose, but is stable with non-reducing sugars or related polyhydroxy compounds. The enzyme is inactivated with (ES) or without (E) the transferable sulfur atom, although E is considerably more sensitive, and inactivation is accentuated by cyanide. Inactivation of E is accompanied by increased proteolytic susceptibility, a decreased sulfhydryl titer, a red-shift and quenching of the protein fluorescence, and the appearance of hydrophobic surfaces. Superoxide dismutase and/or catalase protect rhodanese. Inactive enzyme can be partially reactivated during assay and almost completely reactivated by incubation with thiosulfate, lauryl maltoside, and 2-mercaptoethanol. These results are similar to those observed when rhodanese is inactivated by hydrogen peroxide. These observations, as well as the cyanide-dependent, oxidative inactivation by phenylglyoxal, are explained by invoking the formation of reactive oxygen species such as superoxide or hydrogen peroxide from autooxidation of alpha-hydroxy carbonyl compounds, which can be facilitated by cyanide.  相似文献   

6.
The interaction of bovine liver rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) with the acceptor substrates, dithiothreitol or cyanide, was studied. When incubated in the presence of cyanide or dithiothreitol, rhodanese was inactivated in a time-dependent process. This inactivation was detectable only at low enzyme concentrations; the rate and degree of inactivation could be modulated by varying the substrate concentration or the system pH. Activity measurements and fluorescence spectroscopy techniques were used in examining the inactivation phenomenon. Sulfur transfer to dithiothreitol was measured by direct assay and was shown to involve the dequenching of enzymic intrinsic fluorescence that had been previously observed only with cyanide as the acceptor substrate. Substrate-potentiated inactivation of rhodanese (with cyanide) has been reported before, but the cause and nature of this interaction were unexplained. The results presented here are consistent with an explanation invoking oxidation of rhodanese in the course of inactivation.  相似文献   

7.
It was previously shown that rhodanese, inactivated with hydrogen peroxide, could only be reactivated in the presence of a reductant or the substrate thiosulfate if these reagents were added soon after inactivation and if the oxidant was removed. Here, we report on the facilitated reactivation (75%) of hydrogen peroxide-inactivated rhodanese by the chaperone alpha-crystallin. Reactivation by the chaperone still required a reductant and thiosulfate. Without alpha-crystallin, but in the presence of the reductant and thiosulfate, the inactivated enzyme regained about 39% of its original activity. The alpha-crystallin-assisted reactivation of hydrogen peroxide-inactivated rhodanese was independent of ATP. Further, we found, that alpha-crystallin interacted transiently, but could not form a stable complex with hydrogen peroxide-inactivated rhodanese. Unlike in prior studies that involved denaturation of rhodanese through chemical or thermal means, we have clearly shown that alpha-crystallin can function as a molecular chaperone in the reactivation of an oxidatively inactivated protein.  相似文献   

8.
The conformations of sulfur-free and sulfur-containing rhodanese were followed with and without the detergent lauryl maltoside after guanidinium chloride (GdmCl) addition to 5 M to study the apparent irreversibility of denaturation. Without lauryl maltoside, sulfur-containing rhodanese denatured in a transition giving, at approximately 2.3 M GdmCl, 50% of the total denaturation induced change observed by activity, CD, or intrinsic fluorescence. Sulfur-free rhodanese gave more complex behavior by intrinsic fluorescence and CD. CD showed loss of secondary structure in a broad, complex, and apparently biphasic transition extending from 0.5 to 3 M GdmCl. The interpretation of the transition was complicated by time-dependent aggregation due to noncovalent interactions. Results with the apolar fluorescence probe 2-anilinonaphthalene-8-sulfonic acid, implicated apolar exposure in aggregation. Sulfhydryl reactivity indicated that low GdmCl concentrations induced intermediates affecting the active site conformation. Lauryl maltoside prevented aggregation with no effect on activity or any conformational parameter of native enzyme. Transitions induced by GdmCl were still observed and consistent with several phases. Even in lauryl maltoside, an increase in apolar exposure was detected by 2-anilinonaphthalene-8-sulfonic acid, and by protein adsorption to octyl-Sepharose well below the major unfolding transitions. These results are interpreted with a model in which apolar interdomain interactions are disrupted, thereby increasing active site accessibility, before the intradomain interactions.  相似文献   

9.
Controlled conditions have been found that give complete reactivation and long term stabilization of rhodanese (EC 2.8.1.1) after oxidative inactivation by hydrogen peroxide. Inactivated rhodanese was completely reactivated by reductants such as thioglycolic acid (TGA) (100 mM) and dithiothreitol (DTT) (100 mM) or the substrate thiosulfate (100 mM) if these reagents were added soon after inactivation. Reactivability fell in a biphasic first order process. At pH 7.5, in the presence of DTT inactive rhodanese lost 40% of its reactivability in less than 5 min, and the remaining 60% was lost more gradually (t 1/2 = 3.5 h). TGA reactivated better than DTT, and the rapid phase was much less prominent. If excess reagents were removed by gel filtration immediately after inactivation, there was time-independent and complete reactivability with TGA for at least 24 h, and the resulting samples were stable. Reactivable enzyme was resistant to proteolysis and had a fluorescence maximum at 335 nm, just as the native protein. Oxidized rhodanese, Partially reactivated by DTT, was unstable and lost activity upon further incubation. This inactive enzyme was fully reactivated by 200 mM TGA. Also, the enzyme could be reactivated by arsenite and high concentrations of cyanide. Addition of hydrogen peroxide (40-fold molar excess) to inactive rhodanese after column chromatography initiated a time-dependent loss of reactivability. This inactivation was a single first order process (t 1/2 = 25 min). Sulfhydryl titers showed that enzyme could be fully reactivated after the loss of either one or two sulfhydryl groups. Irreversibly inactivated enzyme showed the loss of one sulfhydryl group even after extensive reduction with TGA. The results are consistent with a two-stage oxidation of rhodanese. In the first stage there can form sulfenyl and/or disulfide derivative(s) at the active site sulfhydryl that are reducible by thioglycolate. A second stage could give alternate or additional oxidation states that are not easily reducible by reagents tried to date.  相似文献   

10.
The enzyme rhodanese was investigated for the conformational transition associated with its urea unfolding. When rhodanese was treated with 0 or 3 M urea, the activity was not significantly affected. 4.25 M urea treatment led to a time-dependent loss of activity in 60 min. Rhodanese was completely inactivated within 2 min in 6 M urea. The 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid fluorescence intensity was not significantly increased during 0, 3, and 6 M urea equilibrations, and the fluorescence was dramatically increased with 4.25 M urea, indicating that hydrophobic surfaces are exposed. After 0 and 3 M urea equilibration, rhodanese was not significantly proteolyzed with trypsin. Treatment with 4.25 M urea led to simultaneous formation of major 12-, 15.9-, 17-, and 21.2-kDa fragments, followed by progressive emergence of smaller peptides. The N termini of the 17- and 21.2-kDa bands were those of intact rhodanese. The N terminus of the 15.9-kDa band starts at the end of the interdomain tether. The 12-kDa band begins with either residue 183 or residue 187. The size and sequence information suggest that the 17- and 15.9-kDa bands correspond to the two domains. The 21.2- and 12-kDa bands appear to be generated through one-site tryptic cleavage. It is concluded that urea disrupts interaction between the two domains, increasing the accessibility of the interdomain tether that can be digested by trypsin. The released domains have increased proteolytic susceptibility and produce smaller peptides, which may represent subdomains of rhodanese.  相似文献   

11.
Sulfhydryl groups of bovine liver rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) were modified by treatment with tetrathionate. There was a linear relationship between loss of enzyme activity and the amount of tetrathionate used. At a ratio of one tetrathionate per mole of rhodanese, 100% of enzyme activity was lost in the sulfur-free E-form as compared with a 70% loss for the sulfur-containing ES-form of the enzyme. Addition of up to a 100-fold molar excess of tetrathionate to ES gave no further inactivation. Addition of cyanide to the maximally inactivated ES-tetrathionate complex gave complete loss of activity. Kinetic studies of maximally inactivated ES and partially inactivated E gave Km (Ks) values that were essentially the same as native enzyme, indicating that the active enzyme, in all cases, bound thiosulfate similarly. Reactivation was faster with the ES-form than with the E-form. The substrate, thiosulfate, could reactivate the enzyme up to 70% in 1 h with ES as compared to 24 h with E. Tetrathionate modification of rhodanese could be correlated with the changes in intrinsic fluorescence and with the binding of the active site reporter 2-anilinonaphthalene-8-sulfonic acid (2,8-ANS). Circular dichroism spectra of the protein suggested increased ordered secondary structure in the protein after reaction with tetrathionate. Cadmium chloride and phenylarsine oxide totally inactivated the enzyme at levels usually associated with their effect on enzymes containing vicinal sulfhydryl groups. Further, cadmium inhibition could be reversed by EDTA. Tetrathionate modification of rhodanese may proceed through the formation of sulfenylthiosulfate intermediates at sulfhydryl groups, close to but not identical with the active-site sulfhydryl group, which then can react further with the active-site sulfhydryl group to form disulfide bridges.  相似文献   

12.
Sulfhydryl groups of bovine liver rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) were modified by treatment with tetrathionate. There was a linear relationship between loss of enzyme activity and the amount of tetrathionate used. At a ratio of one tetrathionate per mole of rhodanese, 100% of enzyme activity was lost in the sulfur-free E-form as compared with a 70% loss for the sulfur-containing ES-form of the enzyme. Addition of up to a 100-fold molar excess of tetrathionate to ES gave no further inactivation. Addition of cyanide to the maximally inactivated ES-tetrathionate complex gave complete loss of activity. Kinetic studies of maximally inactivated ES and partially inactivated E gave Km (K5) values that were essentially the same as native enzyme, indicating that the active enzyme, in all cases, bound thiosulfate-similarly. Reactivation was faster with the ES-form than with the E-form. The substrate, thiosulfate, could reactivate the enzyme up to 70% in 1 h with ES as compared to 24 h with E. Tetrathionate modification of rhodanese could be correlated with the changes in intrinsic fluorescence and with the binding of the active site reporter 2-anilinonaphthalene-8-sulfonic acid (2,8-ANS). Circular dichroism spectra of the protein suggested increased ordered secondary structure in the protein after reaction with tetrathionate. Cadmium chloride and phenylarsine oxide totally inactivated the enzyme at levels usually associated with their effect on enzymes containing vicinal sulfhydryl groups. Further, cadmium inhibition could be reserved by EDTA. Tetrathionate modification of rhodanese may proceed through the formation of sulfenylthiosulfate intermediates at sulfhydryl groups, close to but not identical with the active-site sulfhydryl group, which then can react further with the active-site sulfhydryl group to form disulfide bridges.  相似文献   

13.
Rhodanese has been extensively utilized as a model protein for the study of enzyme structure-function relationships. An immunological study of conformational changes occurring in rhodanese as a result of oxidation or thermal inactivation was conducted. Three monoclonal antibodies (MABs) to rhodanese were produced. Each MAB recognized a unique epitope as demonstrated by binding of the MABs to different proteolytic fragments of rhodanese. While none of the MABs significantly bound native, soluble, sulfur-substituted bovine rhodanese, as indicated in indirect enzyme-linked immunosorbent assay experiments, each MAB was immunoadsorbed from solution by soluble rhodanese as a function of the time rhodanese was incubated at 37 degrees C. Thus, as rhodanese was thermally inactivated, conformational changes resulted in the expression of three new epitopes. Catalytic conformers demonstrated different rates of thermally induced antigen expression. Each MAB also recognized epitopes expressed when rhodanese was immobilized on microtiter plates at 37 degrees C. Two conformers resulting from oxidation of rhodanese by hydrogen peroxide were identified immunologically. All MABs recognized rhodanese that was oxidized with peroxide and allowed to undergo a secondary cyanide-dependent reaction which also resulted in a fluorescence shift and increased proteolytic susceptibility. Only one MAB was capable of recognizing an epitope expressed when rhodanese was oxidized with peroxide and then separated from the reactants to prevent induction of the secondary conformational changes.  相似文献   

14.
UDP-glucose 4-epimerase from Saccharomyces fragilis was inactivated by the arginine-specific reagents phenylglyoxal, 1,2-cyclohexanedione, and 2,3-butanedione following pseudo first order reaction kinetics. The reaction order with respect to phenylglyoxal was 1.8 and that with respect to the other two diones was close to unity. Protection afforded by substrate and competitive inhibitors against inactivation by phenylglyoxal and the reduced interaction of 1-anilinonaphthalene 8-sulfonic acid, a fluorescent probe for the substrate-binding region after phenylglyoxal modification, suggested the presence of an essential arginine residue at the substrate-binding region. Experiments with [7-14C]phenylglyoxal in the presence of UMP, a ligand known to interact at the substrate-binding region, showed that only the arginine residue at the active site could be modified by phenylglyoxal. The characteristic coenzyme fluorescence of the yeast enzyme was found to be enhanced three times in phenylglyoxal-inactivated enzyme suggesting the incorporation of the phenyl ring near the pyridine moiety of NAD.  相似文献   

15.
Spectral and kinetic studies of the interaction of N-methylnicotinamide chloride and nicotinamide with the enzyme thiosulphate sulphurtransferase (thiosulphate: cyanide sulfurtransferase, EC 2.8.1.1) (also known as rhodanese) have been performed and compared with previous inhibition data obtained with N-1-(4-pyridyl)pyridinium chloride (NPP). Like NPP both N-methylnicotinamide chloride and nicotinamide are competitive inhibitors of rhodanese with respect to the substrate thiosulfate. Rhodanese binding of N-methylnicotinamide chloride gives rise to no charge transfer absorbtion band. In addition, the free energy of interaction (deltaG0) of NPP with rhodanese is approximately equal to the sum of the individual deltaG0 values of MNA and NA. These compounds are analogous to the two halves of the NPP structure. We conclude that NPP and N-methylnicotinamide chloride are not bound via a charge transfer mechanism. The major stabilizing influence appears to be an ionic interaction with an anionic enzyme site with accessory apolar stabilization. It is postulated that the ionized active site sulfhydryl group in rhodanese could provide the ionic site.  相似文献   

16.
Abstract p-Hydroxybenzoate 3-hydroxylase from Rhodococcus erythropolis was inactivated by 2,3-butanedione (BD), phenylglyoxal (PGO), and other chemical reagents. p -Hydroxybenzoate and NADH protected the enzyme from inactivation by BD. Judging from the amino acid composition of BD-treated enzyme in the presence and absence of p -hydroxybenzoate, one essential arginine residue in substrate-binding domain of the enzyme was shown to be essential to the binding of p -hydrozybenzoate to the enzyme. Salicylate 5-hydroxylase and m -hydroxybenzoate 6-hydroxylase from R. erythropolis were hardly inactivated. Neither of these two enzymes was considered to have a functional arginine residue required for interaction with the substrate.  相似文献   

17.
Considerably larger quantities of cyanide are required to solubilize gold following the bio-oxidation of gold-bearing ores compared with oxidation by physical-chemical processes. A possible cause of this excessive cyanide consumption is the presence of the enzyme rhodanese. Rhodanese activities were determined for the bacteria most commonly encountered in bio-oxidation tanks. Activities of between 6.4 and 8.2 micromol SCN min(-1) mg protein(-1) were obtained for crude enzyme extracts of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Thiobacillus caldus, but no rhodanese activity was detected in Leptospirillum ferrooxidans. Rhodanese activities 2-2.5-fold higher were found in the total mixed cell mass from a bio-oxidation plant. T. ferrooxidans synthesized rhodanese irrespective of whether it was grown on iron or sulphur. With a PCR-based detection technique, only L. ferrooxidans and T. caldus cells were detected in the bio-oxidation tanks. As no rhodanese activity was associated with L. ferrooxidans, it was concluded that T. caldus was responsible for all of the rhodanese activity. Production of rhodanese by T. caldus in batch culture was growth phase-dependent and highest during early stationary phase. Although the sulphur-oxidizing bacteria were clearly able to convert cyanide to thiocyanate, it is unlikely that this rhodanese activity is responsible for the excessive cyanide wastage at the high pH values associated with the gold solubilization process.  相似文献   

18.
For the first time, the enzyme rhodanese had been refolded after thermal denaturation. This was previously not possible because of the strong tendency for the soluble enzyme to aggregate at temperatures above 37 degrees C. The present work used rhodanese that was covalently coupled to a solid support under conditions that were found to preserve enzyme activity. Rhodanese was immobilized using an N-hydroxymalonimidyl derivative of Sepharose containing a 6-carbon spacer. The number of immobilized competent active sites was measured by using [35S]SO3(2-) to form an active site persulfide that is the obligatory catalytic intermediate. Soluble enzyme was irreversibly inactivated in 10 min at 52 degrees C. The immobilized enzyme regained at least 30% of its original activity even after boiling for 20 min. The immobilized enzyme had a Km and Vmax that were each approximately 3 times higher than the corresponding values for the native enzyme. After preincubation at high temperatures, progress curves for the immobilized enzyme showed induction periods of up to 5 min before attaining apparently linear steady states. The pH dependence of the activity was the same for both the soluble and the immobilized enzyme. These results indicate significant stabilization of rhodanese after immobilization, and instabilities caused by adventitious solution components are not the sole reasons for irreversibility of thermal denaturation seen with the soluble enzyme. The results are consistent with models for rhodanese that invoke protein association as a major cause of inactivation of the enzyme. Furthermore, the induction period in the progress curves is consistent with studies which show that rhodanese refolding proceeds through intermediate states.  相似文献   

19.
A fluorescence-detected structural transition occurs in the enzyme rhodanese between 30–40°C that leads to inactivation and aggregation, which anomalously decrease with increasing protein concentration. Rhodanese at 8 µg/ml is inactivated at 40°C after 50 min of incubation, but it is protected as its concentration is raised, such that above 200 µg/ml, there is only slight inactivation for at least 70 min. Inactivation is increased by lauryl maltoside, or by low concentrations of 2-mercaptoethanol. The enzyme is protected by high concentrations of 2-mercaptoethanol or by the substrate, thiosulfate. The fluorescence of 1,8-anilinonaphthalene sulfonate reports the appearance of hydrophobic sites between 30–40°C. Light scattering kinetics at 40°C shows three phases: an initial lag, a relatively rapid increase, and then a more gradual increase. The light scattering decreases under several conditions: at increased protein concentration; at high concentrations of 2-mercaptoethanol; with lauryl maltoside; or with thiosulfate. Aggregated enzyme is inactive, although enzyme can inactivate without significant aggregation. Gluteraldehyde cross-linking shows that rhodanese can form dimers, and that higher molecular weight species are formed at 40°C but not at 23°;C. Precipitates formed at 40°C contain monomers with disulfide bonds, dimers, and multimers. We propose that thermally perturbed rhodanese has increased hydrophobic exposure, and it can either: (a) aggregate after a rate-limiting inactivation; or (b) reversibly dimerize and protect itself from inactivation and the formation of large aggregates.  相似文献   

20.
Activities of cyanide metabolizing enzymes were measured in various subcellular fractions and regions in the central nervous system. Brain rhodanese and liver beta-mercaptopyruvate sulfurtransferase showed a slight decrease in activity after death. The activity of beta-mercaptopyruvate sulfurtransferase was negligible in the rat brain, compared with that of rhodanese. A small amount of thiocyanate was produced from cyanide and beta-mercaptopyruvate in the human brain, probably due to contamination with red blood cells. Rhodanese activity was widely distributed in all the areas of nervous tissue examined. In the rat the olfactory bulb showed the highest rhodanese activity, and high activity was also observed served in the thalamus, septum, hippocampus, and dorsal part of the midbrain. Rhodanese activity was low in various parts of the cerebral cortex. The distribution pattern of rhodanese in post-mortem human brain was essentially similar to that in rat brain. The thalamus, amygdala, centrum semiovale, colliculus superior, and cerebellar cortex showed high rhodanese activity in the human brain. Rhodanese activity was detected in the spinal cord. Anterior horn showed the highest rhodanese activity in the cervical, thoracic, and lumbar cord. Most rhodanese activity in the rat brain was recovered in the mitochondrial fraction with the highest specific activity. Rhodanese activity was lower in spinal cords obtained from autopsied cases with amyotrophic lateral sclerosis than in those of control subjects. A significant decrease in rhodanese was observed in the posterior column of the cervical or thoracic cord, but the activity in the anterior horn did not differ significantly between the two groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号