首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EeCentrocin 1 is a potent antimicrobial peptide isolated from the marine sea urchin Echinus esculentus. The peptide has a hetero‐dimeric structure with the antimicrobial activity confined in its largest monomer, the heavy chain (HC), encompassing 30 amino acid residues. The aim of the present study was to develop a shorter drug lead peptide using the heavy chain of EeCentrocin 1 as a starting scaffold and to perform a structure‐activity relationship study with sequence modifications to optimize antimicrobial activity. The experiments consisted of 1) truncation of the heavy chain, 2) replacement of amino acids unfavourable for in vitro antimicrobial activity, and 3) an alanine scan experiment on the truncated and modified heavy chain sequence to identify essential residues for antimicrobial activity. The heavy chain of EeCentrocin 1 was truncated to less than half its initial size, retaining most of its original antimicrobial activity. The truncated and optimized lead peptide ( P6 ) consisted of the 12 N‐terminal amino acid residues from the original EeCentrocin 1 HC sequence and was modified by two amino acid replacements and a C‐terminal amidation. Results from the alanine scan indicated that the generated lead peptide ( P6 ) contained the optimal sequence for antibacterial activity, in which none of the alanine scan peptides could surpass its antimicrobial activity. The lead peptide ( P6 ) was also superior in antifungal activity compared to the other peptides prepared and showed minimal inhibitory concentrations (MICs) in the low micromolar range. In addition, the lead peptide ( P6 ) displayed minor haemolytic and no cytotoxic activity, making it a promising lead for further antimicrobial drug development.  相似文献   

2.
《Peptides》2012,33(12):2497-2503
Cathelicidin-BF15 (BF-15) is a 15-mer peptide derived from Cathelicidin-BF (BF-30), which is found in the venom of the snake Bungarus fasciatus and exhibits broad antimicrobial activity. Since BF-15 retains most part of the antimicrobial activity of BF-30 but has significantly reduced haemolytic activity and a much shorter sequence length (and less cost), it is a particularly attractive template around which to design novel antimicrobial peptides. However, the structure–activity relationship of it is still unknown. We designed and synthesized a series of C-terminal amidated analogs of BF-15 based on its amphipathic α-helix structure. And we characterized their antimicrobial potency and haemolytic activity. We identified the amidated BF-15 (analog B1) with potent antimicrobial activity against several antibiotic-resistant bacteria (MICs between 1 and 64 μg/mL, 2–16-folds higher than BF-30) and much lower haemolytic activity. The subsequent circular dichroism study results showed a typical α-helix pattern of analog B1 and the content of the α-helix structure of it increased significantly comparing with BF-30, which indicates the peptide sequence of BF-15 may provide a major contribution to the α-helix content of the whole BF-30 sequence. The peptide induced chaotic membrane morphology and cell debris as determined by electron microscopy. This suggests that the antimicrobial activity of B1 is based on cytoplasmic membrane permeability. Taken together, our results suggested that peptide B1 should be considered as an excellent candidate for developing therapeutic drugs.  相似文献   

3.
A 4.3-kDa antimicrobial peptide was isolated from human amniotic fluid by dialysis, ultrafiltration, and C18 reversed-phase high performance liquid chromatography. This peptide, which we named Amniotic Fluid Peptide-1 (AFP-1), possessed antimicrobial activity but lacked hemolytic activity. In addition, AFP-1 potently inhibited the growth of a variety of bacteria (Escherichia coli, Salmonella typhimurium, Listeria monocytogenes and Staphylococcus aureus), filamentous fungi (Botrytis cinerea, Aspergillus fumigatus, Neurospora crassa and Fusarium oxysporum) and yeast cells (Candida albicans and Cryptococcus neoformans). Automated Edman degradation showed that the N-terminal sequence of AFP-1 was NH(2)-Met-Gln-Ile-Phe-Val-Lys-Thr-Leu-Thr-Gly-Lys-Thr-Ile-Thr-Leu-Glu-Val-Glu-. The partial sequence had 100% homology to the N-terminal sequence of ubiquitin. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that the molecular mass of AFP-1 was 4280.2 Da. Our data show an antimicrobial activity of ubiquitin N-terminal derived peptide that makes it suitable for use as an antimicrobial agent.  相似文献   

4.
Chen W  Yang B  Zhou H  Sun L  Dou J  Qian H  Huang W  Mei Y  Han J 《Peptides》2011,32(12):2497-2503
Cathelicidin-BF15 (BF-15) is a 15-mer peptide derived from Cathelicidin-BF (BF-30), which is found in the venom of the snake Bungarus fasciatus and exhibits broad antimicrobial activity. Since BF-15 retains most part of the antimicrobial activity of BF-30 but has significantly reduced haemolytic activity and a much shorter sequence length (and less cost), it is a particularly attractive template around which to design novel antimicrobial peptides. However, the structure–activity relationship of it is still unknown. We designed and synthesized a series of C-terminal amidated analogs of BF-15 based on its amphipathic α-helix structure. And we characterized their antimicrobial potency and haemolytic activity. We identified the amidated BF-15 (analog B1) with potent antimicrobial activity against several antibiotic-resistant bacteria (MICs between 1 and 64 μg/mL, 2–16-folds higher than BF-30) and much lower haemolytic activity. The subsequent circular dichroism study results showed a typical α-helix pattern of analog B1 and the content of the α-helix structure of it increased significantly comparing with BF-30, which indicates the peptide sequence of BF-15 may provide a major contribution to the α-helix content of the whole BF-30 sequence. The peptide induced chaotic membrane morphology and cell debris as determined by electron microscopy. This suggests that the antimicrobial activity of B1 is based on cytoplasmic membrane permeability. Taken together, our results suggested that peptide B1 should be considered as an excellent candidate for developing therapeutic drugs.  相似文献   

5.
A method based on the use of signal peptide sequences from antimicrobial peptide (AMP) precursors was used to mine a placozoa expressed sequence tag database and identified a potential antimicrobial peptide from Trichoplax adhaerens. This peptide, with predicted sequence FFGRLKSVWSAVKHGWKAAKSR is the first AMP from a placozoan species, and was named trichoplaxin. It was chemically synthesized and its structural properties, biological activities and membrane selectivity were investigated. It adopts an α-helical structure in contact with membrane-like environments and is active against both Gram-negative and Gram-positive bacterial species (including MRSA), as well as yeasts from the Candida genus. The cytotoxic activity, as assessed by the haemolytic activity against rat erythrocytes, U937 cell permeabilization to propidium iodide and MCF7 cell mitochondrial activity, is significantly lower than the antimicrobial activity. In tests with membrane models, trichoplaxin shows high affinity for anionic prokaryote-like membranes with good fit in kinetic studies. Conversely, there is a low affinity for neutral eukaryote-like membranes and absence of a dose dependent response. With high selectivity for bacterial cells and no homologous sequence in the UniProt, trichoplaxin is a new potential lead compound for development of broad-spectrum antibacterial drugs.  相似文献   

6.
新型抗菌肽研究有助于解决细菌对抗生素的耐药性问题。本研究用SMART技术构建了景东湍蛙Amolops jingdongensis皮肤的全长cDNA文库。通过单克隆和测序获得一个抗菌肽cDNA序列,序列比对结果表明其属于jindongenin-1家族,命名为jindongenin-1d。其cDNA序列全长321bp,编码含66个氨基酸残基的多肽。该多肽包括1个信号肽和1个前肽序列。成熟jindongenin-1d多肽包含24个氨基酸残基,理论分子量为2 709.38,等电点为9.24。对人工合成的jindongenin-1d蛋白进行了抗菌和溶血活性分析,结果表明jindongenin-1d对所选的革兰氏阴性菌、革兰氏阳性菌和真菌均有显著抑制作用,同时有弱溶血活性。本研究结果有助于进一步了解两栖动物皮肤分泌物活性物质的多态性和新型抗感染药物的设计。  相似文献   

7.
Peptide fragments possessing antimicrobial activity were obtained by protease digestion of goose egg white lysozyme. Digested peptide purified from RP-HPLC which showed no lysozyme activity exhibited bactericidal activity toward Gram-negative and Gram-positive bacteria. LC/MS–MS and automated Edman degradation revealed the amino acid sequence to be Thr-Ala-Lys-Pro-Glu-Gly-Leu-Ser-Tyr. This sequence corresponds to amino acid positions 20–28, located at the N-terminal outer part of goose lysozyme. The peptide acted on bacterial membrane as shown by scanning electron microscopy. The mechanism of action could be explained from a helical structure that may be formed by the centered Pro residue and the terminal Lys residue after the peptide attaches to a cell membrane. This is the first study to report that a peptide derived from the protease digests of G-type lysozyme possesses antimicrobial activity with broad spectrum activity. Our result is comparative to the previous reports of Chicken lysozyme and T4 phage lysozyme, which showed antimicrobial activity after digestion with protease. These results might contribute to the usage of antimicrobial peptides engineered by genetic or chemical synthesis.  相似文献   

8.
Won HS  Kim SS  Jung SJ  Son WS  Lee B  Lee BJ 《Molecules and cells》2004,17(3):469-476
The anuran (frogs and toads) skin is a rich source of antimicrobial peptides that can be developed therapeutically. We searched the skin secretions of Korean Rana esculenta for antimicrobial peptides, and isolated two cationic peptides with antimicrobial activity and little hemolytic activity: a 46-residue peptide of the esculentin-1 family and a 24-residue peptide of the brevinin-1 family. Their sequences showed some differences from the esculentins-1 and brevinins-1 of European Rana esculenta, indicating that sequence diversification of anuran skin antimicrobial peptides can arise from differences in habitat as well as from species differences. The 46-residue peptide named esculentin-1c had broad antimicrobial activity, while the 24-residue peptide named brevinin-1Ed exhibited limited activity. The solution structure of brevinin-1Ed was in good agreement with that of other brevinin-1-like peptides, with an amphipathic alpha-helix spanning residues 3-20, stabilized in membrane-mimetic environments. The weak bioactivity of brevinin-1Ed was attributable to the unusual presence of an anionic amino acid in the middle of the helical hydrophilic face. This report contributes to world-wide investigations of the structure-activity relationships and evolutional diversification of anuran-skin antimicrobial peptides.  相似文献   

9.
Recently, we have found that partially unfolded lysozyme exerts broad spectrum antimicrobial action in vitro against Gram-negative and Gram-positive bacteria independent of its catalytic activity. In parallel, an internal peptide (residues 98-112) of hen egg white lysozyme, obtained after digestion with clostripain, possessed broad spectrum antimicrobial action in vitro. This internal peptide is part of a helix-loop-helix domain (87-114 sequence of hen lysozyme) located at the upper lip of the active site cleft of lysozyme. The helix-loop-helix (HLH) structures are known motifs commonly found in membrane-active and DNA-binding proteins. To evaluate the contribution of the HLH peptide to the antimicrobial properties of lysozyme, the HLH sequence and its secondary structure derivatives of chicken and human lysozyme were synthesized and tested for antimicrobial activity against several bacterial strains. We found that the full HLH peptide of both chicken and human lysozymes was potently microbicidal against both Gram-positive and Gram-negative bacteria and the fungus Candida albicans. The N-terminal helix of HLH was specifically bactericidal to Gram-positive bacteria, whereas the C-terminal helix was bactericidal to all tested strains. Outer and inner membrane permeabilization studies, as well as measurements of transmembrane electrochemical potentials, provided evidence that HLH peptide and its C-terminal helix domain kill Gram-negative bacteria by crossing the outer membrane via self-promoted uptake and causing damage to the inner membrane through channel formation. The results are discussed in terms of proposed mechanisms for the catalytically independent antimicrobial activity of lysozyme that offer a new strategy for the design of potential antimicrobial drugs in the treatment of infectious diseases.  相似文献   

10.
Chicken egg white lysozyme exhibits antimicrobial activity against both Gram-positive and Gram-negative bacteria. Fractionation of clostripain-digested lysozyme yielded a pentadecapeptide with antimicrobial activity but without muramidase activity. The peptide was isolated and its sequence found to be I-V-S-D-G-N-G-M-N-A-W-V-A-W-R (amino acids 98-112 of chicken egg white lysozyme). A synthesized peptide of identical sequence had the same bactericidal activity as the natural peptide. Replacement of Trp 108 with tyrosine significantly reduced the antibacterial capacity of the peptide. By replacement of Trp 111 with tyrosine the antibacterial activity was lost. Replacement of Asn 106 with the positively charged arginine strongly increased the antibacterial capacity of I-V-S-D-G-N-G-M-N-A-W-V-A-W-R. The peptide I-V-S-D-G-N-G-M consisting of the eight amino acids of the N-terminal side had no bactericidal properties, whereas the peptide N-A-W-V-A-W-R of the C-terminal side retained some bactericidal activity. Replacement of asparagine 106 by arginine (R-A-W-V-A-W-R) increased the bactericidal activity considerably. The D enantiomer of R-A-W-V-A-W-R was as active as the L form against five of the tested bacteria, but substantially less active against Serratia marcescens, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus lentus. For these bacterial species some stereospecific complementarity between receptor structures of the bacteria and the peptide can be assumed.  相似文献   

11.
Chrysophsin-1 is an amphipathic alpha-helical antimicrobial peptide produced in the gill cells of red sea bream. The peptide has broad range activity against both Gram-positive and Gram-negative bacteria but is more hemolytic than other antimicrobial peptides such as magainin. Here we explore the membrane interaction of chrysophsin-1 and determine its toxicity, in vitro, for human lung fibroblasts to obtain a mechanism for its antimicrobial activity and to understand the role of the unusual C-terminal RRRH sequence. At intermediate peptide concentrations, solid-state NMR methods reveal that chrysophsin-1 is aligned parallel to the membrane surface and the lipid acyl chains in mixed model membranes are destabilized, thereby being in agreement with models where permeabilization is an effect of transient membrane disruption. The C-terminal RRRH sequence was shown to have a large effect on the insertion of the peptide into membranes with differing lipid compositions and was found to be crucial for pore formation and toxicity of the peptide to fibroblasts. The combination of biophysical data and cell-based assays suggests likely mechanisms involved in both the antibiotic and toxic activity of chrysophsins.  相似文献   

12.
Peptide fragments that exhibit antimicrobial activity in vitro have been shown to be produced by cleavage from the hydrophilic region near the N terminus of various vicilin proteins in plant seeds. Three peptide sequences identified in the hydrophilic region of vicilin seed proteins of Macadamia integrifolia and Theobroma cacao were predicted to exhibit antimicrobial activity based on sequence similarity to antimicrobial peptides that had been previously purified from macadamia kernels. Histidine-tagged versions of the putative antimicrobial peptides were expressed in Escherichia coli, purified, and demonstrated to have in vitro antimicrobial activity. There are many vicilin sequences in the growing plant genome sequence databases, and this expression method provides a high-throughput process for functionally testing the potential of internal peptide fragments of vicilins as novel antimicrobial molecules.  相似文献   

13.

Background

Temporins are small antimicrobial peptides secreted by the Rana temporaria showing mainly activity against Gram-positive bacteria. However, different members of the temporin family, such as Temporin B, act in synergy also against Gram-negative bacteria. With the aim to develop a peptide with a wide spectrum of antimicrobial activity we designed and analyzed a series of Temporin B analogs.

Methods

Peptides were initially obtained by Ala scanning on Temporin B sequence; antimicrobial activity tests allowed to identify the TB_G6A sequence, which was further optimized by increasing the peptide positive charge (TB_KKG6A). Interactions of this active peptide with the LPS of E. coli were investigated by CD, fluorescence and NMR.

Results

TB_KKG6A is active against Gram-positive and Gram-negative bacteria at low concentrations. The peptide strongly interacts with the LPS of Gram-negative bacteria and folds upon interaction into a kinked helix.

Conclusion

Our results show that it is possible to widen the activity spectrum of an antimicrobial peptide by subtle changes of the primary structure. TB_KKG6A, having a simple composition, a broad spectrum of antimicrobial activity and a very low hemolytic activity, is a promising candidate for the design of novel antimicrobial peptides.

General significance

The activity of antimicrobial peptides is strongly related to the ability of the peptide to interact and break the bacterial membrane. Our studies on TB_KKG6A indicate that efficient interactions with LPS can be achieved when the peptide is not perfectly amphipathic, since this feature seems to help the toroidal pore formation process.  相似文献   

14.
Three 18-membered analogues of the N-terminal fragment of the sarcotoxin IA cationic antimicrobial peptide were synthesized by the solid phase method of peptide synthesis with the use of swellographic monitoring. The ability of these peptides to inhibit the growth of various bacteria in culture medium and their hemolytic activity in experiments on human erythrocytes were studied. The analogue completely corresponding to the N-terminal amino acid sequence of the natural sarcotoxin IA with the amide group on its C-terminus exhibited higher antibacterial activity. The presence of carboxyl group on the C-terminus or the substitution of Tyr for Trp2 resulted in a decrease in the antimicrobial activity of the peptide. Our results indicate that the amphiphilic N-terminal peptide corresponding to the 1-18 sequence of sarcotoxin IA involves the moieties responsible for the antimicrobial activity of the antibiotic.  相似文献   

15.
Proteolytic digestion of bovine beta-lactoglobulin by trypsin yielded four peptide fragments with bactericidal activity. The peptides were isolated and their sequences were found as follows: VAGTWY (residues 15-20), AASDISLLDAQSAPLR (residues 25-40), IPAVFK (residues 78-83) and VLVLDTDYK (residues 92-100). The four peptides were synthesized and found to exert bactericidal effects against the Gram-positive bacteria only. In order to understand the structural requirements for antibacterial activity, the amino acid sequence of the peptide VLVLDTDYK was modified. The replacement of the Asp (98) residue by Arg and the addition of a Lys residue at the C-terminus yielded the peptide VLVLDTRYKK which enlarged the bactericidal activity spectrum to the Gram-negative bacteria Escherichia coli and Bordetella bronchiseptica and significantly reduced the antibacterial capacity of the peptide toward Bacillus subtilis. By data base searches with the sequence VLVLDTRYKK a high homology was found with the peptide VLVATLRYKK (residues 55-64) of human blue-sensitive opsin, the protein of the blue pigment responsible for color vision. A peptide with this sequence was synthesized and assayed for bactericidal activity. VLVATLRYKK was strongly active against all the bacterial strains tested. Our results suggest a possible antimicrobial function of beta-lactoglobulin after its partial digestion by endopeptidases of the pancreas and show moreover that small targeted modifications in the sequence of beta-lactoglobulin could be useful to increase its antimicrobial function.  相似文献   

16.
New peptides for lipopolysaccharide (LPS) and lipoteichoic acid (LTA) neutralization in upper respiratory tract infections were developed and evaluated in terms of efficacy and safety for application in humans. Based on the sequence of the human antimicrobial peptide LL-37 we developed and investigated length variants, substitution analogues and modifications to stabilize the peptides to prevent enzymatic degradation and to improve efficacy. The most promising peptide appears P60.4, a 24 amino acid peptide with similar efficacy as LL-37 in terms of LPS and LTA neutralization and lower pro-inflammatory activity. In addition, the acetylated and amidated version of this peptide shows no toxicity and displays higher or equal antimicrobial activity compared to LL-37.  相似文献   

17.
Jang WS  Kim CH  Kang MS  Chae HJ  Son SM  Seo SJ  Lee IH 《Peptides》2005,26(12):2360-2367
Halocidin is an antimicrobial peptide, which is isolated from hemocytes from the tunicate, Halocynthia aurantium. In this study, we cloned the full-length cDNA of halocidin from pharyngeal tissue, using a combination of RT-PCR and 5′-RACE-PCR. The observed cDNA structure indicated that halocidin is synthesized as a 10.37 kDa prepropeptide. Based on the cDNA structure and the known amino acid sequence of the mature peptide, it was concluded that the precursor of halocidin contains a 21-residue signal peptide, followed by the 18 residues of the mature peptide, and a 56-residue anionic C-terminal extension, which is removed later on in the process. The signal sequence of halocidin exhibited a high degree of similarity with the corresponding portion of the Ci-META4 protein, which had been previously discovered in the coelomic cells of another tunicate, Ciona intestinalis, and is considered to play a role in metamorphosis. However, in several respects, the cDNA structure of Ci-META4 suggested that it might constitute a precursor for an antimicrobial peptide. Thus, we prepared a synthetic peptide, which was comprised of 19 N-terminal amino acid residues in the predicted mature region of Ci-META4, and tested it with regard to its antimicrobial activity. As a result, we confirmed that the synthetic peptide exhibited potent antimicrobial activity against Gram (+) and (−) bacteria, while evidencing no hemolytic activity toward human erythrocytes.  相似文献   

18.
Antimicrobial peptides (AMPs) represent the first defense line against infection when organisms are infected by pathogens. These peptides are generally good targets for the development of antimicrobial agents. Peptide amide analogs of Ixosin-B, an antimicrobial peptide with amino acid sequence of QLKVDLWGTRSGIQPEQHSSGKSDVRRWRSRY, were designed, synthesized and examined for antimicrobial activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Within the peptides synthesized, we discovered an 11-mer peptide, KRLRRVWRRWR-amide, which exhibited potent antimicrobial activity while very little hemolytic activity in human erythrocytes was observed even at high dose level (100 μM). With further modifications, this peptide could be developed into a potent antimicrobial agent in the future.  相似文献   

19.
Proteolytic digestion of bovine β-lactoglobulin by trypsin yielded four peptide fragments with bactericidal activity. The peptides were isolated and their sequences were found as follows: VAGTWY (residues 15–20), AASDISLLDAQSAPLR (residues 25–40), IPAVFK (residues 78–83) and VLVLDTDYK (residues 92–100). The four peptides were synthesized and found to exert bactericidal effects against the Gram-positive bacteria only. In order to understand the structural requirements for antibacterial activity, the amino acid sequence of the peptide VLVLDTDYK was modified. The replacement of the Asp (98) residue by Arg and the addition of a Lys residue at the C-terminus yielded the peptide VLVLDTRYKK which enlarged the bactericidal activity spectrum to the Gram-negative bacteria Escherichia coli and Bordetella bronchiseptica and significantly reduced the antibacterial capacity of the peptide toward Bacillus subtilis. By data base searches with the sequence VLVLDTRYKK a high homology was found with the peptide VLVATLRYKK (residues 55–64) of human blue-sensitive opsin, the protein of the blue pigment responsible for color vision. A peptide with this sequence was synthesized and assayed for bactericidal activity. VLVATLRYKK was strongly active against all the bacterial strains tested. Our results suggest a possible antimicrobial function of β-lactoglobulin after its partial digestion by endopeptidases of the pancreas and show moreover that small targeted modifications in the sequence of β-lactoglobulin could be useful to increase its antimicrobial function.  相似文献   

20.
Zelezetsky I  Pag U  Sahl HG  Tossi A 《Peptides》2005,26(12):2368-2376
In nature, alpha-helical antimicrobial peptides present the small and flexible residue glycine at positions 7 or 14 with a significant frequency. Based on the sequence of the non-proteinogenic alpha-helical model peptide P1(Aib7), with a potent, broad spectrum antimicrobial activity, six peptides were designed by effecting a single amino acid substitution to investigate how tuning the structural characteristics at position 7 could lead to optimization of selectivity without affecting antimicrobial activity against a broad panel of multidrug resistant bacterial and yeast indicator strains. The relationship between structural features (size/hydrophobicity of the side chain as well as conformation and flexibility) and biological activity, in terms of minimum inhibitory concentration, membrane permeabilization kinetics and lysis of red blood cells are discussed. On conversion of the peptide to proteinogenic residues, these principles allowed development of a potent antimicrobial peptide with a reduced cytotoxicity. However, while results suggest that both hydrophobicity of residue 7 and chain flexibility at this position can be modulated to improve selectivity, position 14 is less tolerant of substitutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号