首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The conditions in densely populated Bangladesh favor picornavirus transmission, resulting in a high rate of infection in the human population. Data suggest that nonhuman primates (NHP) may play a role in the maintenance and transmission of diverse picornaviruses in Bangladesh. At the Dhaka Zoo, multiple NHP species are caged in close proximity. Their proximity to other species and to humans, both zoo workers and visitors, provides the potential for cross-species transmission. To investigate possible interspecies and intraspecies transmission of picornaviruses among NHP, we collected fecal specimens from nine NHP taxa at the Dhaka Zoo at three time points, August 2007, January 2008, and June 2008. Specimens were screened using real-time PCR for the genera Enterovirus, Parechovirus, and Sapelovirus, and positive samples were typed by VP1 sequencing. Fifty-two picornaviruses comprising 10 distinct serotypes were detected in 83 fecal samples. Four of these serotypes, simian virus 19 (SV19), baboon enterovirus (BaEV), enterovirus 112 (EV112), and EV115, have been solely associated with infection in NHP. EV112, EV115, and SV19 accounted for 88% of all picornaviruses detected. Over 80% of samples from cages housing rhesus macaques, olive baboons, or hamadryas baboons were positive for a picornavirus, while no picornaviruses were detected in samples from capped langurs or vervet monkeys. In contrast to our findings among synanthropic NHP in Bangladesh where 100% of the picornaviruses detected were of human serotypes, in the zoo population, only 15% of picornaviruses detected in NHP were of human origin. Specific serotypes tended to persist over time, suggesting either persistent infection of individuals or cycles of reinfection.  相似文献   

2.
Sixty-six human enterovirus serotypes have been identified by serum neutralization, but the molecular determinants of the serotypes are unknown. Since the picornavirus VP1 protein contains a number of neutralization domains, we hypothesized that the VP1 sequence should correspond with neutralization (serotype) and, hence, with phylogenetic lineage. To test this hypothesis and to analyze the phylogenetic relationships among the human enteroviruses, we determined the complete VP1 sequences of the prototype strains of 47 human enterovirus serotypes and 10 antigenic variants. Our sequences, together with those available from GenBank, comprise a database of complete VP1 sequences for all 66 human enterovirus serotypes plus additional strains of seven serotypes. Phylogenetic trees constructed from complete VP1 sequences produced the same four major clusters as published trees based on partial VP2 sequences; in contrast to the VP2 trees, however, in the VP1 trees strains of the same serotype were always monophyletic. In pairwise comparisons of complete VP1 sequences, enteroviruses of the same serotype were clearly distinguished from those of heterologous serotypes, and the limits of intraserotypic divergence appeared to be about 25% nucleotide sequence difference or 12% amino acid sequence difference. Pairwise comparisons suggested that coxsackie A11 and A15 viruses should be classified as strains of the same serotype, as should coxsackie A13 and A18 viruses. Pairwise identity scores also distinguished between enteroviruses of different clusters and enteroviruses from picornaviruses of different genera. The data suggest that VP1 sequence comparisons may be valuable in enterovirus typing and in picornavirus taxonomy by assisting in the genus assignment of unclassified picornaviruses.Human enteroviruses (family Picornaviridae) infect millions of people worldwide each year, resulting in a wide range of clinical outcomes ranging from inapparent infection to mild respiratory illness (common cold), hand-foot-and-mouth disease, acute hemorrhagic conjunctivitis, aseptic meningitis, myocarditis, severe neonatal sepsis-like disease, and acute flaccid paralysis (reviewed in references 43 and 45). In the United States, enteroviruses are responsible for 30,000 to 50,000 meningitis hospitalizations per year as a result of 30 million to 50 million infections. Serologic studies have distinguished 66 human enterovirus serotypes on the basis of an antibody neutralization test (43), and additional antigenic variants have been defined within several of the serotypes on the basis of reduced or nonreciprocal cross-neutralization between prototype and variant strains (6, 8, 68, 71, 72). On the basis of their pathogenesis in humans and experimental animals, the enteroviruses were originally classified into four groups, polioviruses, coxsackie A viruses (CA), coxsackie B viruses (CB), and echoviruses, but it was quickly realized that there were significant overlaps in the biological properties of viruses in the different groups (8). The more recently isolated enteroviruses have been named with a system of consecutive numbers: EV68, EV69, EV70, and EV71 (42).A comparison of nucleotide and deduced amino acid sequences at the 5′ end of VP2 has identified four major phylogenetic groups within the Enterovirus genus: CA16-like viruses (cluster A), a CB-like group containing all CB and echoviruses as well as CA9 and EV69 (cluster B), poliovirus-like viruses (cluster C), and EV68 and EV70 (cluster D) (23, 24, 49, 53, 54, 73). However, pairwise alignments and phylogenetic analyses within these groups demonstrated that the VP2 sequence does not fully correlate with serotype, as viruses known to belong to the same serotype often failed to cluster together (2, 49). (E22 and E23 are genetically distinct from enteroviruses [24], and their reclassification into a separate genus has been proposed [45]).VP1 is the most external and immunodominant of the picornavirus capsid proteins (58). A number of major neutralization sites reside in the VP1 proteins of many picornaviruses (reviewed in references 40 and 44), but the specific epitopes responsible for serotype specificity and intratypic variation have not been identified. Similarly, the genetic correlates of serotype identity remain unknown. If the important serotype-specific neutralization sites reside in VP1, then the VP1 sequence or some portion thereof would be predicted to correlate with serotype. Studies on the three serotypes of poliovirus have shown that a partial VP1 sequence correlates well with serotype (32). In addition, genetic lineages based on the VP1 sequence can be used to define poliovirus reservoirs and chains of transmission (reviewed in reference 30). To test whether the VP1 sequence might be applied to the classification of nonpolio enteroviruses and to the analysis of the phylogenetic relationships among the human enteroviruses, we determined the complete VP1 nucleotide sequences for 47 human enterovirus prototypes and 10 well-characterized antigenic variants. These data, together with previously available sequences, comprise a database of complete VP1 sequences for all known human enterovirus serotypes and 12 natural antigenic variants. This database will be useful for molecular epidemiologic studies of enteroviral disease outbreaks, to obtain a better understanding of the genetic correlates of serotype, and for the development of enteroviral molecular diagnostic reagents.  相似文献   

3.
Recombination in circulating enteroviruses   总被引:7,自引:0,他引:7       下载免费PDF全文
Recombination is a well-known phenomenon for enteroviruses. However, the actual extent of recombination in circulating nonpoliovirus enteroviruses is not known. We have analyzed the phylogenetic relationships in four genome regions, VP1, 2A, 3D, and the 5' nontranslated region (NTR), of 40 enterovirus B strains (coxsackie B viruses and echoviruses) representing 11 serotypes and isolated in 1981 to 2002 in the former Soviet Union states. In the VP1 region, strains of the same serotype expectedly grouped with their prototype strain. However, as early as the 2A region, phylogenetic grouping differed significantly from that in the VP1 region and indicated recombination within the 2A region. Moreover, in the 5' NTR and 3D region, only 1 strain of 40 grouped with its prototype strain. Instead, we observed a major group in both the 5' NTR and the 3D region that united most (in the 5' NTR) or all (in the 3D region) of the strains studied, regardless of the serotype. Subdivision within that major group in the 3D region correlated with the time of virus isolation but not with the serotype. Therefore, we conclude that a majority, if not all, circulating enterovirus B strains are recombinants relative to the prototype strains, isolated mostly in the 1950s. Moreover, the ubiquitous recombination has allowed different regions of the enterovirus genome to evolve independently. Thus, a novel model of enterovirus genetics is proposed: the enterovirus genome is a stable symbiosis of genes, and enterovirus species consist of a finite set of capsid genes responsible for different serotypes and a continuum of nonstructural protein genes that seem to evolve in a relatively independent manner.  相似文献   

4.
RNA recombination has been shown to occur during circulation of enteroviruses, but most studies have focused on poliovirus. To examine the role of recombination in the evolution of the coxsackie B viruses (CVB), we determined the partial sequences of four genomic intervals for multiple clinical isolates of each of the six CVB serotypes isolated from 1970 to 1996. The regions sequenced were the 5'-nontranslated region (5'-NTR) (350 nucleotides [nt]), capsid (VP4-VP2, 416 nt, and VP1, approximately 320 nt), and polymerase (3D, 491 nt). Phylogenetic trees were constructed for each genome region, using the clinical isolate sequences and those of the prototype strains of all 65 enterovirus serotypes. The partial VP1 sequences of each CVB serotype were monophyletic with respect to serotype, as were the VP4-VP2 sequences, in agreement with previously published studies. In some cases, however, incongruent tree topologies suggested that intraserotypic recombination had occurred between the sequenced portions of VP2 and VP1. Outside the capsid region, however, isolates of the same serotype were not monophyletic, indicating that recombination had occurred between the 5'-NTR and capsid, the capsid and 3D, or both. Almost all clinical isolates were recombinant relative to the prototype strain of the same serotype. All of the recombination partners appear to be members of human enterovirus species B. These results suggest that recombination is a frequent event during enterovirus evolution but that there are genetic restrictions that may influence recombinational compatibility.  相似文献   

5.
Rectal swabs, throat swabs, fecal samples, tissues, and sera were collected from 334 adult and infant Kenya baboons (Papio cynocephalus) in captivity at this institution over a 5-year period. A total of 4,893 specimens were collected, resulting in the isolation of 582 viral isolates (11.9%). The month of November yielded the lowest isolation rate, while the month of January produced the highest rate. The most commonly isolated viruses in adults and infants were SV6 and SV23, followed by N125, SV15, and SV17 in that order in adults, and SA7, N125, SV15, V340, and SV17 in that order in infants. Nine serotypes, namely enteroviruses SV19, SV42, SA5, A13, and N203, as well as adenoviruses SV15, SV20, SV31, and SV37, were isolated only from adults. Two adenovirus serotypes, SA7 and V340, were recovered predominantly from infants.  相似文献   

6.
7.
The proposed viral genus human Cosavirus (HCoSV) consists of diverse picornaviruses found at high prevalence in the feces of children from developing countries. We sequenced four near-full length genomes and 45 partial VP1 region from HCoSV in human feces from healthy children and children with acute flaccid paralysis in Pakistan, Nigeria and Tunisia and from healthy and diarrhetic adults in Nepal. Genetic analyses of the near-full length genomes revealed presence of a new candidate cosavirus species provisionally labelled as species F (HCoSV-F). A HCoSV genome showed evidence of recombination between species D and E viruses at the P1/P2 junction indicating that these viruses may be reclassified as a single highly diverse species. Based on genetic distance criteria for assigning genotypes corresponding to neutralization serotypes in enteroviruses we identified 26 new HCoSV genotypes belonging to species A, D, and E. The detection of a large number of HCoSV genotypes based on still limited geographic sampling indicates that the phenotypic effects of cosaviruses on infected subjects are likely to be as highly diverse as those of human enteroviruses.  相似文献   

8.
Bovine enteroviruses isolated from cattle and other ruminants in various areas of the world were classified into three distinct serotypes by cross-neutralization tests using criteria established for the differentiation of human enteroviruses. According to Western blot analysis, however, immunodominant structural polypeptides VP1 of the viruses tested have common epitopes, recognized by antisera to each of the three serotypes. These findings indicate that non-neutralizing epitopes on VP1 are generally conserved. It is, therefore, conjectured that bovine enteroviruses were derived from a common ancestor.  相似文献   

9.
The sequences from a large part of the 5'-UTR of 21 coxsackie A virus (CAV) reference strains for which such data did not exist in the past were obtained. Those sequences, along with the respective available sequences from the rest of the CAV reference strains and many other enteroviruses, were compared. According to the results of this comparison, enteroviruses are classified into two genetic clusters on the basis of 5'-UTR, and CAVs are divided into these two clusters. Specifically, it was found that CAV1, -11, -13, -15, -17 to -22, and -24 are classified together with polioviruses and enterovirus 70, whereas the rest of the CAVs are classified along with coxsackie B viruses, echoviruses, and the rest of the other enteroviruses. No correlation between overall 5'-UTR identity and the currently recognized human enterovirus species was found. The phenomenon of "covariance" in the 5'-UTR was followed for the prediction of the possible secondary structure of the 5'-UTR of the CAVs sequenced in the present study.  相似文献   

10.
Computer-assisted analysis of the amino acid sequence of the product encoded by the sequenced 3' portion of the cricket paralysis virus (CrPV), an insect picornavirus, genome showed that this protein is homologous not to the RNA-directed RNA polymerases, as originally suggested, but to the capsid proteins of mammalian picornaviruses. Alignment of the CrPV protein sequence with those of picornavirus and calicivirus capsid proteins demonstrated that the sequenced portion of the insect picornavirus genome encodes the C-terminal part of VP3 and the entire VP1. Thus CrPV seems to have a genome organization distinct from that of other picornaviruses but closely resembling that of caliciviruses, with the capsid proteins encoded in the 3' part of the genome. On the other hand, the tentative phylogenetic trees generated from the VP3 alignment revealed grouping of CrPV with hepatitis A virus, a true picornavirus, not with caliciviruses. Thus CrPV may be a picornavirus with a calicivirus-like genome organization. Different options for CrPV genome expression are discussed.  相似文献   

11.
BACKGROUND: Coxsackievirus A9 (CAV9), a human pathogen causing symptoms ranging from common colds to fatal infections of the central nervous system, is an icosahedral single-stranded RNA virus that belongs to the genus Enterovirus of the family Picornaviridae. One of the four capsid proteins, VP1, includes the arginine-glycine-aspartate (RGD) motif within its C-terminal extension. This region binds to integrin alpha v beta 3, the only receptor for CAV9 to be conclusively identified to date. RESULTS: The crystal structure of CAV9 in complex with the antiviral compound WIN 51711 has been solved to 2.9 A resolution. The structures of the four capsid proteins, VP1 to VP4, resemble those of other picornaviruses. The antiviral compound is bound in the VP1 hydrophobic pocket, and it is possible that the pocket entrance contains a second WIN 51711 molecule. Continuous electron density for the VP1 N terminus provides a complete picture of the structure close to the fivefold axis. The VP1 C-terminal portion is on the outer surface of the virus and becomes disordered five-residues N-terminal to the RGD motif. CONCLUSIONS: The RGD motif is exposed and flexible in common with other known integrin ligands. Although CAV9 resembles coxsackie B viruses (CBVs), several substitutions in the areas implicated in CBV receptor attachment suggest it may recognise a different receptor. The structure along the fivefold axis provides new information on the uncoating mechanism of enteroviruses. CAV9 might bind a larger natural pocket factor than other picornaviruses, an observation of particular relevance to the design of new antiviral compounds.  相似文献   

12.
The molecular classification of the porcine enterovirus (PEV) groups II and III was investigated. The sequence of the almost complete PEV-8 (group II) genome reveals that this virus has unique L and 2A gene regions. A reclassification of this group into a new picornavirus genus is suggested. PEV group III viruses are typical enteroviruses. They differ from other enteroviruses by a prolonged stem-loop D of the 5'-cloverleaf structure.  相似文献   

13.
14.
Bovine enteroviruses belong to the family Picornaviridae. Little is known about their pathogenic potential; however, they cause asymptomatic infections in cattle and are excreted in feces. In the present study, viruses isolated from environmental samples were sequenced. According to phylogenetic analyses and standard picornavirus nomenclature, these isolates constitute a new type of bovine enterovirus serogroup A.  相似文献   

15.
The 65 human enterovirus serotypes are currently classified into five species: Poliovirus (3 serotypes), Human enterovirus A (HEV-A) (12 serotypes), HEV-B (37 serotypes), HEV-C (11 serotypes), and HEV-D (2 serotypes). Coxsackie A virus (CAV) serotypes 1, 11, 13, 15, 17, 18, 19, 20, 21, 22, and 24 constitute HEV-C. We have determined the complete genome sequences for the remaining nine HEV-C serotypes and compared them with the complete sequences of CAV21, CAV24, and the polioviruses. The viruses were most diverse in the capsid region (4 to 36% amino acid difference). A high degree of capsid sequence conservation (96% amino acid identity) suggests that CAV15 and CAV18 should be classified as strains of CAV11 and CAV13, respectively. In the 3CD region, CAV1, CAV19, and CAV22 differed from one another by only 1.2 to 1.4% and CAV11, CAV13, CAV17, CAV20, CAV21, CAV24, and the polioviruses differed from one another by only 1.2 to 3.6%. The two groups, however, differed from one another by 14.6 to 16.2%. The polioviruses as a group were monophyletic only in the capsid region. Only one group of serotypes (CAV1, CAV19, and CAV22) was consistently monophyletic in multiple genome regions. Incongruities among phylogenetic trees based on different genome regions strongly suggest that recombination has occurred between the polioviruses, CAV11, CAV13, CAV17, and CAV20. The close relationship among the polioviruses and CAV11, CAV13, CAV17, CAV20, CAV21, and CAV24 and the uniqueness of CAV1, CAV19, and CAV22 suggest that revisions should be made to the classification of these viruses.  相似文献   

16.
Fu  Xuemin  Wan  Zhenzhou  Li  Yanpeng  Hu  Yihong  Jin  Xia  Zhang  Chiyu 《中国病毒学》2020,35(1):21-33
Hand, foot and mouth disease(HFMD) is a major public health concern in China. The most predominant enteroviruses that cause HFMD have traditionally been attributed to enterovirus A71(EVA71) and coxsackievirus A16(CVA16). Since its first large outbreak in 2008, the dominant HFMD pathogens are constantly changing. In 2013 and 2015, CVA6 exceeded both EVA71 and CVA16 to become the leading cause of HFMD in some provinces. However, there still lacks a comprehensive overview on the molecular epidemiology and evolution of HFMD-related enteroviruses at the national level. In this study, we performed systematic epidemiological analyses of HFMD-related enteroviruses using the data of 64 published papers that met the inclusion criteria, and conducted phylogenetic analyses based on 12,080 partial VP1 sequences identified in China before 31 st June 2018. We found that EVA71 prevalence has decreased sharply but other enteroviruses have increased rapidly from 2008 to 2016 and that one subtype of each enterovirus is represented during the epidemic. In addition, four genotypes EVA71_C4, CVA16_B1, CVA6_D and CVA10_C are the most predominant enterovirus strains and collectively they cause over 90% of all HFMD cases in China according to the phylogenetic trees using representative partial VP1 sequences. These four major enterovirus genotypes have different geographical distributions, and they may cocirculate with other genotypes and serotypes. These results suggest that more molecular epidemiological studies should be performed on several enteroviruses simultaneously, and such information should have implications for virological surveillance, disease management, vaccine development and policy-making on the prevention and control of HFMD.  相似文献   

17.
The 5' untranslated regions (UTRs) of the RNA genomes of Flaviviridae of the Hepacivirus and Pestivirus genera contain internal ribosomal entry sites (IRESs) that are unrelated to the two principal classes of IRESs of Picornaviridae. The mechanism of translation initiation on hepacivirus/pestivirus (HP) IRESs, which involves factor-independent binding to ribosomal 40S subunits, also differs fundamentally from initiation on these picornavirus IRESs. Ribosomal binding to HP IRESs requires conserved sequences that form a pseudoknot and the adjacent IIId and IIIe domains; analogous elements do not occur in the two principal groups of picornavirus IRESs. Here, comparative sequence analysis was used to identify a subset of picornaviruses from multiple genera that contain 5' UTR sequences with significant similarities to HP IRESs. They are avian encephalomyelitis virus, duck hepatitis virus 1, duck picornavirus, porcine teschovirus, porcine enterovirus 8, Seneca Valley virus, and simian picornavirus. Their 5' UTRs are predicted to form several structures, in some of which the peripheral elements differ from the corresponding HP IRES elements but in which the core pseudoknot, domain IIId, and domain IIIe elements are all closely related. These findings suggest that HP-like IRESs have been exchanged between unrelated virus families by recombination and support the hypothesis that RNA viruses consist of modular coding and noncoding elements that can exchange and evolve independently.  相似文献   

18.
The sera obtained at 6 samplings between June 1981 and May 1982 from 30 children in a children's home were tested for neutralizing antibodies to coxsackieviruses B1 through B5, echovirus serotypes 1, 2, 4, 5, 6, 7, 11, 19, 24, 30 and to enterovirus type 71. Another group of examined children comprised 19 individuals from the children's home and 63 children from families who enrolled as participants of a summer camp recreation. Samples of their sera were obtained at the beginning and the end of camping in July and August of 1981. Virus isolations were attempted in 150 stool specimens collected at various times during the observation period, and in specimens of summer camp swimming pool water collected 2-3 times a week. Overall, 10 strains of enterovirus (CB2, E2, E19, E24) were isolated from stool, but none from swimming pool water. Serologically, fourfold or greater increases in titre of antibody to at least one of the enteroviruses tested were observed 17 children, of whom 4 children showed antibody titre increases simultaneously to two enterovirus serotypes. None of the present viruses showed a tendency to mass spread. Some of the examined children showed the presence of serum antibody to enterovirus before its isolation from stool. Eight of the ten children positive for enterovirus in stool did not react by significant increases in titre of antibodies. Enteroviruses were more frequently isolated in children's home in autumn than in summer camp. Clinically, all virologically or serologically demonstrated enteroviral infections were asymptomatic. Children's home children had a significantly higher prevalence of antibodies to enteroviruses than children from families. Presumably, asymptomatic infections with nonpolio enteroviruses among children appear to be far more frequent than the results of neutralization tests in the study indicated. Moreover, enteroviruses may apparently circulate among humans who are seropositive for the respective enterovirus serotype.  相似文献   

19.
Echovirus 22 is an atypical enterovirus   总被引:14,自引:3,他引:11       下载免费PDF全文
Although echovirus 22 (EV22) is classified as an enterovirus in the family Picornaviridae, it is atypical of the enterovirus paradigm, typified by the polioviruses and the coxsackie B viruses. cDNA reverse transcribed from coxsackievirus B3 (CVB3) RNA does not hybridize to genomic RNA of EV22, and conversely, cDNA made to EV22 does not hybridize to CVB3 genomic RNA or to molecular clones of CVB3 or poliovirus type 1. EV22 cDNA does not hybridize to viral RNA of encephalomyocarditis virus or to a molecular clone of Theiler's murine encephalomyelitis virus, members of the cardiovirus genus. The genomic RNA of EV22 cannot be detected by the polymerase chain reaction using generic enteroviral primers. EV22 does not shut off host cell protein synthesis, and the RNA of EV22 is efficiently translated in vitro in rabbit reticulocyte lysates. Murine enterovirus-immune T cells recognize and proliferate against EV22 as an antigen in vitro, demonstrating that EV22 shares an epitope(s) common to enteroviruses but not found among other picornaviruses.  相似文献   

20.
The polypeptide composition of labeled BK virus was compared with that of simian virus 40 (SV40) and polyoma virus by co-electrophoresis of disrupted virions in polyacrylamide gels containing approximately 73% of the capsid protein and had a molecular weight of 39,000. It was smaller than VP1 of SV40 and polyoma virus. The other polypeptides of BK virus were similar in molecular weight to those of SV40. A comparison of the proteins of BK virus and SV40 iodinated with chloramine T before and after disruption in alkaline buffer at pH 10.5 revealed differences between the two viruses in the number and distribution of tyrosines available for iodination. The tryptic peptides of VP1, VP3, VP4, and VP5 combined of SV40 were compared with those of the same polypeptides of BK virus. Among the 19 peptides of VP1 resolved, only two were common to both viruses. The analyses of VP4 and VP5, the histone-like proteins, however, showed more similarity between the viruses, with 6 of 15 resolved peptides in common. The tryptic digests of VP3 were completely different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号