首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. An inhibitor of collagenase of apparent mol.wt. 28000 was isolated from term human amniotic fluid. 2. It is active against mammalian collagenases from a number of species and tissues as well as other mammalian metalloproteinases, but has no activity against bacterial metalloproteinases. 3. Activity is destroyed by treatment with either trypsin or 4-aminophenylmercuric acetate, by heat, and by reduction and carboxymethylation. 4. All the properties observed suggest that it is similar to the synthesized tissue inhibitor of metalloproteinases.  相似文献   

2.
Soluble fibronectin isolated from human plasma and amniotic fluid by gelatin-Sepharose affinity chromatography was tested for inhibitory activity against specific collagenase secreted by human and rabbit fibroblasts. The fibronectin preparation derived from plasma showed little inhibition, but the one derived from amniotic fluid contained potent inhibitory activity against collagenase. This activity was separated from fibronectin on a DE-52 cellulose column and did not cross-react with antibodies to fibronectin. The inhitor was a glycoprotein that was partially purified from amniotic fluid by concanavalin A-Sepharose affinity chromatography. Inhibition was irreversible and enzyme activity was not recovered after reaction with latent or activated collagenase by either trypsin or organomercurial treatment.  相似文献   

3.
Comparative studies on amniotic fluid and plasma fibronectins.   总被引:3,自引:1,他引:2       下载免费PDF全文
Human fibronectin was isolated from second-trimester amniotic fluid, from amniotic fluid obtained at term and from adult plasma. The amniotic-fluid fibronectins had a slightly higher apparent molecular weight on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis than the plasma fibronectin. Early- and late-amniotic-fluid fibronectin had 9.5 and 9.6% carbohydrate respectively, whereas plasma fibronectin had 5.8%. The amniotic-fluid fibronectins had similar mannose and sialic acid contents to plasma fibronectin, but greater amounts of glucosamine, galactosamine, galactose and fucose. There were no detectable differences in the amino-acid composition of amniotic-fluid and plasma fibronectins, and the patterns of peptides obtained after tryptic digestion of fibronectin from the two sources showed extensive similarities. Fibronectins from plasma and amniotic fluid were equally active in promoting cell attachment and were immunologically indistinguishable. These results show that fibronectin from amniotic fluid is more heavily glycosylated than plasma fibronectin or previously analysed fibronectins from cultured fibroblasts. The observed differences in glycosylation may be related to cell type and/or stage of development.  相似文献   

4.
5.
The production of collagenase by human skin explants in culture is prevented by 10?8 M dexamethasone, 5·10?4 M dibutyryl cyclic AMP, or 2.5· 10?3 M theophylline. Decreases in collagenase activity are paralleled by reductions in the degradation of explant collagen during the culture period. Progesterone, which effectively inhibits collagenase production in rat uterine explant cultures, has no effect on human skin explants. The inhibition by cyclic AMP is nucleotide specific. When partially inhibitory concentrations of dexamethasone and dibutyryl cyclic AMP, or dexamethasone and theophylline, are added to culture medium together, the resultant inhibition is that predicted by additivity. Synergistic inhibition, as observed in rat uterus between progesterone and dibutyryl cyclic AMP, fails to occur.Dexamethasone inhibits the production of collagenase by cultured explants of rat uterus, with complete inhibition occurring at 10?7 M steroid. Synergism between glucocorticoids and dibutyryl cyclic AMP or between dexamethasone and progesterone could not be demonstrated in the uterine culture system. These results suggest the existence of three regulatory systems for the control of collagenase production in mammalian tissues, and that cooperativity between systems may occur on a tissue-specific basis.  相似文献   

6.
7.
Phorbol myristate acetate (PMA), a tumor promotor known to stimulate collagenase production in fibroblasts and endothelial cells, was examined with regard to its ability to regulate the expression of the collagenase inhibitor secreted by human skin fibroblasts. Confluent human skin fibroblasts were incubated with concentrations of PMA ranging from 10(-11) to 10(-7) M, and the conditioned medium was analyzed by enzyme-linked immunosorbent assay for both immunoreactive collagenase and collagenase inhibitor. PMA stimulated the production of both collagenase and collagenase inhibitor in several cell lines to maximal rates that were very similar, 300 to 350 vs 230 to 330 pmol 10 micrograms DNA-1 48 h-1, respectively. Due to differences in the basal levels of expression of these proteins, such rates reflected a two- to sevenfold stimulation in collagenase production, in comparison to a more uniform two- to threefold enhancement in inhibitor synthesis. Production of inhibitor was 50% of maximal at 7 X 10(-9) M and maximal at 10(-7) M phorbol. This concentration-dependent effect was very similar to that observed for collagenase expression. Total protein synthesis by the phorbol-conditioned cells, as studied by incorporation of [3H]leucine into newly synthesized protein, was not significantly increased, nor was cellular DNA content. The onset of the effect of PMA on inhibitor production occurred between 4 and 8 h, was maximal by 8 h, and continued undiminished for at least another 64 h. After the first 8 h, inhibitor production continued at a roughly constant rate of approximately 10 pmol 10 micrograms DNA-1 h-1. Interestingly, following the removal of phorbol from culture medium, such fibroblasts continued to produce increased quantities of inhibitor protein for at least 72 h. Metabolic labeling studies in which fibroblasts were exposed to [3H]leucine followed by immunoprecipitation using inhibitor-specific antibody suggested that stimulation of inhibitor production by PMA was mediated via an increased synthesis of new inhibitor protein. Therefore, in response to the tumor promoter, PMA collagenase and collagenase inhibitor expression by human skin fibroblasts appear to be coregulated.  相似文献   

8.
D Grobelny  L Poncz  R E Galardy 《Biochemistry》1992,31(31):7152-7154
The hydroxamic acid HONHCOCH2CH(i-Bu)CO-L-Trp-NHMe, isomer 6A (GM 6001), inhibits human skin fibroblast collagenase with Ki of 0.4 nM using the synthetic thiol ester substrate Ac-Pro-Leu-Gly-SCH(i-Bu)CO-Leu-Gly-OEt at pH 6.5. The other isomer, 6B, which has the opposite configuration at the CH2CH(i-Bu)CO alpha-carbon atom, has a Ki of 200 nM for this enzyme. GM 6001 is one of the most potent inhibitors of human skin fibroblast collagenase yet reported. GM 6001 has a Ki of 20 nM against thermolysin and Pseudomonas aeruginosa elastase. Isomer 6B has a Ki of 7 nM against thermolysin and 2 nM against the elastase. 6A and 6B are the most potent hydroxamate inhibitors reported for these bacterial enzymes. The pattern of inhibition for all three enzymes suggests that isomer 6A is the (R,S) compound, stereochemically analogous to the L,L-dipeptide, and isomer 6B is the (S,S) compound, analogous to the DL-dipeptide. The tolerance of the D configuration by thermolysin and the elastase allows these inhibitors to discriminate between the human and bacterial enzymes simply by inversion of configuration at the CH2CH(i-Bu)CO alpha-carbon atom. Substitution of the potential metal liganding groups carboxylate and hydrazide for the hydroxamate group yields much weaker inhibitors for all three enzymes.  相似文献   

9.
10.
11.
12.
Human skin procollagenase has been isolated, in pure form, from the medium of fibroblasts cultured in the presence or absence of added serum. Purification was achieved using a combination of cation-exchange (phosphocellulose or carboxymethylcellulose) and gel-filtration chromatography. Two forms (60 000 and 55 000 daltons) of the procollagenase were detected by electrophoresis in sodium dodecyl sulfatepolyacrylamide gels and could be separated by chromatography on Ultrogel AcA-44. Each form was converted to active enzyme by trypsin, producing species of 50 000 and 45 000 daltons, respectively. An autoactivation process also occurred, which yielded active enzyme without a detectable change in molecular weight. Procollagenase also was found in organ cultures of human skin but only when serum was added to the medium. This suggests that a serum-inhibitable proteolytic system is present in these cultures which, like trypsin, converts procollagenase to the active enzyme forms that can be isolated from serum-free organ culture medium. The collagenase species obtained from either fibroblast or organ culture medium were chromatographically and electrophoretically identical.  相似文献   

13.
The sequence specificity of human skin fibroblast collagenase has been investigated by measuring the rate of hydrolysis of 16 synthetic octapeptides covering the P4 through P4' subsites of the substrate. The choice of peptides was patterned after potential collagenase cleavage sites (those containing either the Gly-Leu-Ala or Gly-Ile-Ala sequences) found in types I, II, and III collagens. The initial rate of hydrolysis of the P1-P1' bond of each peptide has been measured by quantitating the concentration of amino groups produced upon cleavage after reaction with fluorescamine. The reactions have been carried out under first-order conditions ([S] much less than KM) and kcat/KM values have been calculated from the initial rates. The amino acids in subsites P3 (Pro, Ala, Leu, or Asn), P2 (Gln, Leu, Hyp, Arg, Asp, or Val), P1' (Ile or Leu), and P4' (Gln, Thr, His, Ala, or Pro) all influence the hydrolysis rates. However, the differences in the relative rates observed for these octapeptides cannot in themselves explain why fibroblast collagenase hydrolyzes only the Gly-Leu and Gly-Ile bonds found at the cleavage site of native collagens. This supports the notion that the local structure of collagen is important in determining the location of the mammalian collagenase cleavage site.  相似文献   

14.
15.
16.
17.
1. The neutral collagenase released into the culture medium by explants of human skin tissue was purified by ultrafiltration and column chromatography. The final enzyme preparation had a specific activity against thermally reconstituted collagen fibrils of 32mug of collagen degraded/min per mg of enzyme protein, representing a 266-fold increase over that of the culture medium. Electrophoresis in polyacrylamide disc gels showed it to migrate as a single protein band from which enzyme activity could be eluted. Chromatographic and polyacrylamide-gel-elution experiments provided no evidence for the existence of more than one active collagenase. 2. The molecular weight of the enzyme estimated from gel filtration and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was approx. 60000. The purified collagenase, having a pH optimum of 7.5-8.5, did not hydrolyse the synthetic collagen peptide 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-d-Arg-OH and had no non-specific proteinase activity when examined against non-collagenous proteins. 3. It attacked undenatured collagen in solution at 25 degrees C, producing the two characteristic products TC(A)((3/4)) and TC(B)((1/4)). Collagen types I, II and III were all cleaved in a similar manner by the enzyme at 25 degrees C, but under similar conditions basement-membrane collagen appeared not to be susceptible to collagenase attack. At 37 degrees C the enzyme attacked gelatin, producing initially three-quarter and one-quarter fragments of the alpha-chains, which were degraded further at a lower rate. As judged by the release of soluble hydroxyproline peptides and electron microscopy, the purified enzyme degraded insoluble collagen derived from human skin at 37 degrees C, but at a rate much lower than that for reconstituted collagen fibrils. 4. Inhibition of the skin collagenase was obtained with EDTA, 1,10-phenanthroline, cysteine, dithiothreitol and sodium aurothiomaleate. Cartilage proteoglycans did not inhibit the enzyme. The serum proteins alpha(2)-macroglobulin and beta(1)-anti-collagenase both inhibited the enzyme, but alpha(1)-anti-trypsin did not. 5. The physicochemical and enzymic properties of the skin enzyme are discussed in relation to those of other human collagenases.  相似文献   

18.
Sutured incisional wounds made in fetal sheep and rabbits heal without scarring. Fetal sheep excisional wounds can close by contraction, but those in fetal rabbits do not. In vivo and in vitro evidence suggests that rabbit amniotic fluid inhibits wound contraction. The question arises: does sheep amniotic fluid promote wound contraction because their fetal wounds close by contraction? Sheep amniotic fluid (SAF) from 100 and 125 days gestation was tested in fibroblast populated collagen lattice (FPCL) system, an in vitro model of wound contraction. SAF stimulated FPCL contraction in a dose responsive manner. SAF from a 100 day fetus was more stimulating than a 125 day SAF. SAF enhanced FPCL contraction in the presence or absence of serum. SAF was fractionated by size, using column chromatography. It yielded a fraction with an estimated molecular weigh near 40,000 daltons, which stimulated FPCL contraction. The factor was inactivated by proteolytic digestion and heat denaturation. This protein fraction which stimulates FPCL contraction is not related to (1) actin-myosin filaments enhanced contraction by ATP-induced cell contraction, (2) promotion of fibroblast elongation on glass surface or in collagen, or (3) increased cell number by enhanced fibroblast duplication in a collagen matrix. A mechanism for SAF promotion of FPCL contraction was investigated but not identified.  相似文献   

19.
20.
We developed a two-step purification system to characterize alpha fetoprotein (AFP) in early gestation amniotic fluid and late gestation fetal serum or cord blood from monkey and human. It involves only two chromatographic steps, allows preparative purification using up to 12 ml of starting sample, can purify up to 350 micrograms of AFP at one time, and can be used to purify both fetal serum or amniotic fluid AFP from two different species. This procedure will allow detailed biochemical analysis of purified AFP from different stages of fetal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号