首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 510 毫秒
1.
Abstract: Acute nicotine administration stimulated [3H]norepinephrine ([3H]NE) release from cultured fetal locus coeruleus (LC) cells. The effect was concentration dependent, with an EC50 of 0.9 µ M , and was abolished by removal of calcium from, or addition of tetrodotoxin (500 n M ) to, the assay buffer. Other nicotinic receptor agonists stimulated [3H]NE release, with the rank order of potency being (±)-epibatidine > (−)-nicotine > 1,1-dimethyl-4-phenylpiperazinium (DMPP). Whereas (−)-nicotine and (±)-epibatidine exhibited equal maximal responses, DMPP was a partial agonist and (−)-cytisine had no agonist activity. Nicotine-stimulated release of [3H]NE was blocked by nicotinic receptor antagonists, with an order of potency of mecamylamine > lobeline > cytisine > methyllycaconitine > dihydro-β-erythroidine. The pharmacological profile of this nicotinic receptor is largely consistent with that described previously for an α4β2 subunit combination, although discrepancies in the efficacies of agonists were observed. No additivity in NMDA- and nicotine-stimulated [3H]NE release was observed, suggesting a common signal transduction mechanism. However, the pharmacological characteristics of MK-801 blockade of nicotine-induced responses were not consistent with those of an NMDA receptor. We therefore conclude that nicotine directly releases [3H]NE from LC cells and does not act indirectly via activation of glutamate release.  相似文献   

2.
Abstract: Sequence variation was found in cDNA coding for the extracellular domain of the rat γ-aminobutyric acid type A (GABAA) receptor α6 subunit. About 20% of polymerase chain reaction (PCR)-amplified α6 cDNA prepared from rat cerebellar mRNA lacked nucleotides 226–255 as estimated by counting single-stranded phage plaques hybridized specifically to the short (α6S) and long (wild-type) forms of the α6 mRNA. Genomic PCR revealed an intron located upstream of the 30-nucleotide sequence. Both splice forms were detected in the cerebellum by in situ hybridization. Recombinant receptors, resulting from coexpression of the α6S subunit with the GABAA receptor β2 and γ2 subunits in human embryonic kidney 293 cells, were inactive at binding [3H]muscimol and [3H]Ro 15-4513. In agreement, injection of complementary RNAs encoding the same subunits into Xenopus oocytes produced only weak GABA-induced currents, indistinguishable from those produced by β2γ2 receptors. Therefore, the 10 amino acids encoded by the 30-nucleotide fragment may be essential for the correct assembly or folding of the α6 subunit-containing receptors.  相似文献   

3.
Abstract: For a study of the underlying mechanisms of a possible interaction between ethanol and nicotinic receptors during ethanol dependence, the aim of this work was to investigate the effect of chronic ethanol exposure on nicotinic receptor subtypes in a transfected fibroblast cell line (M10 cells) stably expressing α4β2 nicotinic receptor subtype and an SH-SY5Y neuroblastoma cell line expressing α3, α5, α7, β2, and β4 nicotinic acetylcholine receptor (nAChR) subunits. A significant dose-related decrease (−30–80%) in number of [3H]nicotine binding sites was observed in ethanol-treated (25–240 m M ) compared with untreated M10 cells. Similarly, 4-day treatment with ethanol in concentrations relevant to chronic alcoholism (100 m M ) decreased the number of nicotinic receptor binding sites in the SH-SY5Y cells when measured using [3H]epibatidine. When M10 cells were chronically treated with nicotine, ethanol partly inhibited the up-regulation of nicotinic receptors when present in the cells together with nicotine. Chronic treatment for 4 days with 100 m M ethanol significantly decreased the mRNA level for the α3 nAChR subunit (−39%), while the mRNA levels for the α7 (+30%) and α4 (+22%) subunits were significantly increased. Chronic ethanol treatment did not affect the mRNA levels for the β2 nAChR subunit. Changes in the levels of nAChR protein and mRNA may have adaptive significance and be involved in the development of dependence, tolerance, and addiction to chronic ethanol and nicotine exposure. They also may be targets for therapeutic strategies in the treatment of ethanol and nicotine dependence.  相似文献   

4.
Abstract— [3H]β-Alanine was accumulated by frog spinal cord slices by two transport components with estimated Km values of 31 M ('high-affinity') and 11 HIM ('low affinity') respectively. The high affinity uptake exhibited sodium ion and energy dependence, temperature sensitivity, had a very low Vmax (10.4 nmol/g/min) compared to GABA and glycine, was competitively inhibited by GABA (Kt 2 M), and was significantly reduced by the presence of glycine and of taurine in the incubating medium.
When slices preloaded with [3H]β-alanine were superfused with medium containing depolarizing concentrations of potassium ions, there was a small, but consistent, increase in [3H]β-alanine efflux: 1.4 times prestimulation rates in 40 mM potassium. When the superfusate was altered by omission of calcium and addition of concentrations of magnesium (10 mm), manganese (1 mM), and cobalt (1 mM) ions sufficient to block reflex transmission in the isolated in vitro frog cord, the potassium-evoked release was not blocked. Release was decreased by lanthanum ions (1 mM). Release of [3H]GABA and [3H]glycine in parallel experiments was inhibited by magnesium, manganese, cobalt and lanthanum. Veratridine significantly increased the release of [3H]GABA and [3H]glycine but not of [3H]β-alanine.
These observations demonstrate the non-specificity of β-alanine uptake and the unconventional nature of the calcium-dependence of β-alanine release and therefore do not lend support to the hypothesis that β-alanine functions as a neurotransmitter in frog spinal cord.  相似文献   

5.
Abstract: In a previous report, we showed that the enantiomers of α- and β-methylcholine inhibited choline uptake with Stereoselectivity, but that their transport by the choline carrier of nerve terminals showed stereospecificity. The present experiments used the same choline analogues to determine if either of the above characteristics pertains to their ability to interact with the [3H]-hemicholinium-3 binding site present on striatal membranes and synaptosomes. [3H]Hemicholinium-3 binding to striatal membranes could be inhibited stereoselectively by the enantiomers of β-methylcholine, but R (+)-α-methyl-choline was little better than its enantiomer in this test. However, [3H]hemicholinium-3 binding to striatal synaptosomes was inhibited stereoselectively by the enantiomers of both α- and β-methylcholine. This difference between the properties of [3H]hemicholinium-3 binding to membranes or to synaptosomes appears related to the presence of two ligand binding states. The [3H]hemicholinium-3 binding site could be shifted to a low-affinity state by ATP treatment and to a high-affinity state by EDTA washing. When the [3H]hemicholinium-3 binding site existed in its low-affinity state, binding was inhibited stereoselectively by the enantiomers of both a- and β-methylcholine, but when shifted to its high-affinity state, it was inhibited stereoselectively only by the enantiomers of β–methylcholine. We conclude that hemicholinium-3 interacts with the substrate recognition site of the high-affinity choline transporter, but that the Stereoselectivity of this site changes depending on its affinity state.  相似文献   

6.
Abstract: The characteristics of β-alanine transport at the blood-brain barrier were studied by using primary cultured bovine brain capillary endothelial cells. Kinetic analysis of the β-[3H]alanine transport indicated that the transporter for β-alanine functions with Kt of 25.3 ± 2.5 µ M and J max of 6.90 ± 0.48 nmol/30 min/mg of protein in the brain capillary endothelial cells. β-[3H]Alanine uptake is mediated by an active transporter, because metabolic inhibitors (2,4-dinitrophenol and NaN3) and low temperature reduced the uptake significantly. Furthermore, the uptake of β-[3H]alanine required Na+ and Cl in the external medium. Stoichiometric analysis of the transport demonstrated that two sodium ions and one chloride ion are associated with one β-alanine molecule. The Na+ and Cl-dependent uptake of β-[3H]alanine was stimulated by a valinomycin-induced inside-negative K+-diffusion potential. β-Amino acids (β-alanine, taurine, and hypotaurine) inhibited strongly the uptake of β-[3H]alanine, whereas α- and γ-amino acids had little or no inhibitory effect. In ATP-depleted cells, the uptake of β-[3H]alanine was stimulated by preloading of β-alanine or taurine but not l -leucine. These results show that β-alanine is taken up by brain capillary endothelial cells, via the secondary active transport mechanism that is common to β-amino acids.  相似文献   

7.
Abstract: The adrenergic regulation of histamine release was studied in rat brain slices labeled with L-[3H]histidine. Noradrenaline in increasing concentrations progressively inhibited K+-evoked [3H]histamine release from cortical slices, whereas phenylephrine and isoprenaline were ineffective. Yohimbine, a preferential α2-adrenoceptor antagonist, reversed the noradrenaline effect in an apparently competitive manner and with a mean K i value of 30 n M . Phentolamine reversed the noradrenaline effect with a similar potency, whereas propranolol was ineffective. The imidazolines clo-nidine and oxymetazoline acted as partial agonists, oxymeta-zoline even behaving as an apparent antagonist. In vivo clo-nidine also inhibited [3H]histamine formation in cerebral cortex, an effect reversed by the administration of yohimbine. However, yohimbine failed to increase significantly [3H]histamine release in vitro and [3H]histamine formation in vivo, suggesting that adrenergic receptors are not activated by endogenous noradrenaline released under basal conditions. It is concluded that adrenergic α2-adrenoceptors presumably located on histaminergic axons control release and synthesis of histamine in the brain.  相似文献   

8.
Abstract: The pentameric subunit composition of a large population (36%) of the cerebellar granule cell GABAA receptors that show diazepam (or clonazepam)-insensitive [3H]Ro 15-4513 binding has been determined by immunoprecipitation with subunit-specific antibodies. These receptors have α6, α1, γ2S, γ2L, and β2 or β3 subunits colocalizing in the same receptor complex.  相似文献   

9.
Abstract: Progesterone and its A-ring reduced metabolites are allosteric activators of GABAA receptors. The studies reported here examined the effects of these steroids on brain nicotinic receptors using an 86Rb+ efflux assay that likely measures the function of α4β2-type nicotinic receptors and [3H]dopamine release, which may be modulated by an α3-containing nicotinic receptor. Both of the A-ring reduced metabolites of progesterone were noncompetitive inhibitors of both assays, whereas progesterone inhibited only the 86Rb+ efflux assay. The 86Rb+ efflux assay was slightly more sensitive than was the dopamine release assay to steroid inhibition. Inhibition developed slowly for both assays ( t 1/2 = 0.4 min) and was reversed even more slowly ( t 1/2 = 10–15 min). Steroid addition did not alter either the rate of association of [3H]nicotine binding to brain membranes, nor was equilibrium binding changed. These findings argue that neurosteroids are allosteric inhibitors of brain nicotinic receptors.  相似文献   

10.
Abstract: cis -4-Aminocrotonic acid (CACA; 100 µ M ), an analogue of GABA in a folded conformation, stimulated the passive release of [3H]GABA from slices of rat cerebellum, cerebral cortex, retina, and spinal cord and of β-[3H]alanine from slices of cerebellum and spinal cord without influencing potassium-evoked release. In contrast, CACA (100 µ M ) did not stimulate the passive release of [3H]taurine from slices of cerebellum and spinal cord or of d -[3H]aspartate from slices of cerebellum and did not influence potassium-evoked release of [3H]taurine from the cerebellum and spinal cord and d -[3H]aspartate from the cerebellum. These results suggest that the effects of CACA on GABA and β-alanine release are due to CACA acting as a substrate for a β-alanine-sensitive GABA transport system, consistent with CACA inhibiting the uptake of β-[3H]alanine into slices of rat cerebellum and cerebral cortex. The observed K i for CACA against β-[3H]alanine uptake in the cerebellum was 750 ± 60 µ M . CACA appears to be 10-fold weaker as a substrate for the transporter system than as an agonist for the GABAc receptor. The effects of CACA on GABA and β-alanine release provide indirect evidence for a GABA transporter in cerebellum, cerebral cortex, retina, and spinal cord that transports GABA, β-alanine, CACA, and nipecotic acid that has a similar pharmacological profile to that of the GABA transporter, GAT-3, cloned from rat CNS. The structural similarities of GABA, β-alanine, CACA, and nipecotic acid are demonstrated by computer-aided molecular modeling, providing information on the possible conformations of these substances being transported by a common carrier protein.  相似文献   

11.
Abstract: Coated vesicles (CVs) isolated from bovine striatal tissue were examined to determine whether they are associated with dopamine signal systems consisting of dopamine D1 and D2 receptors, G proteins, and adenylate cyclase. Dopamine receptors in CVs were characterized by a dopamine D1 receptor antagonist, [3H]SCH 23390, and a dopamine D2 receptor antagonist, [3H]-spiroperidol. The bindings of both ligands were specifically saturable and reversible with a dissociation constant ( K D) of 0.65 and 0.5 n M , respectively. Dopaminergic antagonists and agonists inhibited the specific bindings of [3H]SCH 23390 and [3H]spiroperidol in a stereoselective and concentration-dependent manner with an appropriate rank order potency for dopamine D1 or D2 receptors. The regulations of the agonist binding by guanyl-5-ylimidodiphosphate were observed. ADP ribosylation of the CVs with [32P]NAD demonstrated predominant labeling of bands of Mr 47,000–52,000, 42,000–45,000, and 40,000-39,000, which corresponded to the known molecular weights of the α subunits of Gs and Gi proteins. The presence of α and β subunits of G proteins in the CVs was also confirmed by immunoblotting assay. Adenylate cyclase activity, which was stimulated by SKF 38393 and inhibited by dopamine D2 receptor agonists, was present in the CVs. These findings suggest that the dopamine D1 and D2 receptors in the CVs couple with adenylate cyclase via Gs/Gi protein.  相似文献   

12.
Abstract: Most general anesthetics produce two distinct actions at GABAA receptors. Thus, these drugs augment GABA-gated chloride currents (referred to as an indirect action) and, at higher concentrations, elicit chloride currents in the absence of GABA (referred to as a direct action). Because a β subunit appears to be required for the direct action of intravenous anesthetics in recombinant GABAA receptors, site-directed mutagenesis of the β3 subunit was performed to identify amino acid residues that are critical for this action. In HEK293 cells expressing a prototypical GABAA receptor composed of α1β3γ2 subunits, mutation of amino acid 290 from Asn to Ser dramatically reduced both etomidate-induced chloride currents and its ability to stimulate [3H]flunitrazepam binding. By contrast, the ability of etomidate to augment GABA-gated chloride currents and GABA-enhanced [3H]flunitrazepam binding was retained. The demonstration that the direct, but not the indirect, actions of etomidate are dependent on β3(Asn290) indicates that the dual actions of this intravenous anesthetic at GABAA receptors are mediated via distinct loci.  相似文献   

13.
Abstract: Recombinant GABAA receptors, expressed from α-, β-, and γ2-subunits, are diazepam-insensitive when the α-subunit is either α4 or α6. In situ, diazepam-insensitive receptors containing the α6-subunit are almost exclusively expressed in the granule cell layer of the cerebellum. However, diazepam-insensitive receptors are also expressed in forebrain areas. Here, we report on the presence of diazepam-insensitive GABAA receptors in various brain areas containing the α4-subunit. GABAA receptors immunoprecipitated with a newly developed α4-subunit-specific antiserum displayed a drug binding profile that was indistinguishable from those of α4β2γ2-recombinant receptors and diazepam-insensitive [3H]Ro 15-4513 binding sites in rat brain membranes. In addition, α4-subunit containing receptors and forebrain diazepam-insensitive receptors are present at comparably low abundance in rat brain and exhibit virtually identical patterns of distribution. Analysis of the subunit architecture of α4-subunit containing receptors revealed that the α4-subunit contributes to several receptor subtypes. Depending on the brain region, the α4-subunit can be coassembled with a second type of α4-subunit variant being α1, α2, or α3. The data demonstrate that native receptors containing the α4-subunit are structurally heterogeneous, expressed at very low abundance in the brain, and display the drug binding profile of diazepam-insensitive [3H]Ro 15-4513 binding sites. Pharmacologically, these receptors may contribute to the actions of nonclassical ligands such as Ro 15-4513 and bretazenil.  相似文献   

14.
Abstract— Slices of rat cerebral cortex were labelled by incubation with [3H]γ-aminobutyric acid (GABA) and homogenized in isotonic sucrose. The subcellular distributions of endogenous GAB A, [3H]GABA and glutamate decarboxylase (GAD) were studied by density gradient centrifugation. The subcellular distributions of the labelled and endogenous amino acid were remarkably similar, indicating that [3H]GABA is taken up into the endogenous GABA pool. About 40 per cent of both endogenous and [3H]GABA were recovered in particles which were tentatively identified as synaptosomes from their equilibrium density and sensitivity to osmotic shock. In slices labelled with [3H]GABA and [14C]α-aminoisobutyric (AIB) acid, significantly more [3H]GABA was recovered in paniculate fractions than [14C]AIB. About 80 per cent of the enzyme GAD was also recovered in the same particle fractions which contained [3H]GABA and endogenous GABA. Evidence is presented which suggests that a loss of particle-bound GABA occurs during subcellular fractionation procedures.  相似文献   

15.
Abstract: We found that the binding of [3H]prazosin, a selective ligand for α1-adrenergic recognition sites, is significantly lower in the frontal cortex of the genetically epilepsy-prone rats (GEPRs), as compared with normal Sprague-Dawley rats. Scatchard analysis reveals a decrease in the B max of [3H]prazosin binding with no change in the apparent K D, suggesting that there are fewer α1-adrenergic recognition sites in the frontal cortex of the GEPR. This abnormality is associated with a reduced capacity of norepinephrine (NE) to stimulate [3H]inositol monophosphate ([3H]IP1) formation in frontal cortex slices prelabeled with [3H]inositol. No significant differences in [3H]prazosin binding as well as NE-stimulated [3H]IP1 formation have been observed in other brain regions including hippocampus, corpus striatum, and inferior colliculus. These results indicate that a deficit in the α1-adrenergic receptor system in the frontal cortex may play a role in the seizure process in the GEPR.  相似文献   

16.
Abstract: Primary embryonic cortical cultures were used as an in vitro model to evaluate the influence of glia on developmental expression of α7-type nicotinic acetylcholine receptors in rat brain. In cells cultured in serum-containing medium without mitotic inhibitors, specific 125I-α-bungarotoxin binding to α7-type nicotinic receptors was maximal 4–8 days after plating. Treatment with 5'-fluorodeoxyuridine (80 µ M ) from 1 to 3 days in vitro significantly reduced glial proliferation and concomitantly increased 125I-α-bungarotoxin binding, whereas plating onto a glial bed layer decreased binding. There was no significant binding to pure glial cultures. Treatment-induced changes in neuronal binding resulted from alterations in receptor density, with no change in affinity. 5'-Fluorodeoxyuridine treatment also increased cellular expression of α7 receptor mRNA but had no effect on N -[3H]methylscopolamine binding to muscarinic receptors. Glial conditioned medium decreased 125I-α-bungarotoxin binding in both control and 5'-fluorodeoxyuridine-treated cultures, suggesting the release of a soluble factor that inhibits α7-type nicotinic receptor expression. An additional mechanism of glial regulation may involve removal of glutamate from the surrounding medium, as added glutamate (200 µ M ) increased 125I-α-bungarotoxin binding in astrocyte-poor cultures but not in those that were astrocyte enriched. These results suggest that glia may serve a physiological role in regulating α7-type nicotinic receptors in developing brain.  相似文献   

17.
Abstract: Several G protein-coupled receptors have been shown to be palmitoylated, and for some of these receptors the covalent attachment of palmitate has been implicated in the regulation of receptor-G protein coupling. The metabotropic glutamate receptor (mGluR) family forms a distinct group of G protein-coupled receptors, and the possibility that these may also be palmitoylated has been examined. Clonal baby hamster kidney (BHK) cells permanently transfected with the mGluR4 and mGluR1α subtypes were labelled with [3H]palmitic acid. The cells were lysed, the receptors were immuno-precipitated with specific antipeptide antibodies, and the immunoprecipitates were analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and autoradiography. The palmitoylated, endogenously expressed G protein α-subunit αq could be immunoprecipitated from [3H]palmitate-labelled BHK cells expressing mGluR1α using a specific antipeptide antibody, but in the same cell lysates no detectable [3H]palmitate-labelled mGluR1α was found. This suggests that this mGluR subtype, associated with stimulation of phospholipase C, is not palmitoylated. In contrast, mGluR4, which is coupled to inhibition of adenylyl cyclase, was found to be labelled with [3H]palmitic acid, and the palmitate was quantitatively removed by treatment with 1 M hydroxylamine, suggesting attachment of the palmitate through a thioester bond. Stimulation with maximal doses of the neurotransmitter glutamate for 1, 5, or 10 min appeared to have no effect on the level of receptor palmitoylation.  相似文献   

18.
Abstract: [3H]Kainate bound to chick cerebellar membranes with a K D of 0.6 μ M and with an exceptionally high B max of 165 pmol/mg of protein. In octylglucoside-solubilised extracts, the affinity of [3H]kainate was reduced ( K D= 2.7 μ M ), but the B max was relatively unchanged (130 pmol/mg of protein). The rank potency of competitive ligands was domoate > kainate > 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) > glutamate. Binding sites for α-[3H]amino-3-hydroxy-5-methylisoxazolepropionate ([3H]AMPA) were much less abundant, with K D and B max values in membranes of 86 n M and I pmol/mg of protein, respectively. The affinity of [3H]AMPA binding was also reduced on solubilisation ( K D= 465 n M ), but there was an increase in the B max (1.7 pmol/mg of protein). Quisqualate and CNQX were the most effective displacers of [3H]AMPA binding, but kainate was also a relatively potent inhibitor. However, in contrast to the displacement profile for [3H]kainate, domoate was markedly less potent than kainate at displacing [3H]AMPA. These results suggest that [3H]AMPA binds to a small subset of the kainate sites that, unlike the majority of the [3H]kainate binding protein, which has been reported to be located in the Bergmann glia, may represent neuronal unitary non- N -methyl-D-aspartate receptors.  相似文献   

19.
The existence of pre-synaptic auto- and hetero receptors which modulate neurotransmitter release is well documented. Emerging evidence show that in some cases these pre-synaptic receptors may also cross-talk with each other. The aim of the present work was to investigate whether acetylcholine receptors (nAChRs) and dopamine (DA) autoreceptors, which are both able to modulate DA release, functionally interact on the same nerve endings. We used rat and mouse nucleus accumbens synaptosomes pre-labeled with [3H]DA and exposed to nicotinic and dopaminergic receptor ligands. Both nicotinic agonists and 4-aminopyridine (4-AP) provoked [3H]DA release which was inhibited by quinpirole and blocked by sulpiride and raclopride. Both the inhibitory effect of quinpirole and the stimulatory effect of (−)nicotine did not change when the nAChRs or the DA receptors were desensitized. (−)Nicotine and 4-AP were able to stimulate [3H]DA overflow also in mouse synaptosomes and this overflow was partially inhibited by quinpirole. In the β2 knockout mice quinpirole was still able to inhibit the [3H]DA overflow elicited by 4-AP. To conclude: in rat and mouse the (−)nicotine evoked-release can be modulated by D2/D3 autoreceptors present on the DA terminals and nAChRs function is independent from D2/D3 autoreceptors which themselves may function independently from the activation of nAChRs.  相似文献   

20.
Homomeric α7 nicotinic acetylcholine receptors are a well-established, pharmacologically distinct subtype. The more recently identified α9 subunit can also form functional homopentamers as well as α9α10 heteropentamers. Current fluorescent probes for α7 nicotinic ACh receptors are derived from α-bungarotoxin (α-BgTx). However, α-BgTx also binds to α9* and α1* receptors which are coexpressed with α7 in multiple tissues. We used an analog of α-conotoxin ArIB to develop a highly selective fluorescent probe for α7 receptors. This fluorescent α-conotoxin, Cy3-ArIB[V11L;V16A], blocked ACh-evoked α7 currents in Xenopus laevis oocytes with an IC50 value of 2.0 nM. Observed rates of blockade were minute-scale with recovery from blockade even slower. Unlike FITC-conjugated α-BgTx, Cy3-ArIB[V11L;V16A] did not block α9α10 or α1β1δε receptors. In competition binding assays, Cy3-ArIB[V11L;V16A] potently displaced [125I]-α-BgTx binding to mouse hippocampal membranes with a K i value of 21 nM. Application of Cy3-ArIB[V11L;V16A] resulted in specific punctate labeling of KXα7R1 cells but not KXα3β2R4, KXα3β4R2, or KXα4β2R2 cells. This labeling could be abolished by pre-treatment with α-cobratoxin. Thus, Cy3-ArIB[V11L;V16A] is a novel and selective fluorescent probe for α7 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号