首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The aim of this study was to test whether abiotic and biotic factors may affect allelopathic properties. Therefore, we investigated how solar radiation and bacteria influence allelopathic effects of the plant‐derived, polyphenolic tannic acid (TA) on microalgae. Using a block design, lake water samples with and without TA were exposed to solar radiation or kept in darkness with or without bacteria for 3 weeks. Dissolved organic carbon (DOC), specific size fractions of DOC analyzed by chromatography–organic carbon detection (LC‐OCD), and concentrations of total phenolic compounds (TPC) were measured to follow the fate of TA in lake water with natural DOC exposed to photolytic and microbial degradation. DOC and TPC decreased in dark‐incubated lake water with TA and bacteria indicating microbial degradation. In contrast, exposure to solar radiation of lake water with TA and bacteria did not decrease DOC. Chromatographic analyses documented an accumulation of DOC mean size fraction designated as humic substances (HS) in sunlit water samples with TA. The recalcitrance of the humic fraction indicates that photolytic degradation may contribute to a DOC less available for bacterial degradation. Subsequent growth tests with Desmodesmus armatus (Chodat) E. Hegewald showed low but reproducible difference in algal growth with lower algal growth rate cultured in photolytically and microbially degraded TA in lake water than cultured in respective dark treatments. This finding highlights the importance of photolytic processes and microbial degradation influencing allelopathic effects and may explain the high potential of allelochemicals for structuring the phytoplankton community composition in naturally illuminated surface waters.  相似文献   

2.
Chemical equilibrium calculations treating humic substances as the simple diprotic phtalic acid, predicted no Al-humus at pH>6.5 in humic lake water. However, dissolved (<200 nm) organic carbon (DOC) and dissolved Al appeared to be linearly (r=0.597, P<0.001) correlated in samples from five different humic surface waters in The Netherlands with a DOC range of 10–36 mg.l–1 and a (mean) pH range of 6.85–8.47. Yet, organic carbon (Corg) and Al did no exhibit similar size distributions between 5 and 200 nm revealed by ultrafiltration. Averaged 25% of the Corg and >50% of the Al occurred in the fraction <5 nm. Only in this fraction the Corg and Al were linearly correlated (r=0.515, P<0.001). This result suggests the presence of organic ligands in the DOC pool of humic waters having smaller molecular sizes and higher Al stability constants than the humic substances used to model aquatic Al speciation.  相似文献   

3.
Bacterial utilization of dissolved organic matter (DOM) was studied in water from a humic and a clearwater oligotrophic lake. Indigenous bacteria were inoculated into either 0.2 m natural filtered lake water, or lake water enriched fivefold with colloidal DOM >100 kD but below 0.2 m. Consumption of DOM was followed from changes in concentrations of total dissolved organic carbon (DOC), dissolved combined and free carbohydrates and amino acids (DCCHO and DFCHO, and DCAA and DFAA, respectively) and by uptake of monosaccharide and amino acid radioisotopes. DCCHO and DCAA made up 8% (humic lake) to 33–44% (clear-water lake) of the natural DOC pools, while DFCHO and DFAA contributed at most 1.7% to the DOC pools. Addition of >100 kD DOM increased the DOC concentrations by 50% (clearwater lake) to 92% (humic lake), but it only resulted in a higher bacterial production (by 63%) in the humic lake. During the incubations 13 to 37% of the DOC was assimilated by the bacteria, at estimated growth efficiencies of 4–8%. Despite the measured reduction of DOC, statistically significant changes of specific organic compounds, especially of DCCHO and DCAA, generally did not occur. Probably the presence of high molecular weight DOC interfered with the applied analytical procedures. Addition of radiotracers indicated, however, that DFAA sustained 17–58% and 29–100% of the bacterial carbon and nitrogen requirements, respectively, and that glucose met 1–3% of the bacterial carbon requirements. Thus, our experiments indicate that radiotracers, rather than measurements of concentration changes, should be used in studies of bacterial utilization of DOC in freshwaters with a high content of humic or high molecular weight organic matter.  相似文献   

4.
Water draining from the Everglades marshes of southern Florida containshigh concentrations of dissolved organic C (DOC), N (DON), and in somelocations, P (DOP). These dissolved organic nutrients carry over 90% of the Nand organic C, and about 25% of the P exported downstream in the Everglades.Ourobjectives were to describe the most important aspects of the origin and fateofdissolved organic matter (DOM) in the Everglades, and to describe the processescontrolling its concentration and export. Concentrations of dissolved organicnutrients are influenced by local plant production, decomposition, and sorptionequilibrium with peat. The drained peat soils of the Everglades AgriculturalArea and the more productive marshes of the northern Everglades produce some ofthe highest concentrations of DOC and DON in the Everglades watershed. Inportions of the marshes of the northern Everglades, P enrichment was correlatedwith higher local DOC and DON concentrations and greater production of solubleplant matter. Microbial degradation of Everglades DOM was very slow; less than10% of the DOC was lost after 6 months of incubation in the laboratory andsupplements of inorganic nutrients failed to speed the decomposition. Exposureto solar radiation increased the subsequent decay rate of the remaining DOC(25%in 6 mo.). Solar radiation alone mineralized 20.5% of the DOC, 7%of the DON, and degraded about 50% of the humic substances over 21 days insterile porewater samples and thus degraded DOM faster than microbialdegradation. The humic substances appeared to inhibit biodegradation of theother fractions of the DOC since hydrophilic organic acids decomposed fasterwhen isolated from the humic substances.The fate of DOC and DON is closely linked as indicated by a generally narrowrange of C/N ratios. In contrast, high concentrations of DOP were associatedwith P enrichment (at least in pore water). The DOC was composed of about 50%humic substances, 33% hydrophilic acids, and 15% hydrophilic neutralsubstances,typical of DOC from other environments, despite the fact that it originatesfroma neutral to slightly alkaline peatland. Despite high exports of DON (3.9g m–2 y–1 from one area), themarshes of the northern Everglades are a sink for DON on a landscape scale. Theagricultural fields of the Everglades Agricultural Area, however, exported netquantities of DON. High concentrations of DOC desorbed from the agriculturalsoils when water with no DOC was added. Sorption experiments indicated thathighconcentrations of dissolved organic matter flowing into the marshes from theEverglades Agricultural Area could suppress the further desorption ofadditionalsoluble organic matter through physicochemical mechanisms. While biologicalfactors, plant production and microbial decomposition are important inproducingpotentially soluble organic nutrients, physicochemical sorption equilibria,hydrology, and degradation by solar radiation are also likely to control theexport of this material on the landscape scale.  相似文献   

5.
We have evaluated photoeffects of UV-B, UV-A and PAR radiation on dissolved organic matter (DOM). Photochemical production of dissolved inorganic carbon (DIC) was measured in sterile lake water from Sweden and Brazil after 6 hours of sun exposure. Tubes were exposed to four solar radiation regimes: Full-radiation, Full-radiation minus UV-B, Full-radiation minus UV-B and UV-A (PAR) and darkness.In both areas, lakes with most DOC (varying between 3 and 40 mg C l-1) were highly humic, resulting in high UV-B attenuation coefficients (Kd = 5–466 m-1). Under Full-radiation, photooxidative DIC-production varied from 0.09 to 1.7 mg C l-1per 6 h, without UV-B from 0.07 to 1.4 mg C l-1 and with PAR only from 0.02 to 0.7 mg C l-1. UV-B radiation explains a minor part (17%) of the photoooxidative DIC-production, while UV-A and PAR have larger effects (39% and 44%, respectively). Photooxidation was proportional to DOC-content and DIC-production was positively related to decrease in DOC and to loss of absorbance at 250 nm. There was no significant difference in DOC and radiation normalized DIC-production between Swedish and Brazilian lakes. The UV-B dose during incubations was approximately 3 times higher in Brazil compared to Sweden, while UV-A and PAR doses were similar. We conclude that DOC from tropical and temperate freshwaters do not seem to differ with respect to sensitivity to photooxidation.  相似文献   

6.
Boothroyd  Ian K.G.  Etheredge  M. Kay  Green  John D. 《Hydrobiologia》2002,469(1-3):23-32
Solar ultraviolet radiation both degrades and alters the quality of natural organic matter as well as organic pollutants in surface waters. Still, it is only recently that this indirect influence of photochemical processes on aquatic organisms (e.g. bacteria) has received attention. We experimentally studied the photochemical degradation of three PAHs; anthracene, phenanthrene and naphthalene, in water. Anthracene and phenanthrene were rapidly photodegraded (half-lives of 1 and 20.4 hours, respectively), while the photochemical half-life of naphthalene exceeded 100 hours. Hence photodegradation is most likely a less important removal mechanism for the latter compound. The influence of humic substance additions (0–25 mg C l–1) on degradation rates was also assessed, and while photodegradation of anthracene was not affected by these additions, phenanthrene photodegradation slowed down considerably at the higher humic substance concentrations. These differential responses of anthracene and phenanthrene can at least partially be explained by differences in the spectral absorbance of the two compounds. In contrast, ionic strength did not have any appreciable effect on the estimated photodegradation rates of either compound. The influence of PAHs on growth of aquatic bacteria was assessed in dilution cultures with and without exposure to PAHs and simulated solar UV radiation. Separately, neither PAHs nor simulated solar UV radiation had any effect on bacterial growth. However, when combined, a marked inhibition of bacterial growth could be observed in water obtained from a clearwater lake. This could be due to the formation of toxic photodegradation products such as quinones (detected in our incubations) or other reactive species that affect bacteria negatively. Hence, in addition to influencing the fate and persistence of PAHs in aquatic systems, solar radiation and natural organic matter and regulate the toxicity of these compounds to indigenous micro-organisms.  相似文献   

7.
This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-μm-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ~18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ~10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates.  相似文献   

8.
Danilov  Roman A.  Ekelund  Nils G. A. 《Hydrobiologia》2001,444(1-3):203-212
Impacts of solar radiation, humic substances and nutrients on phytoplankton abundance at different depths were investigated in a temperate dimictic lake, Lake Solumsjö. Penetration of solar radiation profiles at different depths, represented as light attenuation coefficient (K d) were examined. Water sampling and downward irradiance of photosynthetically active radiation (PAR), ultraviolet-A (UV-A, 320–400 nm) and ultraviolet-B (UV-B, 280–320 nm) radiation were performed once a week and at three different times of the day (08.00, 12.00 and 16.00 hrs, local time) between September 13 and November 1, 1999. During the period of investigation, solar radiation above the water surface declined from 474 to 94 mol m–2 s–1 for PAR, from 1380 to 3.57 W m–2 for UV-A and from 13.1 to 0.026 W m–2 for UV-B, respectively. The attenuation coefficient (K d) for UV-B radiation ranged from 3.7 to 31 m–1 and UV-B radiation could not be detected at depths greater than 0.25 m. Humic substances measured at 440 nm ranged from 35.5 to 57.7 Pt mg l–1. Mean values of biomass, estimated from chlorophyll a, in the whole water column (0–10 m) varied between 2.3 and 5.6 g l–1 and a diel fluctuation was observed. During stratified conditions, high levels of iron (1.36 mg l–1) and manganese (4.32 mg l–1) were recorded in the hypolimnion, suggesting that the thermocline played a major role in the vertical distribution of phytoplankton communities in Lake Solumsjö. The high levels of iron and manganese stimulated the growth of Trachelomonas volvocinopsis in the hypolimnion at a depth of 10 m. Negative impacts of UV-B radiation on phytoplankton in lake Solumsjö are reduced due to the high levels of humic substances and the high degree of solar zenith angle at the latitude studied.  相似文献   

9.
Hessen  Dag O.  Færøvig  Per J. 《Plant Ecology》2001,154(1-2):261-273
Cell numbers and fluorescence of the green algae Selenastrum capricornutuum and survival of Daphnia magna exposed to simulated sun-light was assessed along a gradient of DOC (0, 1, 5 10 and 50 mg C l–1). When exposed to UV-doses and spectral distribution (295–750 nm) closely resembling surface solar radiation during mid summer, Selenastrum showed major losses of cell fluorescence. In the absence of DOC, fluorescence was severely depressed, with successively decreasing effects with increased DOC. Surviving cells also required an extensive recovery period (10–12 d) for regrowth after exposure, while an almost immediate recovery was observed at concentrations above 1 mg DOC l–1. For Daphnia, survival was reduced to less than 10% after 4 h exposure, and almost zero after 8 h exposure in the absence of humus DOC, while no effects were observed in treatments with 10 and 50 mg C l–1. Selenastrum and Daphnia that were not directly irradiated, but exposed to UV-irradiated water with the same concentrations of DOC did not reveal negative effects. This indicates negligible indirect effects mediated by long-lived free radicals or other toxic compounds. Irradiation of Daphnia under increased oxygen concentration (200% saturation) did not indicate acute effects, suggesting that effects of ambient radicals and oxidants would be of minor importance relative to intracellular photoproducts.  相似文献   

10.
Phytoplankton production was measured in situ in Kainji lake from December 1970 to September 1972 using the oxygen light and dark bottle technique. Seasonal variations in solar radiation, transparency, temperature, and composition of subsurface light were also measured. Oxygen production per unit area varied from 220 to 4500 mg O2 m–2 day–1, the maximum production rate from 95 to 400 mg O2 m–3 h–1. Seasonal mixing of lake water and river water of varying turbidity changed the optical properties of the lake water and consequently affected phytoplankton production. The annual flood pattern was found to be an important factor regulating phytoplankton production in the lake.  相似文献   

11.
Dissolved organic matter (DOM) contains molecules that absorb light at various wavelengths. This chromophoric DOM (CDOM) influences the transmission of both visible and ultraviolet energy through water. The absorption of light by CDOM often causes structural changes that reduce its capacity to further absorb light, a process termed ‘photobleaching‘. A model was designed to assess photobleaching through the entire water column of lake ecosystems. The model uses lake morphometry and dissolved organic carbon (DOC) concentration in conjunction with a defined solar spectrum and experimentally measured photobleaching rates to compute the total water columm photobleaching. The model was initially applied to a theoretical ‘average‘ lake using solar spectra for both the north (N) and south (S) temperate western hemispheres and variable DOC from 0.3 to 30 mg L−1. The consequences of varying waveband-specific photobleaching coefficients and lake morphometry were explored in a second set of simulations. Finally, the model was also applied to four temperate northern lakes for which we had prior measurements of CDOM photobleaching rates. The model demonstrates that all three wavebands of solar radiation (UVB, UVA, and PAR) contribute significantly to total water column photobleaching, with UVA being most important. The relative contributions of the three wavebands were invariant for DOC more than 3 mg L−1. Total water column photobleaching at 440 nm was three to five times faster under the UV-enriched solar spectrum of the southern hemisphere. Increasing the lake’s mean depth (from 0.37 to 9.39 m) resulted in five- or 15-fold slower rates of total water column photobleaching for DOC concentrations of 1 or 10 mg L−1, respectively. Varying the waveband-specific photobleaching coefficients by 10-fold resulted in a similar change in total water column photobleaching rates. Applying the model to four specific lakes revealed that photobleaching for the entire water column would reduce CDOM light absorption by 50% in 18–44 days under summer conditions. Received 17 November 1998; accepted 27 June 2000.  相似文献   

12.
UVirradiation of dissolved organic carbon (DOC) in the laboratory can producesmall, labile organic compounds utilizable by microbes, but few studies haveattempted to document this process in situ. 13Cnuclear magnetic resonance (NMR) was used to examine the bulk chemicalcomposition of natural and laboratory-irradiated high-molecular-weight DOC(HMW-DOC) from shaded (150 mol m–2s–1 average light in surface water) and open (1500mol m–2 s–1) field sitesoverone and a half years. 13C NMR revealed only small differences incarbon functional groups between laboratory irradiated and non-irradiatedHMW-DOC. However, bacterial protein productivity per cell (BPP) was enhanced innaturally irradiated samples of HMW-DOC in a field mesocosm experiment (p <0.05), suggesting that bacterial growth was enhanced by photochemicalproductionof labile DOC substrates. Absorbance characteristics such as spectral slope,absorbance at 350 nm, and the absorbance ratio 250nm/365 nm revealed that HMW-DOC was photoreactive,yetno differences in these values were found between samples irradiated with andwithout UV-B. In experiments conducted with simulated solar radiation in thelaboratory and with natural light in the field mesocosm experiment, UV-A(320–400 nm) and photosynthetically active radiation (PAR;400–700 nm) were more effective than UV-B (280–320nm) in HMW-DOC photolysis.  相似文献   

13.
Dynamics of dissolved organic carbon concentration (DOC) and capacity toabsorb light (color) are determined by in-lake and external properties andprocesses. In this study, the influence of external factors such as rainfallandsolar radiation on DOC and color dynamics was assessed for a small forestedlake. DOC and absorption coefficients at 440 nm (a440)ranged 4-fold from 0.46 to 1.62 mM and from 3.4 to 14.8m–1, respectively. DOC and a440 variedsynchronously, but an important percentage of the variability (26%) ina440 was not explained by DOC. The resulting twofold variation inthemolar absorption coefficient of DOC suggested significant seasonal changes inchromophoric content. Both DOC and a440 were positive andsignificantly related to cumulative rainfall. Solar radiation, however, onlyappeared to influence a440 dynamics. This influence was mediated byphotobleaching. Photobleaching coefficients (kb) were higher in falland spring relative to the summer. This seasonal variability in kbvalues was related to monthly rainfall. The influence of photobleaching ona440 dynamics was evaluated by comparing the half life ofa440 in the water column with water residence time (WRT). For thestudy lake, photobleaching contributed notably to a440 dynamicsduring the dry periods when WRT was longer than the a440 half life .DOC dynamics, however, were not related to solar radiation becausephotomineralization was considerably slower than photobleaching.  相似文献   

14.
Concentrations of dissolved organic matter (DOM) in surface waters of sub-humid to semi-arid lakes in east-central Alberta increase with increasing salinity and water residence time from about 20 to 330 mg L–1 as dissolved organic carbon (DOC). This pattern is opposite to that observed among freshwater lakes spanning a gradient in water residence times, and is probably caused by evaporative concentration of refractory DOM. The proportion of total DOC, operationally defined as humic substances using XAD-8 resin, was high, though similar to surface waters typically referred to as "humic", and independent of salinity. Very long water residence times (hundreds of years) in saline lakes favors evapoconcentration of low-color, low molecular weight DOM, with N-content characteristic of allochthonous DOM.  相似文献   

15.
We analyzed bioavailability, photoreactivity, fluorescence, and isotopic composition of dissolved organic carbon (DOC) collected at 13 stations in the Sacramento–San Joaquin River Delta during various seasons to estimate the persistence of DOC from diverse shallow water habitat sources. Prospective large-scale wetland restorations in the Delta may change the amount of DOC available to the food web as well as change the quality of Delta water exported for municipal use. Our study indicates that DOC contributed by Delta sources is relatively refractory and likely mostly the dissolved remnants of vascular plant material from degrading soils and tidal marshes rather than phytoplankton production. Therefore, the prospective conversion of agricultural land into submerged, phytoplankton-dominated habitats may reduce the undesired export of DOC from the Delta to municipal users. A median of 10% of Delta DOC was rapidly utilizable by bacterioplankton. A moderate dose of simulated solar radiation (286 W m−2 for 4 h) decreased the DOC bioavailability by an average of 40%, with a larger relative decrease in samples with higher initial DOC bioavailability. Potentially, a DOC-based microbial food web could support ≤0.6 × 109 g C of protist production in the Delta annually, compared to ≈17 × 109 g C phytoplankton primary production. Thus, DOC utilization via the microbial food web is unlikely to play an important role in the nutrition of Delta zooplankton and fish, and the possible decrease in DOC concentration due to wetland restoration is unlikely to have a direct effect on Delta fish productivity.  相似文献   

16.
We collected zooplankton samples from 4×4 m enclosures located in two acidified lakes (pH<5) in Nova Scotia from June to August 1996. One lake had mean dissolved organic carbon concentrations greater than 10 mg l–1 (brown water), while the other had values between 2 and 4 mg l–1. In each lake, three enclosures were open to ambient light, while three were covered by Mylar® sheets which removed UVB and UVC wavelengths. Weekly sampling was done at all sites in July and near the end of August. Individuals were identified and the total community weighed. Analysis of results using both t-test and canonical analysis revealed small differences in populations between open and UVB covered clearwater sites in early July, but not later. There was no response of midsummer zooplankton communities in the humic lake which had a 95% extinction depth of 3 cm. In the clearwater lake (95% UVB extinction at 50 cm), the effect of radiation exclusion was relatively weak compared to most other published studies, but nevertheless statistically significant.  相似文献   

17.
Measurements made in shallow lakes and tanks have shown that temperatures near and at the surface of substrates respond significantly to changes in solar radiation, water circulation and substrate color. Temperature differences between light and dark colored natural and artificial substrates ranged between 0.8 and 4.0 C°. Diurnal surface temperature ranges on a submerged black wooden disk varied 9C° when incoming solar radiation varied 14% or average daily windspeed changed from 0.9 to 3.6 ms–1. Fluctuations in substrate temperatures were poorly correlated with changes in nearby air or water temperatures.Supported by NRCC Grant A 3403  相似文献   

18.
Aerobic mineralization, i.e. seston respiration, microbial breakdown of detritus and microbial assimilation-dissimilation of photosynthetically derived D(issolved) O(rganic) C(arbon) was measured in concentrated samples from the pelagic zone of Lake Vechten. The samples were described by cell numbers of dominant algae prior to concentrating by centrifuge with continuous rotor. The concentrated samples were incubated in the laboratory at in situ temperature and a light intensity of 30 W · m–2 for measuring primary production and photosynthetically derived DOC. After filtration the particulate fraction was incubated in unlabelled lake water far measuring respiratory production of DI14C. Portions of the same particulate fraction were sterilized and incubated in unlabelled sample concentrate for measuring microbial breakdown of detritus. The seston respiration amounted to 19–30% loss of the particulate fraction over 15–45 h. Microbial breakdown of detritus amounted to 28–40% loss of the particulate fraction over 24–168 h. In both cases P(articulate) O(rganic) 14C(arbon) was transformed to mainly DI14C. Microbial assimilation-dissimilatioh of photosynthetically derived DOC could not be measured reliably.  相似文献   

19.
There is growing evidence that terrestrial ecosystems are exporting more dissolved organic carbon (DOC) to aquatic ecosystems than they did just a few decades ago. This “browning” phenomenon will alter the chemistry, physics, and biology of inland water bodies in complex and difficult-to-predict ways. Experiments provide an opportunity to elucidate how browning will affect the stability and functioning of aquatic ecosystems. However, it is challenging to obtain sources of DOC that can be used for manipulations at ecologically relevant scales. In this study, we evaluated a commercially available source of humic substances (“Super Hume”) as an analog for natural sources of terrestrial DOC. Based on chemical characterizations, comparative surveys, and whole-ecosystem manipulations, we found that the physical and chemical properties of Super Hume are similar to those of natural DOC in aquatic and terrestrial ecosystems. For example, Super Hume attenuated solar radiation in ways that will not only influence the physiology of aquatic taxa but also the metabolism of entire ecosystems. Based on its chemical properties (high lignin content, high quinone content, and low C:N and C:P ratios), Super Hume is a fairly recalcitrant, low-quality resource for aquatic consumers. Nevertheless, we demonstrate that Super Hume can subsidize aquatic food webs through 1) the uptake of dissolved organic constituents by microorganisms, and 2) the consumption of particulate fractions by larger organisms (i.e., Daphnia). After discussing some of the caveats of Super Hume, we conclude that commercial sources of humic substances can be used to help address pressing ecological questions concerning the increased export of terrestrial DOC to aquatic ecosystems.  相似文献   

20.
Bacterial and viral abundances were measured in 24 lakes with dissolved organic carbon (DOC) concentrations ranging from 3 to 19 mg of C liter−1. In addition, a laboratory experiment was performed to test the effects of different sources of carbon (i.e., glucose and fulvic acids) and nutrients on the dynamics of viruses and bacteria. In the lake survey, no correlation was found between virus abundance and DOC concentration, yet there was a significant positive correlation between bacterial abundance and DOC concentration. A negative correlation was found between the virus-to-bacteria ratio and DOC level. These results are in agreement with our findings in the laboratory, where virus counts were significantly lower in treatments with fulvic acid additions than in a control (mean, 67.4% ± 6.5% of the control). Virus counts did not differ significantly among the control and treatments with glucose, indicating that it was the type of organic carbon and not quantity which had an impact on viruses. Results from this study suggest that the way viruses control bacterial assemblages in humic lakes is different from the mechanism in clear water systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号