首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O'Brien VA  Brown CR 《PloS one》2011,6(9):e25521
The transmission of parasites and pathogens among vertebrates often depends on host population size, host species diversity, and the extent of crowding among potential hosts, but little is known about how these variables apply to most vector-borne pathogens such as the arboviruses (arthropod-borne viruses). Buggy Creek virus (BCRV; Togaviridae: Alphavirus) is an RNA arbovirus transmitted by the swallow bug (Oeciacus vicarius) to the cliff swallow (Petrochelidon pyrrhonota) and the introduced house sparrow (Passer domesticus) that has recently invaded swallow nesting colonies. The virus has little impact on cliff swallows, but house sparrows are seriously affected by BCRV. For house sparrows occupying swallow nesting colonies in western Nebraska, USA, the prevalence of BCRV in nestling sparrows increased with sparrow colony size at a site but decreased with the number of cliff swallows present. If one nestling in a nest was infected with the virus, there was a greater likelihood that one or more of its nest-mates would also be infected than nestlings chosen at random. The closer a nest was to another nest containing infected nestlings, the greater the likelihood that some of the nestlings in the focal nest would be BCRV-positive. These results illustrate that BCRV represents a cost of coloniality for a vertebrate host (the house sparrow), perhaps the first such demonstration for an arbovirus, and that virus infection is spatially clustered within nests and within colonies. The decreased incidence of BCRV in sparrows as cliff swallows at a site increased reflects the "dilution effect," in which virus transmission is reduced when a vector switches to feeding on a less competent vertebrate host.  相似文献   

2.
We present the first detailed phylogenetic analysis of Buggy Creek virus (BCRV), a poorly known alphavirus with transmission cycles involving a cimicid swallow bug (Oeciacus vicarius) vector and cliff swallows (Petrochelidon pyrrhonota) and house sparrows (Passer domesticus) as the principal avian hosts. Nucleotide sequences of a 2,075-bp viral envelope glycoprotein-coding region, covering the entire PE2 gene, were determined for 33 BCRV isolates taken from swallow bugs at cliff swallow colonies in Nebraska and Colorado in the summer of 2001 and were compared with the corresponding region of BCRV isolates collected from Oklahoma in the 1980s. We also analyzed isolates of the closely related Fort Morgan virus (FMV) collected from Colorado in the 1970s. Phylogenetic analysis indicated that BCRV falls into the western equine encephalomyelitis complex of alphaviruses, in agreement with antigenic results and a previous alphavirus phylogeny based on the E1 coding region. We found four distinct BCRV/FMV clades, one each unique to Nebraska, Colorado, and Oklahoma and one containing isolates from both Nebraska and Colorado. BCRV isolates within the two clades from Nebraska showed 5.7 to 6.2% nucleotide divergence and 0.7 to 1.9% amino acid divergence, and within these clades, we found multiple subclades. Nebraska subclades tended to be confined to one or a few cliff swallow colonies that were close to each other in space, although in some cases, near-identical isolates were detected at sites up to 123 km apart. Viral gene flow occurs when cliff swallows move (bugs) between colony sites, and the genetic structure of BCRV may reflect the limited dispersal abilities of its insect vector.  相似文献   

3.
Arbovirus infection increases with group size   总被引:1,自引:0,他引:1  
Buggy Creek (BCR) virus is an arthropod-borne alphavirus that is naturally transmitted to its vertebrate host the cliff swallow (Petrochelidon pyrrhonota) by an invertebrate vector, namely the cimicid swallow bug (Oeciacus vicarius). We examined how the prevalence of the virus varied with the group size of both its vector and host. The study was conducted in southwestern Nebraska where cliff swallows breed in colonies ranging from one to 3700 nests and the bug populations at a site vary directly with the cliff swallow colony size. The percentage of cliff swallow nests containing bugs infected with BCR virus increased significantly with colony size at a site in the current year and at the site in the previous year. This result could not be explained by differences in the bug sampling methods, date of sampling, sample size of the bugs, age structure of the bugs or the presence of an alternate host, the house sparrow (Passer domesticus). Colony sites that were reused by cliff swallows showed a positive autocorrelation in the percentage of nests with infected bugs between year t and year t+1, but the spatial autocorrelation broke down for year t+2. The increased prevalence of BCR virus at larger cliff swallow colonies probably reflects the larger bug populations there, which are less likely to decline in size and lead to virus extinction. To the authors' knowledge this is the first demonstration of arbovirus infection increasing with group size and one of the few known predictive ecological relationships between an arbovirus and its vectors/hosts. The results have implications for both understanding the fitness consequences of coloniality for cliff swallows and understanding the temporal and spatial variation in arboviral epidemics.  相似文献   

4.
Wild birds are rarely found with active arbovirus infections, and relatively little is known about the patterns of viremia they exhibit under field conditions or how infection varies with date, bird age, or other factors that potentially affect transmission dynamics. Buggy Creek virus (BCRV; Togaviridae, Alphavirus) is an arbovirus associated with colonially nesting Cliff Swallows (Petrochelidon pyrrhonota) and transmitted by its vector, the hematophagous swallow bug (Oeciacus vicarius), an ectoparasite of the Cliff Swallow. Introduced House Sparrows (Passer domesticus) that have occupied swallow nests at colony sites in peridomestic settings are also exposed to BCRV when fed upon by swallow bugs. We used data from 882 nestling House Sparrows in western Nebraska from 2006 to 2008 to examine seasonal variation and age-related correlates of virus infection in the field. Over 17% of nestling House Sparrows had active infections. Prevalence was higher in 2007 than in 2008 when birds from all colony sites were analyzed, but there was no significant difference between years for sites sampled in both seasons. Buggy Creek virus prevalence was similar in early and late summer, with a peak in midsummer, coinciding with the greatest swallow bug abundance. Nestlings 10 days of age and younger were most commonly infected, and the likelihood of BCRV infection declined for older nestlings. Average viremia titers also declined with age (but did not vary with date) and were high enough at all nestling ages to likely infect blood-feeding arthropods (swallow bugs). Length of viremia for nestlings in the field was ≥4 days, in agreement with an earlier study of BCRV. Nestling birds offer many advantages for field studies of arbovirus amplification and transmission.  相似文献   

5.
The American swallow bug (Oeciacus vicarius) is an important ectoparasite of cliff swallows (Petrochelidon pyrrhonota) and is known to harbor several types of arbovirus. A recent study in northeast Texas suggested that O. vicarius might occur in barn swallows (Hirundo rustica) at rates much higher than previously thought. The purpose of this study was to determine the extent to which barn swallows in northeast Texas are parasitized by O. vicarius and how well this parasite is adapting to this novel host. A sample of 498 nests at 54 colonies was inspected for O. vicarius. Forty colonies (74.1%) were infected, while 310 nests (62.2%) were infected. Large colonies were more likely to be infected than small colonies. Colonies that also contained cliff swallows were more likely to be infected than colonies without cliff swallows. Infection levels in barn swallow nests were comparable to those reported for cliff swallows, though age and sex class ratios differed. Demographic changes among swallow species, including range expansions, increased colony sizes, and more frequent interspecific nesting associations have likely facilitated the movement of O. vicarius from the cliff swallow into a novel host, the barn swallow.  相似文献   

6.
The swallow bug (Oeciacus vicarius) is the only known vector for Buggy Creek virus (BCRV), an alphavirus that circulates in cliff swallows (Petrochelidon pyrrhonota) and house sparrows (Passer domesticus) in North America. We discovered ants (Crematogaster lineolata and Formica spp.) preying on swallow bugs at cliff swallow colonies in western Nebraska, U.S.A. Ants reduced the numbers of visible bugs on active swallow nests by 74‐90%, relative to nests in the same colony without ants. Ant predation on bugs had no effect on the reproductive success of cliff swallows inhabiting the nests where ants foraged. Ants represent an effective and presumably benign way of controlling swallow bugs at nests in some colonies. They may constitute an alternative to insecticide use at sites where ecologists wish to remove the effects of swallow bugs on cliff swallows or house sparrows. By reducing bug numbers, ant presence may also lessen BCRV transmission at the spatial foci (bird colony sites) where epizootics occur. The effect of ants on swallow bugs should be accounted for in studying variation among sites in vector abundance.  相似文献   

7.
8.
Determining the effect of an invasive species on enzootic pathogen dynamics is critical for understanding both human epidemics and wildlife epizootics. Theoretical models suggest that when a naive species enters an established host–parasite system, the new host may either reduce (‘dilute’) or increase (‘spillback’) pathogen transmission to native hosts. There are few empirical data to evaluate these possibilities, especially for animal pathogens. Buggy Creek virus (BCRV) is an arthropod-borne alphavirus that is enzootically transmitted by the swallow bug (Oeciacus vicarius) to colonially nesting cliff swallows (Petrochelidon pyrrhonota). In western Nebraska, introduced house sparrows (Passer domesticus) invaded cliff swallow colonies approximately 40 years ago and were exposed to BCRV. We evaluated how the addition of house sparrows to this host–parasite system affected the prevalence and amplification of a bird-associated BCRV lineage. The infection prevalence in house sparrows was eight times that of cliff swallows. Nestling house sparrows in mixed-species colonies were significantly less likely to be infected than sparrows in single-species colonies. Infected house sparrows circulated BCRV at higher viraemia titres than cliff swallows. BCRV detected in bug vectors at a site was positively associated with virus prevalence in house sparrows but not with virus prevalence in cliff swallows. The addition of a highly susceptible invasive host species has led to perennial BCRV epizootics at cliff swallow colony sites. The native cliff swallow host confers a dilution advantage to invasive sparrow hosts in mixed colonies, while at the same sites house sparrows may increase the likelihood that swallows become infected.  相似文献   

9.
We present the first detailed phylogenetic analysis of Buggy Creek virus (BCRV), a poorly known alphavirus with transmission cycles involving a cimicid swallow bug (Oeciacus vicarius) vector and cliff swallows (Petrochelidon pyrrhonota) and house sparrows (Passer domesticus) as the principal avian hosts. Nucleotide sequences of a 2,075-bp viral envelope glycoprotein-coding region, covering the entire PE2 gene, were determined for 33 BCRV isolates taken from swallow bugs at cliff swallow colonies in Nebraska and Colorado in the summer of 2001 and were compared with the corresponding region of BCRV isolates collected from Oklahoma in the 1980s. We also analyzed isolates of the closely related Fort Morgan virus (FMV) collected from Colorado in the 1970s. Phylogenetic analysis indicated that BCRV falls into the western equine encephalomyelitis complex of alphaviruses, in agreement with antigenic results and a previous alphavirus phylogeny based on the E1 coding region. We found four distinct BCRV/FMV clades, one each unique to Nebraska, Colorado, and Oklahoma and one containing isolates from both Nebraska and Colorado. BCRV isolates within the two clades from Nebraska showed 5.7 to 6.2% nucleotide divergence and 0.7 to 1.9% amino acid divergence, and within these clades, we found multiple subclades. Nebraska subclades tended to be confined to one or a few cliff swallow colonies that were close to each other in space, although in some cases, near-identical isolates were detected at sites up to 123 km apart. Viral gene flow occurs when cliff swallows move (bugs) between colony sites, and the genetic structure of BCRV may reflect the limited dispersal abilities of its insect vector.  相似文献   

10.
Many of the arthropod-borne viruses (arboviruses) show extensive genetic variability and are widely distributed over large geographic areas. Understanding how virus genetic structure varies in space may yield insight into how these pathogens are adapted to and dispersed by different hosts or vectors, the relative importance of mutation, drift, or selection in generating genetic variability, and where and when epidemics or epizootics are most likely to occur. However, because most arboviruses tend to be sampled opportunistically and often cannot be isolated in large numbers at a given locale, surprisingly little is known about their spatial genetic structure on the local scale at which host/vector/virus interactions typically occur. Here, we examine fine-scale spatial structure of two sympatric lineages of Buggy Creek virus (BCRV, Togaviridae), an alphavirus transmitted by the ectoparasitic swallow bug (Oeciacus vicarius) to colonially nesting cliff swallows (Petrochelidon pyrrhonota) and invasive house sparrows (Passer domesticus) in North America. Data from 377 BCRV isolates at cliff swallow colony sites in western Nebraska showed that both virus lineages were geographically structured. Most haplotypes were detected at a single colony or were shared among nearby colonies, and pair-wise genetic distance increased significantly with geographic distance between colony sites. Genetic structure of both lineages is consistent with isolation by distance. Sites with the most genetically distinct BCRV isolates were occupied by large numbers of house sparrows, suggesting that concentrations of invasive sparrows may represent foci for evolutionary change in BCRV. Our results show that bird-associated arboviruses can show genetic substructure over short geographic distances.  相似文献   

11.
Invasive species often display different patterns of parasite burden and virulence compared to their native counterparts. These differences may be the result of variability in host-parasite co-evolutionary relationships, the occurrence of novel host-parasite encounters, or possibly innate differences in physiological responses to infection between invasive and native hosts. Here we examine the adaptive, humoral immune responses of a resistant, native bird and a susceptible, invasive bird to an arbovirus (Buggy Creek virus; Togaviridae: Alphavirus) and its ectoparasitic arthropod vector (the swallow bug; Oeciacus vicarius). Swallow bugs parasitize the native, colonially nesting cliff swallow (Petrochelidon pyrrhonota) and the introduced house sparrow (Passer domesticus) that occupies nests in cliff swallow colonies. We measured levels of BCRV-specific and swallow bug-specific IgY levels before nesting (prior to swallow bug exposure) and after nesting (after swallow bug exposure) in house sparrows and cliff swallows in western Nebraska. Levels of BCRV-specific IgY increased significantly following nesting in the house sparrow but not in the cliff swallow. Additionally, house sparrows displayed consistently higher levels of swallow bug-specific antibodies both before and after nesting compared to cliff swallows. The higher levels of BCRV and swallow bug specific antibodies detected in house sparrows may be reflective of significant differences in both antiviral and anti-ectoparasite immune responses that exist between these two avian species. To our knowledge, this is the first study to compare the macro- and microparasite-specific immune responses of an invasive and a native avian host exposed to the same parasites.  相似文献   

12.
Determining the degree of genetic variability and spatial structure of arthropod-borne viruses (arboviruses) may help in identifying where strains that potentially cause epidemics or epizootics occur. Genetic diversity in arboviruses is assumed to reflect relative mobility of their vertebrate hosts (and invertebrate vectors), with highly mobile hosts such as birds leading to genetic similarity of viruses over large areas. There are no empirical studies that have directly related host or vector movement to virus genetic diversity and spatial structure. Using the entire E2 glycoprotein-coding region of 377 Buggy Creek virus isolates taken from cimicid swallow bugs (Oeciacus vicarius), the principal invertebrate vector for this virus, we show that genetic diversity between sampling sites could be predicted by the extent of movement by transient cliff swallows (Petrochelidon pyrrhonota) between nesting colonies where the virus and vectors occur. Pairwise F(ST) values between colony sites declined significantly with increasing likelihood of a swallow moving between those sites per 2-day interval during the summer nesting season. Sites with more bird movement between them had virus more similar genetically than did pairs of sites with limited or no bird movement. For one virus lineage, Buggy Creek virus showed greater haplotype and nucleotide diversity at sites that had high probabilities of birds moving into or through them during the summer; these sites likely accumulated haplotypes by virtue of frequent virus introductions by birds. Cliff swallows probably move Buggy Creek virus by transporting infected bugs on their feet. The results provide the first empirical demonstration that genetic structure of an arbovirus is strongly associated with host/vector movement, and suggest caution in assuming that bird-dispersed arboviruses always have low genetic differentiation across different sites.  相似文献   

13.
A challenge in managing vector-borne zoonotic diseases in human and wildlife populations is predicting where epidemics or epizootics are likely to occur, and this requires knowing in part the likelihood of infected insect vectors dispersing pathogens from existing infection foci to novel areas. We measured prevalence of an arbovirus, Buggy Creek virus, in dispersing and resident individuals of its exclusive vector, the ectoparasitic swallow bug (Oeciacus vicarius), that occupies cliff swallow (Petrochelidon pyrrhonota) colonies in western Nebraska. Bugs colonizing new colony sites and immigrating into established colonies by clinging to the swallows’ legs and feet had significantly lower virus prevalence than bugs in established colonies and those that were clustering in established colonies before dispersing. The reduced likelihood of infected bugs dispersing to new colony sites indicates that even heavily infected sites may not always export virus to nearby foci at a high rate. Infected arthropods should not be assumed to exhibit the same dispersal or movement behaviour as uninfected individuals, and these differences in dispersal should perhaps be considered in the epidemiology of vector-borne pathogens such as arboviruses.  相似文献   

14.
In May 1988, ten juvenile birds, not yet ready to fledge, jumped to their death from a colony of the purple martin, Progne subis near Okeechobee City, Florida. The martin house and nestlings were found to be infested with ectoparasitic Oeciacus vicarius Horvath, the cliff swallow bug, not previously reported from Florida. This ectoparasite infestation apparently led to early abandonment of two houses by the adult martins. Oeciacus vicarius therefore represents a possible threat to all hole-nesting birds.  相似文献   

15.
A colony of red wood ants can inhabit more than one spatially separated nest, in a strategy called polydomy. Some nests within these polydomous colonies have no foraging trails to aphid colonies in the canopy. In this study we identify and investigate the possible roles of non-foraging nests in polydomous colonies of the wood ant Formica lugubris. To investigate the role of non-foraging nests we: (i) monitored colonies for three years; (ii) observed the resources being transported between non-foraging nests and the rest of the colony; (iii) measured the amount of extra-nest activity around non-foraging and foraging nests. We used these datasets to investigate the extent to which non-foraging nests within polydomous colonies are acting as: part of the colony expansion process; hunting and scavenging specialists; brood-development specialists; seasonal foragers; or a selfish strategy exploiting the foraging effort of the rest of the colony. We found that, rather than having a specialised role, non-foraging nests are part of the process of colony expansion. Polydomous colonies expand by founding new nests in the area surrounding the existing nests. Nests founded near food begin foraging and become part of the colony; other nests are not founded near food sources and do not initially forage. Some of these non-foraging nests eventually begin foraging; others do not and are abandoned. This is a method of colony growth not available to colonies inhabiting a single nest, and may be an important advantage of the polydomous nesting strategy, allowing the colony to expand into profitable areas.  相似文献   

16.
Many biotic and abiotic factors affect the transmission efficiency of vector-borne plant pathogens. Insect vector within-plant distribution and host tissue preference are known to affect pathogen acquisition and inoculation rates. In this study, we first investigated whether feeding tissue affects the transmission of Grapevine leafroll-associated virus 3 by Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae) and the effect of mealybug within-plant distribution on virus transmission under greenhouse conditions. Results showed no significant effect on transmission efficiency after insect confinement on leaf blades, petioles or stems of virus source or healthy test plants for either acquisition or inoculation trials. Transmission efficiency of a single mealybug varied from 4 to 25% in those trials. Second, we tested whether leaf position affected transmission efficiency due to potentially variable virus populations within acquisition plant tissues. No significant differences of transmission rate among acquisition leaf position were observed, probably because there were no differences in the virus population within source tissues. Finally, we examined the seasonality of the virus in field-collected samples and found that GLRaV-3 prevalence varied along a growing season, such that GLRaV-3 translocated along expanding shoots to leaves. Similarly, mealybug populations are known to increase in spring, and then mealybugs spread to cordons and leaves. This coordination of spatial and temporal dynamics of the virus and its vector may increase the risk of GLRaV-3 transmission during late spring and early summer. Further integration of information about pathogen populations in plants, vector feeding behavior and vector population seasonality could lead to more effective management practices.  相似文献   

17.
We investigate the structure between and within colonies of Schedorhinotermes lamanianus (Isoptera: Rhinotermitidae) at a cluster of foraging galleries in Shimba Hills National Reserve, Kenya. Three independent methods (morphometrics of minor soldiers, multilocus fingerprinting from genomic DNA of workers, and aggression tests between workers) yielded concordant results concerning number and spatial extent of colonies as well as variation between and within colonies. At least three colonies exist in our study area. Genetic data reveal that the largest colony is genetically and spatially substructured in three subsidiary nests, which may form reproductive units. These subsidiary nests were not completely isolated as we were able to document exchange of workers. Subsidiary nests may facilitate foundation of colonies by budding which may generate isolation by distance (population viscosity).  相似文献   

18.
Abstract 1. The colonies of the Spanish desert ant Cataglyphis iberica are polydomous. This study describes the temporal and spatial patterns of the polydomy in this species at two different sites, and presents analyses of its role in reducing the attacks of the queen over sexual brood, and in allowing better habitat exploitation.
2. The spatial distribution of nests was clumped while colonies were distributed randomly. Mean nearest neighbour distance ranged from 3.4 to 7.0 m for nests and from 12.3 to 14.1 m for colonies. Distance of foragers searching for food varied among nests: mean values were between 6.1 and 12.6 m.
3. At both sites, the maximum number of nests per colony occurred in summer, during the maximum activity period of the species. Colonies regrouped at the end of this period but overwintered in several nests.
4. Nest renewal in C. iberica colonies was high and showed great temporal variability: nests changed (open, close, re-open) continuously through the activity season and/or among years. The lifetime of up to 55% of nests was only 1–3 months.
5. Polydomy in C. iberica might decrease the interactions between the queen and the sexual brood. In all colonies excavated just before the mating period, the nest containing the queen did not contain any virgin female. Females were in the queenless nests of the colony.
6. The results also suggest that polydomous C. iberica colonies may enhance habitat exploitation because foraging activity per colony increases with nest number. The relationship between total prey input and foraging efficiency and number of nests per colony attains a plateau or even decreases after a certain colony size (four to six nests). This value agrees with the observed mean number of nests per colony in C. iberica .  相似文献   

19.
The northern fowl mite, Ornithonyssus sylviarum Canestrini and Fanzago, is a common ectoparasite of wild birds. Despite its ability to transmit eastern equine encephalitis (EEE) virus under laboratory conditions and potential for involvement in the natural EEE virus cycle, we know little about its abundance or temporal distribution in nature. From June to August 2000, we studied the abundance of O. sylviarum in the nests of gray catbirds (Dumatella carolinensis), a reservoir host for EEE virus, at Killbuck Marsh Wildlife Area (KMWA), a known EEE virus focus in Wayne County, Ohio. A total of 7,883 O. sylviarum, including 1,910 adults and 5,973 protonymphs, were recovered from 23 of 26 gray catbird nests collected during various phases of the nesting cycle. We found no association between mite abundance and number of catbird nestlings in successful nests. However, mite abundance increased significantly with date of nest collection and peaked in late July when transmission of EEE virus is likely to occur at KMWA. We therefore suggest that O. sylviarum may contribute to the transmission of EEE virus among gray catbirds at KMWA.  相似文献   

20.
Parasite virulence has been hypothesised to increase with the degree of host sociality because highly social hosts have a greater probability of encountering horizontal transmission of parasites and experiencing infections with multiple strains of the same parasites than do solitary hosts. As compared with the defences of closely related social host species, we predicted that solitary hosts should have relatively weak defences against parasites, thus being relatively more affected when parasitised by a novel parasite. We tested this prediction by either experimentally infesting 12 nests of the solitarily nesting red-rumped swallow Hirundo daurica with 50 individuals of the generalist martin bug Oeciacus hirundinis or by fumigation of nine nests. Nestlings 13 days old from the parasite addition group experienced increased mortality, attained lower body mass and tended to have shorter tarsi compared to nestlings from fumigated nests. Surprisingly, nestlings from the parasite addition group had higher packed cell volume (cellular fraction of blood) and lower levels of heat shock proteins (HSP60) than nestlings from the fumigation group. A measure of immunocompetence was not significantly affected by treatment, but its magnitude was positively related to packed cell volume and negatively related to level of HSP60. Solitary hosts like the red-rumped swallow have weak immune responses and low levels of heat shock proteins when infested with ectoparasites while highly social hosts have strong immune responses and high levels of heat shock proteins when infested. These findings partially support the hypothesis that potential host species with weak defences are more susceptible to infection and the deleterious effects of evolving parasites than potential hosts with strong defences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号