首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of Sulfolobus solfataricus 5'-deoxy-5'-methylthioadenosine phosphorylase II (SsMTAPII) in complex with 5'-deoxy-5'-methylthioadenosine (MTA) and sulfate was determined to 1.45A resolution. The hexameric structure of SsMTAPII is a dimer-of-trimers with one active site per monomer. The oligomeric assembly of the trimer and the monomer topology of SsMTAPII are almost identical with trimeric human 5'-deoxy-5'-methylthioadenosine phosphorylase (hMTAP). SsMTAPII is the first reported hexameric member in the trimeric class of purine nucleoside phosphorylase (PNP) from Archaea. Unlike hMTAP, which is highly specific for MTA, SsMTAPII also accepts adenosine as a substrate. The residues at the active sites of SsMTAPII and hMTAP are almost identical. The broad substrate specificity of SsMTAPII may be due to the flexibility of the C-terminal loop. SsMTAPII is extremely thermoactive and thermostable. The three-dimensional structure of SsMTAPII suggests that the unique dimer-of-trimers quaternary structure, a CXC motif at the C terminus, and two pairs of intrasubunit disulfide bridges may play an important role in its thermal stability.  相似文献   

2.
The 1-phosphorothioate analogues of 5-phosphoribosyl 1-diphosphate (P-Rib-PP) have been prepared enzymatically, in reactions catalyzed by P-Rib-PP synthetase from Salmonella typhimurium. 5-Phosphoribosyl 1-O-(2-thiodiphosphate) (P-Rib-PP beta S) was synthesized from ribose 5-phosphate (Rib-5-P) and the Mg2+ complex of adenosine 5'-O-(3-thiotriphosphate). The SP and RP diastereomers of 5-phosphoribosyl 1-O-(1-thiodiphosphate) (P-Rib-PP alpha S) were synthesized from Rib-5-P and the Mg2+ complex of adenosine 5'-O-(2-thiotriphosphate) (ATP beta S) (SP diastereomer, delta-configuration) and the Cd2+ complex of ATP beta S (RP diastereomer, delta-configuration), respectively. The strategy for the synthesis and stereochemical assignment of the P-Rib-PP alpha S diastereomers was based on the specificity of P-Rib-PP synthetase for the (delta)-beta, gamma-bidentate metal-nucleotide substrate and the stereochemical course of the synthetase reaction, leading to inversion of configuration at the P beta atom of the nucleotide [Li, T. M., Mildvan, A. S., & Switzer, R. L. (1978) J. Biol. Chem. 253, 3918-3923], and the known configurations of the Mg2+ and Cd2+ beta, gamma-bidentate complexes of the ATP beta S diastereomers [Jaffe, E. K., & Cohn, M. (1979) J. Biol. Chem. 254, 10839-10845]. The P-Rib-PP analogues were purified by gradient elution from DEAE-Sephadex and characterized by chemical analysis and 31P nuclear magnetic resonance [Smithers, G. W., & O'Sullivan, W. J. (1984) Biochemistry (following paper in this issue)]. A preliminary account of their interaction with human brain hypoxanthine phosphoribosyltransferase and yeast orotate phosphoribosyltransferase (OPRTase) is described.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Purine nucleoside metabolism in the archaeon Pyrococcus furiosus is catalyzed by purine nucleoside phosphorylase (PfPNP) and 5'-deoxy-5'-methylthioadenosine phosphorylase (PfMTAP). These enzymes, characterized by 50% amino acid sequence identity, show non-common features of thermophilicity and thermostability and are stabilized by intramolecular disulfide bonds. PfPNP is highly specific for 6-oxopurine nucleosides while PfMTAP is characterized by a broad substrate specificity with 6-aminopurine nucleosides as preferred substrates. Amino acid sequence comparison clearly shows that the hypothetical active sites of PfPNP and PfMTAP are almost identical and that, in analogy with human 5'-deoxy-5'-methylthioadenosine phosphorylase and human purine nucleoside phosphorylase, residue changes at level of the same crucial positions could be responsible for the switch of substrate specificity. To validate this hypothesis we changed the putative active site of PfPNP by site-directed mutagenesis. Substrate specificity and catalytic efficiency of PfPNP mutants were then analyzed by kinetic studies and compared with the wild-type enzyme. We carried out the molecular modeling of PfPNP and PfMTAP to obtain a picture of the overall enzyme structure and to identify structural features as well as interactions playing critical roles in thermostability. Finally, we utilized the structural models of mutant enzyme-substrate complex to rationalize the functional effects of the mutations.  相似文献   

4.
The intraerythrocytic human malaria parasite, Plasmodium falciparum, requires a source of hypoxanthine for nucleic acid synthesis and energy metabolism. Adenosine has been implicated as a major source for intraerythrocytic hypoxanthine production via deamination and phosphorolysis, utilizing adenosine deaminase and purine nucleoside phosphorylase, respectively. To study the expression and characteristics of human malaria purine nucleoside phosphorylase, P. falciparum was successfully cultured in purine nucleoside phosphorylase-deficient human erythrocytes to an 8% parasitemia level. Purine nucleoside phosphorylase activity was undetectable in the uninfected enzyme-deficient host red cells but after parasite infection rose to 1.5% of normal erythrocyte levels. The parasite purine nucleoside phosphorylase was not cross-reactive with antibody against human enzyme, exhibited a calculated native molecular weight of 147,000, and showed a single major electrophoretic form of pI 5.4 and substrate specificity for inosine, guanosine and deoxyguanosine but not xanthosine or adenosine. The Km values for substrates, inosine and guanosine, were 4-fold lower than that for the human erythrocyte enzyme. In these studies we have identified two novel potent inhibitors of both human erythrocyte and parasite purine nucleoside phosphorylase, 8-amino-5'-deoxy-5'-chloroguanosine and 8-amino-9-benzylguanine. These enzyme inhibitors may have some antimalarial potential by limiting hypoxanthine production in the parasite-infected erythrocyte.  相似文献   

5.
The antiproliferative effects of 5'-methylthioadenosine and the 5'-methylthioadenosine analogs, 5'-isobutylthioadenosine, 5'-deoxyadenosine and 5'-methylthiotubercidin were examined using two mouse cell lines, one 5'-methylthioadenosine phosphorylase-deficient the other containing 5'-methylthioadenosine phosphorylase. All of the compounds were found to be growth inhibitory to both cell lines, demonstrating that these compounds need not be degraded to exert their inhibitory effects. A correlation was observed between the potency of the growth inhibitory effect and the ability of the cells to degrade these compounds. 5'-Methylthioadenosine, 5'-deoxyadenosine and 5'-isobutylthioadenosine, all of which are substrates for the 5'-methylthioadenosine phosphorylase in vitro, were more growth inhibitory to the 5'-methylthioadenosine phosphorylase-deficient cells than to the 5'-methylthioadenosine phosphorylase-containing cells, whereas, the 7-deaza analog, 5'-methylthiotubercidin, a nondegradable inhibitor of the 5'-methylthioadenosine phosphorylase, was a more potent inhibitor of the 5'-methylthioadenosine phosphorylase-containing cell line. Due to the inhibition by 5'-methylthiotubercidin on 5'-methylthioadenosine phosphorylase in vitro the disposition of cellularly-synthesized 5'-methylthioadenosine was explored using both cell types. 5'-Methylthiotubercidin inhibited the accumulation of exogenous 5'-methylthioadenosine from 5'-methylthioadenosine phosphorylase-deficient cells with no effect on intracellular 5'-methylthioadenosine. In contrast, 5'-methylthiotubercidin caused a large accumulation of extracellular 5'-methylthioadenosine with a concomitant smaller increase intracellularly in 5'-methylthioadenosine phosphorylase-containing cells. That cellularly-synthesized 5'-methylthioadenosine as well as the cellular excretion of this nucleoside are altered in response to treatment with 5'-methylthiotubercidin suggests two possible sites at which 5'-methylthiotubercidin may exert its effect.  相似文献   

6.
Utilization of 2,6-diaminopurine by Salmonella typhimurium   总被引:2,自引:0,他引:2       下载免费PDF全文
The pathway for the utilization of 2,6-diaminopurine (DAP) as an exogenous purine source in Salmonella typhimurium was examined. In strains able to use DAP as a purine source, mutant derivatives lacking either purine nucleoside phosphorylase or adenosine deaminase activity lost the ability to do so. The implied pathway of DAP utilization was via its conversion to DAP ribonucleoside by purine nucleoside phosphorylase, followed by deamination to guanosine by adenosine deaminase. Guanosine can then enter the established purine salvage pathways. In the course of defining this pathway, purine auxotrophs able to utilize DAP as sole purine source were isolated and partially characterized. These mutants fell into several classes, including (i) strains that only required an exogenous source of guanine nucleotides (e.g., guaA and guaB strains); (ii) strains that had a purF genetic lesion (i.e., were defective in alpha-5-phosphoribosyl 1-pyrophosphate amidotransferase activity); and (iii) strains that had constitutive levels of purine nucleoside phosphorylase. Selection among purine auxotrophs blocked in the de novo synthesis of inosine 5'-monophosphate, for efficient growth on DAP as sole source of purine nucleotides, readily yielded mutants which were defective in the regulation of their deoxyribonucleoside-catabolizing enzymes (e.g., deoR mutants).  相似文献   

7.
The structure of 5'-deoxy-5'-methylthioadenosine phosphorylase from Sulfolobus solfataricus (SsMTAP) has been determined alone, as ternary complexes with sulfate plus substrates 5'-deoxy-5'-methylthioadenosine, adenosine, or guanosine, or with the noncleavable substrate analog Formycin B and as binary complexes with phosphate or sulfate alone. The structure of unliganded SsMTAP was refined at 2.5-A resolution and the structures of the complexes were refined at resolutions ranging from 1.6 to 2.0 A. SsMTAP is unusual both for its broad substrate specificity and for its extreme thermal stability. The hexameric structure of SsMTAP is similar to that of purine-nucleoside phosphorylase (PNP) from Escherichia coli, however, only SsMTAP accepts 5'-deoxy-5'-methylthioadenosine as a substrate. The active site of SsMTAP is similar to that of E. coli PNP with 13 of 18 nearest residues being identical. The main differences are at Thr(89), which corresponds to serine in E. coli PNP, and Glu(163), which corresponds to proline in E. coli PNP. In addition, a water molecule is found near the purine N-7 position in the guanosine complex of SsMTAP. Thr(89) is near the 5'-position of the nucleoside and may account for the ability of SsMTAP to accept either hydrophobic or hydrophilic substituents in that position. Unlike E. coli PNP, the structures of SsMTAP reveal a substrate-induced conformational change involving Glu(163). This residue is located at the interface between subunits and swings in toward the active site upon nucleoside binding. The high-resolution structures of SsMTAP suggest that the transition state is stabilized in different ways for 6-amino versus 6-oxo substrates. SsMTAP has optimal activity at 120 degrees C and retains full activity after 2 h at 100 degrees C. Examination of the three-dimensional structure of SsMTAP suggests that unlike most thermophilic enzymes, disulfide linkages play a key in role in its thermal stability.  相似文献   

8.
Platelet derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP) catalyzes the phosphorolysis of thymidine (TdR) to thymine and deoxyribose-1-phosphate (dR-1-P) and has a pro-angiogenic effect for which dR-1-P may be responsible. Using a purine nucleoside phosphorylase based assay it was found that TdR incubation did not increase dR-1-P accumulation in colon cancer cell line Colo320 and its PD-ECGF/TP transfected variant Colo320TP1. The assay was linear up to 25,000pmol dR-1-P with complete recovery of dR-1-P from cellular extracts. There was a huge discrepancy between thymine production and the measured dR-1-P level, 0.05% of the expected value for dR-1-P was found, indicating that there was a rapid disappearance of dR-1-P. However, in cellular extracts, TdR incubation increased dR-1-P, measurable by trapping, which was inhibited by a thymidine phosphorylase inhibitor. dR-1-P directly added to cellular extracts disappeared within 5-10min. In conclusion, large amounts of dR-1-P are produced by Colo320TP1 cells, which rapidly disappear thus not resulting in a net accumulation of dR-1-P in these cells.  相似文献   

9.
The activities of purine salvage enzymes in tachyzoites from a cyst-forming strain of Toxoplasma gondii were determined using HPLC. Six enzymes were assayed both in vitro and in vivo: adenosine deaminase, guanine deaminase, purine nucleoside phosphorylase, xanthine oxidase, hypoxanthine-guanine phosphoribosyltransferase and adenine phosphoribosyltransferase. In vitro, the tachyzoites were cultured in the human myelomonocytic cell line THP-1, for 24 h to 96 h. Neither guanine deaminase nor hypoxanthine-guanine phosphoribosyltransferase activity was detected in 24 and 96 h cultures. In vivo, in controls and infected animals, the purine nucleoside phosphorylase and adenosine deaminase activities were the most important activities both in sera and cerebral tissue in comparison with the other activities. It was also noted that the infection modified the enzymatic activities of this purine salvage pathway, in particular, the guanine deaminase cerebral activity of infected mice was 20-fold lower than the value of controls. The treatment of mice with 2',3'-dideoxyinosine, a purine analog, at the dose of 100 mg.kg(-1).d for 30 days, induced an important increase of all enzymatic activities in the brains in comparison with control animals. These data suggest that one target of 2',3'-dideoxyinosine is the purine metabolism.  相似文献   

10.
Cordycepin sensitive mutants of Saccharomyces cerevisiae, which are permeable to 5'-deoxy-5'-methylthioadenosine (MTA), were used to study the fate of the methylthioribose carbons of this purine nucleoside. Evidence is presented for the recycling of the methylthio group and part of the ribose portion of MTA in a biosynthetic pathway which leads to the synthesis of methionine. The main pathway involves the phosphorylytic cleavage of MTA by MTA phosphorylase yielding 5-methylthioribose 1-phosphate and adenine as products. Loss of the phosphate group of 5-methylthioribose 1-phosphate, concurrent with the rearrangement of the ribose carbons, leads to the synthesis of 2-keto-4-methylthiobutyric acid. In the final step of the sequence, 2-keto-4-methylthiobutyric acid is converted to methionine via transamination. Several compounds not directly associated with the biosynthesis of methionine were also isolated. These compounds, which may arise through the degradation of intermediates in the pathway, were: 5'-methylthioinosine, a deaminated catabolite of MTA; 5-methylthioribose, a result of the phosphorylysis of 5-methylthioribose 1-phosphate, and 3-methylthiopropionaldehyde, 3-methylthiopropionic acid and 2-hydroxy-4-methylthiobutyric acid, all arising from the catabolism of 2-keto-4-methylthiobutyric acid.  相似文献   

11.
Activities of adenosine deaminase (ADA), adenosine kinase (AK), adenine phosphoribosyltransferase (APRT), hypoxanthine guanine phosphoribosyltransferase (HGPRT), and purine nucleoside phosphorylase (PNP), all enzymes of the purine interconversion system, were determined in lymphocytes of 25 patients with chronic lymphatic leukemia (CLL) and in 23 controls. A statistically significant decrease of PNP activities and a reduction of ADA activities at borderline levels were found in the patients, whereas for the other enzymes assayed no deviation from normal values was observed.  相似文献   

12.
Uptake of adenine, hypoxanthine and uracil by an uncA strain of Escherichia coli is inhibited by uncouplers or when phosphate in the medium is replaced by less than 1 mM-arsenate, indicating a need for both a protonmotive force and phosphorylated metabolites. The rate of uptake of adenine or hypoxanthine was not markedly affected by a genetic deficiency of purine nucleoside phosphorylase. In two mutants with undetected adenine phosphoribosyltransferase, the rate of adenine uptake was about 30% of that in their parent strain, and evidence was obtained to confirm that adenine had then been utilized via purine nucleoside phosphorylase. In a strain deficient in both enzymes adenine uptake was about 1% of that shown by wild-type strains. Uptake of hypoxanthine was similarly limited in a strain lacking purine nucleoside phosphorylase, hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase. Deficiency of uracil phosphoribosyltransferase severely limits uracil uptake, but the defect can be circumvented by addition of inosine, which presumably provides ribose 1-phosphate for reversal of uridine phosphorylase. The results indicate that there are porter systems for adenine, hypoxanthine and uracil dependent on a protonmotive force and facilitated by intracellular metabolism of the free bases.  相似文献   

13.
In this paper, we extend our previous observation on the mobilization of the ribose moiety from a purine nucleoside to a pyrimidine base, with subsequent pyrimidine nucleotides formation (Cappiello et al., Biochim. Biophys. Acta 1425 (1998) 273-281). The data show that, at least in vitro, also the reverse process is possible. In rat brain extracts, the activated ribose, stemming from uridine as ribose 1-phosphate, can be used to salvage adenine and hypoxanthine to their respective nucleotides. Since the salvage of purine bases is a 5-phosphoribosyl 1-pyrophosphate-dependent process, catalyzed by adenine phosphoribosyltransferase and hypoxanthine guanine phosphoribosyltransferase, our results imply that Rib-1P must be transformed into 5-phosphoribosyl 1-pyrophosphate, via the successive action of phosphopentomutase and 5-phosphoribosyl 1-pyrophosphate synthetase; and,in fact, no adenosine could be found as an intermediate when rat brain extracts were incubated with adenine, Rib-1P and ATP, showing that adenine salvage does not imply adenine ribosylation, followed by adenosine phosphorylation. Taken together with our previous results on the Rib-1P-dependent salvage of pyrimidine nucleotides, our results give a clear picture of the in vitro Rib-1P recycling, for both purine and pyrimidine salvage.  相似文献   

14.
Variants of Chinese hamster ovary and Novikoff rat hepatoma cells resistant to tubercidin and 2,5-diaminopurine, or to both drugs, were isolated, and their ability to convert adenosine and various adenosine analogs to nucleotides was compared to that of wild-type cells, both in intact cells and cell-free extracts. Adenosine deamination, and thus its conversion to nucleotides via inosine-hypoxanthine-inosine monophosphate, was inhibited by pretreatment of the cells or cell extracts with 2-deoxycoformycin. Cell-free extracts of the tubercidin-resistant variants, as well as of two adenosine-resistant mutants of Chinese hamster ovary cells, phosphorylated adenosine, tubercidin, pyrazofurin, or tricyclic nucleoside in the presence of ATP at less than 1% of the rate of extracts of wild-type cells. However, addition of phosphoribosyl pyrophosphate stimulated the conversion of adenosine to nucleotides 40-fold. Similarly, intact adenosine kinase-deficient cells failed to phosphorylate the adenosine analogs, but still converted adenosine to nucleotides at 5-10% the rate observed with wild-type cells. Phosphorylation of adenosine and tubercidin in wild-type cells was inhibited by substrate at concentration above 5-10 microM. In contrast, the rate of conversion of adenosine to nucleotides by adenosine kinase-deficient cells increased linearly up to a concentration of 400 microM adenosine, with the consequence that, at this concentration, these cells took up adenosine almost as rapidly as wild-type cells. Adenosine uptake by these kinase-deficient cells was inhibited by adenine and 5'-deoxyadenosine, and was largely abolished in mutants devoid also of adenine phosphoribosyltransferase. We conclude that adenosine is converted to nucleotides in adenosine kinase-deficient cells via adenine. Indirect evidence implicates 5'-methylthioadenosine phosphorylase as the enzyme responsible for the degradation of adenosine to adenine.  相似文献   

15.
A xanthosine-inducible enzyme, inosine-guanosine phosphorylase, has been partially purified from a strain of Escherichia coli K-12 lacking the deo-encoded purine nucleoside phosphorylase. Inosine-guanosine phosphorylase had a particle weight of 180 kilodaltons and was rapidly inactivated by p-chloromercuriphenylsulfonic acid (p-CMB). The enzyme was not protected from inactivation by inosine (Ino), 2'-deoxyinosine (dIno), hypoxanthine (Hyp), Pi, or alpha-D-ribose-1-phosphate (Rib-1-P). Incubating the inactive enzyme with dithiothreitol restored the catalytic activity. Reaction with p-CMB did not affect the particle weight. Inosine-guanosine phosphorylase was more sensitive to thermal inactivation than purine nucleoside phosphorylase. The half-life determined at 45 degrees C between pH 5 and 8 was 5 to 9 min. Phosphate (20 mM) stabilized the enzyme to thermal inactivation, while Ino (1 mM), dIno (1 mM), xanthosine (Xao) (1 mM), Rib-1-P (2 mM), or Hyp (0.05 mM) had no effect. However, Hyp at 1 mM did stabilize the enzyme. In addition, the combination of Pi (20 mM) and Hyp (0.05 mM) stabilized this enzyme to a greater extent than did Pi alone. Apparent activation energies of 11.5 kcal/mol and 7.9 kcal/mol were determined in the phosphorolytic and synthetic direction, respectively. The pH dependence of Ino cleavage or synthesis did not vary between 6 and 8. The substrate specificity, listed in decreasing order of efficiency (V/Km), was: 2'-deoxyguanosine, dIno, guanosine, Xao, Ino, 5'-dIno, and 2',3'-dideoxyinosine. Inosine-guanosine phosphorylase differed from the deo operon-encoded purine nucleoside phosphorylase in that neither adenosine, 2'-deoxyadenosine, nor hypoxanthine arabinoside were substrates or potent inhibitors. Moreover, the E. coli inosine-guanosine phosphorylase was antigenically distinct from the purine nucleoside phosphorylase since it did not react with any of 14 monoclonal antisera or a polyvalent antiserum raised against deo-encoded purine nucleoside phosphorylase.  相似文献   

16.
Enzymatic synthesis of purine 2'-deoxyriboside was obtained by reacting purine with excess 2-deoxy-alpha-D-ribose-1-phosphate in the presence of commercial bovine nucleoside phosphorylase; the product was isolated by semipreparative reverse phase HPLC with an overall 62% yield. Purine 2'-deoxyriboside was shown to behave as a competitive inhibitor of adenosine deaminase from calf intestinal mucosa and Bacillus cereus, with apparent Ki values of 4.5 and 8.5 microM, respectively.  相似文献   

17.
2,2'-Anhydro-3'-deoxy-5-ethyluridine, a new pyrimidine nucleoside analog, has been examined in terms of its binding potency to uridine phosphorylase, and its conformation in solution (NMR) was studied. 2,2'-Anhydro-3'-deoxy-5-ethyluridine has a Ki value of 3.4 microM for uridine phosphorylase from rat intestinal mucosa. This value is approximately one order of magnitude lower than the Km for uridine (22 microM), the natural substrate. The presence of the 3'-OH group (in the ribo-configuration) on pyrimidine nucleoside analogs may not be considered a prerequisite for the binding to uridine phosphorylase; however, it enhances the binding in the case of flexible ligands cooperating in the process of conformation change toward a more favorable enzyme-ligand interaction. The presence of the 3'-OH group in pyrimidine nucleosides seems to be essential if the molecule is to become a substrate.  相似文献   

18.
The availability of a human lymphoma cell line deficient in adenosine deaminase, adenosine kinase and methylthioadenosine phosphorylase enabled us to compare the effects of nucleoside transport inhibitors on the excretion of endogenously generated adenosine, deoxyadenosine and 5'-methylthioadenosine. The nucleoside transport inhibitors nitrobenzylthioinosine and dipyridamole blocked the efflux of adenosine, but not deoxyadenosine or 5'-methylthioadenosine. The inhibitors also prevented the uptake of exogenous adenosine, but not deoxyadenosine or 5'-methylthioadenosine, by human lymphoblasts. The results show (i) that the transport inhibitors modify adenine nucleoside efflux and influx similarly, and (ii) that the effects of the compounds on the excretion and uptake of these three physiologically important adenine nucleosides are distinctly different.  相似文献   

19.
We report here the characterization of the first mammalian-like purine nucleoside phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus (PfPNP). The gene PF0853 encoding PfPNP was cloned and expressed in Escherichia coli and the recombinant protein was purified to homogeneity. PfPNP is a homohexamer of 180 kDa which shows a much higher similarity with 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP) than with purine nucleoside phosphorylase (PNP) family members. Like human PNP, PfPNP shows an absolute specificity for inosine and guanosine. PfPNP shares 50% identity with MTAP from P. furiosus (PfMTAP). The alignment of the protein sequences of PfPNP and PfMTAP indicates that only four residue changes are able to switch the specificity of PfPNP from a 6-oxo to a 6-amino purine nucleoside phosphorylase still maintaining the same overall active site organization. PfPNP is highly thermophilic with an optimum temperature of 120 degrees C and is characterized by extreme thermodynamic stability (T(m), 110 degrees C that increases to 120 degrees C in the presence of 100 mm phosphate), kinetic stability (100% residual activity after 4 h incubation at 100 degrees C), and remarkable SDS-resistance. Limited proteolysis indicated that the only proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is not necessary for the integrity of the active site. By integrating biochemical methodologies with mass spectrometry we assigned three pairs of intrasubunit disulfide bridges that play a role in the stability of the enzyme against thermal inactivation. The characterization of the thermal properties of the C254S/C256S mutant suggests that the CXC motif in the C-terminal region may also account for the extreme enzyme thermostability.  相似文献   

20.
Cell extracts of Acholeplasma laidlawii B-PG9, Acholeplasma morum S2, Mycoplasma capricolum 14, and Mycoplasma gallisepticum S6 were examined for 37 cytoplasmic enzyme activities involved in the salvage and biosynthesis of purines. All of these organisms had adenine phosphoribosyltransferase activity (EC 2.4.2.7) and hypoxanthine phosphoribosyltransferase activity (EC 2.4.2.8). All of these organisms had purine-nucleoside phosphorylase activity (EC 2.4.2.1) in the synthetic direction using ribose-1-phosphate (R-1-P) or deoxyribose-1-phosphate (dR-1-P); this activity generated ribonucleosides or deoxyribonucleosides, respectively. The pyrimidine nucleobase uracil could also be ribosylated by using either R-1-P or dR-1-P as a donor. The synthesis of deoxyribonucleosides from nucleobases and dR-1-P has been reported from only one other procaryote, Escherichia coli (L. A. Mason and J. O. Lampen, J. Biol. Chem. 193:539-547, 1951). The reverse of this phosphorylase reaction is more widely known, and we found such activity in all mollicutes studied. Some Acholeplasma species but not the Mycoplasma species can phosphorylate deoxyribonucleosides to deoxyribomononucleotides by a PPi-dependent deoxyribonucleoside kinase activity, which was first reported in this group for the ribose analogs (V. V. Tryon and J. D. Pollack, Int. J. Syst. Bacteriol. 35:497-501, 1985). This is the first report of PPi-dependent purine deoxyribonucleoside kinase activity. An ATP-dependent purine deoxyribonucleoside kinase activity is known only in salmon milt extracts (H. L. A. Tarr, Can. J. Biochem. 42:1535-1545, 1964). Deoxyribomononucleotidase activity was also found in cytoplasmic extracts of these mollicutes. This is the first report of deoxyribomononucleotidase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号