首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Plant pathogens are responsible for many crop plant diseases, resulting in economic losses. The use of bacterial agents is an excellent option to fight against plant pathogens and an excellent alternative to the use of chemicals, which are offensive to the environment and to human health. Two of the most common biocontrol agents are members of the Bacillus and Pseudomonas genera. Both bacterial genera have important traits such as plant growth-promoting (PGP) properties. This review analyzes pioneering and recent works and the mechanisms used by Bacillus and Pseudomonas in their behaviour as biocontrol and PGP agents, discussing their mode of action by comparing the two genera. Undoubtedly, future integrated research strategies for biocontrol and PGP will require the help of known and novel species of both genera.  相似文献   

2.
This study evaluated the diversity of cultivable plant growth-promoting (PGP) bacteria associated with apple trees cultivated under different crop management systems and their antagonistic ability against Colletotrichum gloeosporioides. Samples of roots and rhizospheric soil from apple trees cultivated in organic and conventional orchards in southern Brazil were collected, together with soil samples from an area never used for agriculture (native field). Bacteria were identified at the genus level by PCR-RFLP and partial sequencing of the 16S rRNA, and were evaluated for some PGP abilities. The most abundant bacterial genera identified were Enterobacter (27.7%), Pseudomonas (18.7%), Burkholderia (13.7%), and Rahnella (12.3%). Sixty-nine isolates presented some antagonist activity against C. gloeosporioides. In a greenhouse experiment, five days after exposure to C. gloeosporioides, an average of 30% of the leaf area of plants inoculated with isolate 89 (identified as Burkholderia sp.) were infected, whereas 60 to 73% of the leaf area of untreated plants was affected by fungal attack. Our results allowed us to infer how anthropogenic activity is affecting the bacterial communities in soil associated with apple tree crop systems, and to obtain an isolate that was able to delay the emergence of an important disease for this culture.  相似文献   

3.
In this study we isolated and screened drought tolerant Pseudomonas isolates from arid and semi arid crop production systems of India. Five isolates could tolerate osmotic stress up to −0.73 MPa and possessed multiple PGP properties such as P-solubilization, production of phytohormones (IAA, GA and cytokinin), siderophores, ammonia and HCN however under osmotic stress expression of PGP traits was low compared to non-stressed conditions. The strains were identified as Pseudomonas entomophila, Pseudomonas stutzeri, Pseudomonas putida, Pseudomonas syringae and Pseudomonas monteilli respectively on the basis of 16S rRNA gene sequence analysis. Osmotic stress affected growth pattern of all the isolates as indicated by increased mean generation time. An increase level of intracellular free amino acids, proline, total soluble sugars and exopolysaccharides was observed under osmotic stress suggesting bacterial response to applied stress. Further, strains GAP-P45 and GRFHYTP52 showing higher levels of EPS and osmolytes (amino acids and proline) accumulation under stress as compared to non-stress conditions, also exhibited higher expression of PGP traits under stress indicating a relationship between stress response and expression of PGP traits. We conclude that isolation and screening of indigenous, stress adaptable strains possessing PGP traits can be a method for selection of efficient stress tolerant PGPR strains.  相似文献   

4.
Aspalathus linearis (burm f.), commonly known as rooibos, grows in nutrient and organic matter poor sandy soils that limit its growth. In this study, samples of nodules from both declined and healthy rooibos plants were collected to determine the frequency of nodule nitrogen-fixing and endophytic bacteria. Standard microbiological procedures as well as sequence analysis of the 16S rRNA revealed that more than 75% of the bacterial isolates from the healthy plants contained microsymbionts belonging to the Rhizobium group and the remaining 25% were characterized as Pseudomonas and Burkholderia spp. The nodule from the declined plants lacks a sufficient number of rhizobia and was mostly white in color, small and contains the free-living endospore-forming Bacillus and other endophytic Burkholderia and Pseudomonas spp. The results provide a baseline data on the microsymbionts of rooibos nodules in Citrusdal and highlighted the need for further investigation using additional techniques.  相似文献   

5.
Sugarcane is an important crop around the world. Burkholderia genus has emerged as an important plant associated bacteria in the last years. In this study, the occurrence of Burkholderia species associated with two sugarcane varieties cultivated in Mexico was assessed. Burkholderia species were isolated with and without diazotrophs enrichment from sugarcane. Burkholderia strains were identified using a semi-selective set of primers and clustered by restriction analysis of 16S rRNA. The isolates were characterized by 16S rRNA, recA and nifH sequence analysis, whole-cell protein patterns, and plant-growth promotion (PGP) characteristics. Diazotrophic B. unamae and B. tropica were predominant using diazotroph enrichment method. Non-diazotrophic B. cepacia complex (Bcc) species were predominant without enrichment. Among non-diazotrophs, B. tropica was identified. The diazotrophic Burkholderia species exhibit in vitro PGP activities: biosynthesis of indolic compounds, phosphate solubilization, siderophores production and acdS gene presence, which encodes the enzyme ACC (1-aminocyclopropane-1-carboxylate) deaminase. The present study confirms the broad environmental and geographic distribution of diazotrophic B. unamae and B. tropica, and reveals the riches of Bcc and other Burkholderia species associated with sugarcane field-grown in Mexico. This work also shows the potential activities in PGP.  相似文献   

6.
The spermosphere, an important habitat to the plant micro-ecosystem, has a unique significance to seed microbial ecology, but has been poorly researched. In this study, the mature seeds of reciprocal cross maize (Zea mays L., Nongda108) were collected to investigate the diversity and population succession dynamics of indigenous spermosphere bacteria at 12, 24 and 36 h into seed germination using 16S rDNA library construction. In the spermosphere of Nongda108A (Huang C × 178), the dominant bacteria genera identified were Pseudomonas and Burkholderia. The proportion of Pseudomonas increased from 59.60 to 75.00% then 82.61%; while Burkholderia decreased from 39.39 to 25.00% then 15.22% at 12, 24 and 36 h, respectively. Bacillus, Paenibacillus and Stenotrophomonas were the dominant genera in Nongda108B. The proportion of Paenibacillus after 12, 24 and 36 h into germination decreased from 68.00 to 46.15 to 13.27%, respectively. The proportion of non-Paenibacillus genera increased from 32.00 (Stenotrophomonas) to 53.85 (Bacillus) to 77.55% (Burkholderia) from 12 h to 24 h to 36 h, respectively. Some dominant bacteria genera identified from maize spermosphere have been identified as common PGPR.  相似文献   

7.
The relevant phenotypic traits and phylogenetic relationships between Burkholderia (Pseudomonas) sp. strain LB400 and B. cepacia ATCC 25416T were compared to determine the degree to which these two strains might be related. Strain LB400 degrades chlorinated biphenyls and has been a model system for potential use in the bioremediation of polychlorinated biphenyls, while some strains of B. cepacia are plant and human pathogens. The fatty acid methyl ester profile, sole carbon source utilization, and biochemical tests confirmed that strain LB400 was a member of the genus Burkholderia. The 16S rRNA gene sequence showed that this strain was not as closely related to B. cepacia as previously suspected or to other known pathogens of this genus, but is closely related to B. phenazinium, B. caribensis, B. graminis, and three unnamed Burkholderia spp. not known to be pathogenic. Received: 16 August 2000 / Accepted: 27 September 2000  相似文献   

8.
In the pursuit of sustainable agriculture, bioinoculants usage as providers of a crop''s needs is a method to limit environmental damage. In this study, a collection of cultivable putative plant growth promoting (PGP) bacteria associated with wheat crops was obtained and this bacterial sample was characterized in relation to the functional diversity of certain PGP features. The isolates were obtained through classical cultivation methods, identified by partial 16S rRNA gene sequencing and characterized for PGP traits of interest. Functional diversity characterization was performed using Categorical Principal Component Analysis (CatPCA) and Multiple Correspondence Analysis (MCA). The most abundant genera found among the 346 isolates were Pseudomonas, Burkholderia, and Enterobacter. Occurrence of PGP traits was affected by genus, niche, and sampling site. A large number of genera grouped together with the ability to produce indolic compounds; phosphate solubilization and siderophores production formed a second group related to fewer genera, in which the genus Burkholderia has a great importance. The results obtained may help future studies aiming prospection of putative plant growth promoting bacteria regarding the desired organism and PGP trait.  相似文献   

9.
In Uttarakhand, the Organic State of India, where soils in most farming situations are deficient in nutrients and loss of crops due to soil- and seed-borne pathogens is rampant, use of native plant growth-promoting rhizobacteria (PGPRs) possessing biocontrol (BC) activities holds promise. In view of this, 600 native cold-tolerant rhizospheric bacterial isolates were collected from Uttarakhand Himalayas, of which 336 were confirmed as fluorescent Pseudomonas spp. On the basis of specific biochemical tests, these were characterized into three major groups: P. fluorescens (308 isolates), P. aeruginosa (20 isolates), and P. putida (8 isolates). Most of the isolates could grow at 8°C after 12 h of incubation, confirming their cold tolerance. In vitro biocontrol assays revealed that of 336 isolates, 74 were antagonistic to Rhizoctonia solani and 91 to Fusarium solani, the two major pathogens associated with root-rot complex in vegetables widespread in the region. Simultaneously, good HCN producers (33 isolates), siderophore producers (80 isolates), and P solubilizers (49 isolates) were also identified, which could increase the biocontrol and plant growth-promoting efficacies of the putative PGPRs. Among the different species and biovars, P. fluorescens biovar-I had the maximum number of potential isolates with BC and plant growth-promoting (PGP) activities. In French bean, under polyhouse and field conditions, five isolates (Pf-173, Pf-193, Pf-547, Pf-551, and Pf-572) showed good BC and PGP activities as up to 93% reduction in root rot was achieved. A combination of all five isolates was found to be best with respect to BC and PGP activities. In a set of 59 fluorescent Pseudomonas isolates, RAPD-PCR analysis, using three random oligodecamer primers, revealed high diversity and formed ten distinct clusters, corresponding to the host of origin (annual or perennial) or habitat (farming situations) of the isolates. The amount of diversity revealed in the set of fluorescent Pseudomonas isolates could represent enormous diversity that exists in the wild that could be exploited for improved BC and PGP activities of the PGPRs. For the first time, this study led to a large-scale characterization and repositioning of fluorescent pseudomonads from the Indian Himalayas.  相似文献   

10.
土壤中镉(Cd)含量的超标导致了土壤生态系统的恶性发展,微生物作为土壤中的常见组分之一在缓解土壤镉污染中展现出巨大潜力。本文总结了微生物、微生物-植物和微生物-生物炭在镉污染土壤修复中的应用并阐述了相关的作用机理。芽孢杆菌(Bacillus)、不动杆菌(Acinetobacter)、荧光假单胞菌(Pseudomonas fluorescence)、丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)等微生物可以通过吸附、矿化、沉淀、溶解等方式改变镉的生物有效性,从而达到缓解镉污染的目的。pH值、温度、微生物生物量、镉初始浓度以及时间等对微生物降低镉的生物有效性方面有着显著的影响。假单胞菌、伯克霍尔德菌(Burkholderia)、黄杆菌(flavobacterium)等微生物可以通过促生、活化等作用促进超富集植物对Cd2+的吸收。生物炭作为一种土壤改良剂,其独有的理化性质可以作为微生物的庇护所。微生物-生物炭联合使用与单用生物炭相比可以进一步促进镉的残渣态的增加,降低土壤中有效态的比例。  相似文献   

11.
Nodulation abilities of bacteria in the subclasses Gammaproteobacteria and Betaproteobacteria on black locust (Robinia pseudoacacia) were tested. Pseudomonas sp., Burkholderia sp., Klebsiella sp., and Paenibacillus sp. were isolated from surface-sterilized black locust nodules, but their nodulation ability is unknown. The aims of this study were to determine if these bacteria are symbiotic. The species and genera of the strains were determined by RFLP analysis and DNA sequencing of 16S rRNA gene. Inoculation tests and histological studies revealed that Pseudomonas sp. and Burkholderia sp. formed nodules on black locust and also developed differentiated nodule tissue. Furthermore, a phylogenetic analysis of nodA and a BLASTN analysis of the nodC, nifH, and nifHD genes revealed that these symbiotic genes of Pseudomonas sp. and Burkholderia sp. have high similarities with those of rhizobial species, indicating that the strains acquired the symbiotic genes from rhizobial species in the soil. Therefore, in an actual rhizosphere, bacterial diversity of nodulating legumes may be broader than expected in the Alpha-, Beta-, and Gammaproteobacteria subclasses. The results indicate the importance of horizontal gene transfer for establishing symbiotic interactions in the rhizosphere.  相似文献   

12.
Diversity and composition of lepidopteran microbiotas are poorly investigated, especially across the different developmental stages. To improve this knowledge, we characterize the microbiota among different developmental stages of the Indian meal moth, Plodia interpunctella, which is considered one of the major pest of commodities world-wide. Using culture-independent approach based on Illumina 16S rRNA gene sequencing we characterized the microbiota of four developmental stages: eggs, first-, and last-instar larvae, and adult. A total of 1022 bacterial OTUs were obtained, showing a quite diversified microbiota associated to all the analyzed stages. The microbiotas associated with P. interpunctella resulted almost constant throughout the developmental stages, with approximately 77% of bacterial OTUs belonging to the phylum of Proteobacteria. The dominant bacterial genus is represented by Burkholderia (?64%), followed by Propionibacterium, Delftia, Pseudomonas, and Stenotrophomonas. A core bacterial community, composed of 139 OTUs, was detected in all the developmental stages, among which 112 OTUs were assigned to the genus Burkholderia. A phylogenetic reconstruction, based on the 16S rRNA, revealed that our Burkholderia OTUs clustered with Burkholderia cepacia complex, in the same group of those isolated from the hemipterans Gossyparia spuria and Acanthococcus aceris. The functional profiling, predicted on the base of the bacterial 16S rRNA, indicates differences in the metabolic pathways related to metabolism of amino acids between preimaginal and adult stages. We can hypothesize that bacteria may support the insect host during preimaginal stages.  相似文献   

13.
Molecular characterization based on 16s rDNA gene sequence analysis of bacterial colonies isolated from endosulfan contaminated soil showed the presence of Ochrobacterum sp, Burkholderia sp, Pseudomonas alcaligenes, Pseudomonas sp and Arthrobacter sp which degraded 57–90% of α-endosulfan and 74–94% of β-endosulfan after 7days. Whole cells of Pseudomonas sp and Pseudomonas alcaligenes showed 94 and 89% uptake of α-isomer and 86 and 89% of β-endosulfan respectively in 120 min. In Pseudomonas sp, endosulfan sulfate was the major metabolite detected during the degradation of α-isomer, with minor amount of endosulfan diol while in Pseudomonas alcaligenes endosulfan diol was the only product during α-endosulfan degradation. Whole cells of Pseudomonas sp also utilized 83% of endosulfan sulfate in 120 min. In situ applications of the defined consortium consisting of Pseudomonas alcaligenes and Pseudomonas sp (1:1) in plots contaminated with endosulfan showed that 80% of α-endosulfan and 65% of β-endosulfan was degraded after 12 weeks of incubation. Endosulfan sulfate formed during endosulfan degradation was subsequently degraded to unknown metabolites. ERIC-PCR analysis indicated 80% survival of introduced population of Pseudomonas alcaligenes and Pseudomonas sp in treated plots.  相似文献   

14.

Background and Aims

This study was aimed at assessing the diversity of putatively diazotrophic rhizobacteria associated with sunflower (Helianthus annuus L.) cropped in the south of Brazil, and to examine key plant growth promotion (PGP) characteristics of the isolates for the purposes of increasing plant productivity.

Methods

299 strains were isolated from the roots and rhizosphere of sunflower cultivated in five different areas using N-free media. 16S rDNA PCR-RFLP and 16S rRNA partial sequencing were used for identification and the Shannon index was used to evaluate bacterial diversity. Production of siderophores and indolic compounds (ICs), as well phosphate solubilization activities of each isolate were also evaluated in vitro. On the basis of multiple PGP activities, eight isolates were selected and tested for their N-fixation ability, and their capacity as potential PGPR on sunflower plants was also assessed.

Results

All except three Gram-positive strains (phylum Actinobacteria) belonged to the Gram-negative Proteobacteria subgroups [Gamma (167), Beta (78), and Alpha (50)] and the family Flavobacteriaceae (1)]. Shannon indexes ranged from 0.96 to 2.13 between the five sampling sites. Enterobacter and Burkholderia were the predominant genera isolated from roots and rhizosphere, respectively. Producers of siderophores and ICs were widely found amongst the isolates, but only 19.8% of them solubilized phosphate. About 8% of the isolates exhibited all three PGP traits, and these mostly belonged to the genus Burkholderia. Four isolates were able to stimulate the growth of sunflower plants under gnotobiotic conditions.

Conclusions

Enterobacter and Burkholderia were the dominant rhizospheric bacterial genera associated with sunflower plants. Inoculation with isolates belonging to the genera Achromobacter, Chryseobacterium, Azospirillum, and Burkholderia had a stimulatory effect on plant growth.  相似文献   

15.
Thirty mesophilic and thermophilic bacteria were isolated from thermobiotically digested sewage sludge in culture medium supplemented with poly-ε-caprolactone (PCL). The ability of each purified isolate to degrade PCL and to produce polymer-degrading extracellular enzymes was assessed. Isolates were characterized based on random amplified polymorphic DNA (RAPD), 16S rDNA sequence-based phylogenetic affiliation and carbohydrate-based nutritional versatility. Mesophilic isolates with ability to degrade PCL were attributed to the genera Acinetobacter, Burkholderia, Pseudomonas, and Staphylococcus. Thermophilic isolates were members of the genus Bacillus. Despite the restricted phylogenetic and genotypic diversity observed for thermophiles, their metabolic versatility and wide range of growth temperatures suggest an important activity of these organisms during the whole composting process.  相似文献   

16.
We isolated a Staphylococcus aureus strain HPC-250 producing antibacterial agent against Paenibacillus strain HPC-251. Both strains were isolated from the same environmental niche. The bacteria were identified using the partial sequencing of their TA-cloned 16S rDNA. Spectrum of the antibacterial agent was also tested against routine observed bacteria with drinking water contamination such as Escherichia coli, Salmonella, Pseudomonas, and Vibrio and these were found to be sensitive. Bacteria like Acinetobacter and Burkholderia were found to be resistant. The differential antibacterial activity of the HPC-250 was observed for the genus Bacillus where B. subtilis remained resistant although B. sphaericus was sensitive.  相似文献   

17.
Eight bacterial isolates from the larval guts of Diamondback moths (Plutella xylostella) were tested for their plant growth–promoting (PGP) traits and effects on early plant growth. All of the strains tested positive for nitrogen fixation and indole 3-acetic acid (IAA) and salicylic acid production but negative for hydrogen cyanide and pectinase production. In addition, five of the isolates exhibited significant levels of tricalcium phosphate and zinc oxide solubilization; six isolates were able to oxidize sulfur in growth media; and four isolates tested positive for chitinase and β-1,3-glucanase activities. Based on their IAA production, six strains including four that were 1-aminocyclopropane-1-carboxylate (ACC) deaminase positive and two that were ACC deaminase negative were tested for PGP activity on the early growth of canola and tomato seeds under gnotobiotic conditions. Acinetobacter sp. PSGB04 significantly increased root length (41%), seedling vigor, and dry biomass (30%) of the canola test plants, whereas Pseudomonas sp. PRGB06 inhibited the mycelial growth of Botrytis cinerea, Colletotrichum coccodes, C. gleospoiroides, Rhizoctonia solani, and Sclerotia sclerotiorum under in vitro conditions. A significant increase, greater than that of the control, was also noted for growth parameters of the tomato test plants when the seeds were treated with PRGB06. Therefore, the results of the present study suggest that bacteria associated with insect larval guts possess PGP traits and positively influence plant growth. Therefore, insect gut bacteria as effective PGP agents represent an unexplored niche and may broaden the spectrum of beneficial bacteria available for crop production.  相似文献   

18.
伯克霍尔德氏菌属是一类革兰氏阴性细菌,其具有广泛的地理及生态位分布。近年来,随着对植物相关的伯克霍尔德氏菌的研究增加,越来越多的证据表明,伯克霍尔德氏菌是一类重要的植物相关的有益微生物。伯克霍尔德氏菌能够通过生物固氮、解磷作用,促进植物对氮、磷的吸收;还能够产生吲哚乙酸等植物激素、分泌抗菌物质抑制病原菌的生长,因此,伯克霍尔德氏菌在促进植物生长和维持植物健康方面具有较大的应用潜力。本文对近些年来关于植物有益的伯克霍尔德氏菌的研究进展进行了综述,并讨论了其在农业上的应用前景。  相似文献   

19.
The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history (arable land and permanent grassland) were exposed to three agricultural management regimes (crop rotation, maize monoculture, and grassland). By using a culture-independent approach, based on a Burkholderia-specific polymerase chain reaction–denaturing gradient gel electrophoresis system, it was possible to observe the conversion of Burkholderia communities typical for permanent grassland to those of arable land after four consecutive years. However, the time needed to achieve the reverse transition, i.e., converting the Burkholderia community associated with arable land to that of grassland, was beyond the duration of the field experiment. In addition, by applying principal response curves, the direction and extent of the conversion from grassland to arable land (maize monoculture and to crop rotation) were determined. Hence, the results suggested that agricultural practices, such as fertilization and tillage, were more effective in changing the Burkholderia community structure than agricultural management regime. To determine the effect of agricultural management on the Burkholderia population with biocontrol abilities, the culturable fraction of the Burkholderia community was assessed. The areas under permanent grassland and grassland converted to maize monoculture had the highest percentages of Burkholderia strains with antagonistic activity against Rhizoctonia solani AG-3, mainly Burkholderia pyrrocinia and Burkholderia sp. LMG 22929. The isolation frequency of antagonistic isolates from arable land was extremely low. Our results indicate that (changes in) agricultural management, mainly crop rotation, affect the frequency of isolation of antagonistic Burkholderia strains and that grassland represents a reservoir of Burkholderia species with great potential for agricultural applications.  相似文献   

20.
The bats skin microbiota plays an important role in reducing pathogen infection, including the deadly fungal pathogen Pseudogymnoascus destructans, the causative agent of white-nose syndrome. However, the dynamic of skin bacterial communities response to environmental perturbations remains poorly described. We characterized skin bacterial community over time and space in Rhinolophus ferrumequinum, a species with high resistance to the infection with P. destructans. We collected environmental covariate data to determine what factors influenced changes in community structure. We observed significant temporal and spatial shifts in the skin bacterial community, which was mainly associated with variation in operational taxonomic units. The skin bacterial community differed by the environmental microbial reservoirs and was most influenced by host body condition, bat roosting temperature and geographic distance between sites, but was not influenced by pathogen infection. Furthermore, the skin microbiota was enriched in particular taxa with antifungal abilities, such as Enterococcus, Burkholderia, Flavobacterium, Pseudomonas, Corynebacterium and Rhodococcus. And specific strains of Pseudomonas, Corynebacterium and Rhodococcus even inhibited P. destructans growth. Our findings provide new insights in characterizing the variation in bacterial communities can inform us about the processes of driving community assembly and predict the host's ability to resist or survive pathogen infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号