首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetranychus urticae Koch (Acari: Tetranychidae) and Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) are major pests in greenhouse crops. Recently, Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) was shown to be an effective biological control agent of both pests. Therefore, the prey preference of A. swirskii was determined using immature stages of T. urticae and B. tabaci in three various treatments based on Manly's β preference index (β). These treatments consisted of immature stages of two prey species (egg, first and second instar nymphs) with densities 12:12, 6:6 and 3:3, respectively, and with 13 replicates. After 24?h starvation, same-aged females of A. swirskii were added to the leaf discs. All experiments were done on bean leaf discs in Petri dishes (8?cm in diameter) in laboratory conditions with 25?±?2°C, 70?±?5% relative humidity and the photoperiod of 16L:8D hours. Comparing the preference indices using t-tests indicates a significant preference of the predator on eggs (t?=?10.80, df?=?24, P?t?=?8.17, df?=?24, P?T. urticae than B. tabaci. Our findings suggest that developmental stages of prey have effect on the prey selection by A. swirskii.  相似文献   

2.
Abstract

Studies on the life history and life table parameters of Neoseiulus cucumeris Oudemans (Acari: Phytoseiidae) were carried out under laboratory conditions of 25?±?1?°C and 65?±?5% RH; 30?±?1?°C and 60?±?5% RH; 35?±?1?°C and 55?±?5% RH. As prey, immature stages of tetranychid spider mite T. urticae Koch (Acari: Tetranychidae) and the moving stages of the Tomato Russet Mite A. lycopersici (Massee) (Acari: Eriophyideae) were selected. The predatory phytoseiid mite, Neoseiulus cucumeris (Oudemans) was able to develop successfully from egg to adult stage through the entire life history on both preys. The higher of different temperatures and relative humidities shortened the development and increased reproduction and prey consumption and vice versa. The maximum reproduction (3.91, and 3.09 eggs/♀/day) was recorded at 35?°C and 65% RH, while the minimum (2.12, and 1.90 eggs/♀/day) was at 25?±?1?°C and 55?±?5% RH. when N. cucumeris fed on A. lycopersici and T. urticae, respectively. The reproductive rate on eriophyid was significantly higher than previously recorded on tetranychid. Life table parameters indicated that feeding of phytoseiid mite N. cucumeris on tomato russet mite A. lycopersici led to the highest reproduction rate (rm?=?0.268, 0.232 and 0.211 females/female/day), while feeding on T.urticae gave the lowest reproduction rate (rm?=?0.159, 0.143 and 0.131) at 35?°C and 55% RH, 30?°C and 60% RH and 25?°C and 65% RH, respectively. The population of N. cucumeris multiplied (36.81, 28.71 and 20.47) and (24.60, 19.58 and 14.62 times) in a generation time of (20.10, 23.20 and 25.14) and (22.35, 25.36 and 27.79 days) when a predator fed on A. lycopersici and T. urticae at the same temperature above mentioned, respectively. These results suggest that the two mites, particularly A. lycopersici, proved to be suitable prey for N.cucumeris, as a facultative predator.  相似文献   

3.
Rates of prey consumption, egg production and prey conversion by the predacious mite, Neoseiulus californicus (McGregor) were estimated at different densities of Tetranychus urticae Koch, Bemisia tabaci (Genn.) and Thrips tabaci Lind. in the laboratory. N. californicus females functionally and numerically responded to the increasing densities of T. urticae nymphs, B. tabaci nymphs and T. tabaci larvae showing Holling’s type II. The maximum mean predation and oviposition rates by the predator females devouring T. urticae, B. tabaci and T. tabaci occurred at 15, 10 and 10 prey individuals/day, respectively, followed by the plateau levels at higher prey densities. N. californicus females exhibited the highest feeding and oviposition on T. urticae nymphs, followed by T. tabaci larvae and B. tabaci nymphs. The predator females showed the highest efficiency in converting the prey into egg progeny at 5 individuals/day of the previous prey species, respectively. T. urticae was the most favourable for N. californicus females, followed by T. tabaci and B. tabaci.  相似文献   

4.
Alternative feeding strategies are important in determining the lifestyle of polyphagous spider mite prodators, and could play a key role in their use for biocontrol of prey such as thrips. The small size of Amblyseius cucumeris relative to western flower thrips, Frankliniella occidentalis, limits its survival and development when this prey is the only food available. We show that when A. cucumeris nymphs were reared either alone or with a gravid female on live larvae of F. occidentalis as the only source of food, survival was increased and development was accelerated by the presence of the adult. Similar performance by predator nymphs reared alone on freshly killed thrips larvae indicated that those nymphs reared on live prey with an adult were benefiting from feeding on prey killed by the adult. Variation of the period when an adult female was present with the nymph showed that food provided as a result of the adult's preying activities was beneficial until approximately one third through nymphal development, after which protonymphs became independent predators, with good survival and rapid development when provided only with live F. occidentalis larvae. The results are discussed in relation to adult dispersal in specialist as opposed to generalist phytoseiids, and its potential manipulation in using A. cucumeris for thrips biocontrol.  相似文献   

5.
《Journal of Asia》2023,26(4):102128
Predatory phytoseiid mite, Neoseiulus cucumeris (Oudemans) is a commercially available biocontrol agent against various pests of greenhouse crops, and it can feed on different diets, including small arthropods and pollen. This generalist predatory mite was reared on the mixture of two different plant pollens including cattail (35%), and saffron (65%) for 10 generations. The effects of mixed diet on the biological parameters of N. cucumeris were evaluated under laboratory conditions at 25 ± 1 °C, 60 ± 5% RH, and a photoperiod of 16:8 (L: D) h every 5 generations (G1, G5, and G10). In addition, the predation ability of nymphs and adults of N. cucumeris encountering the natural prey, Tetranychus urticae Koch was evaluated after 10 generations. The results showed that the quality of mass-reared N. cucumeris on a mixed diet of cattail and saffron pollens did not decrease up to 10 generations of rearing. The intrinsic rate of increase (r) of the predator in G1, G5, and G10 was 0.180, 0.189, and 0.199 day−1, respectively. In addition, the r value was 0.181 day−1 after switching this predator to T. urticae, and it had a high potential of predation (513 prey/generation). The results of this study revealed that rearing N. cucumeris for 10 generations on a mixed diet of saffron and cattail pollens did not affect the performance of the predator negatively.  相似文献   

6.
The native parasitoid Eretmocerus mundus Mercet and the predator Macrolophus pygmaeus Rambur are widely used to control Bemisia tabaci (Gennadius) in Mediterranean tomato greenhouses. An optimal biological control strategy for B. tabaci should take into account intraguild interactions between these natural enemies. In this study, predator's prey preferences and prey consumption were studied when offered different parasitoid and whitefly stages. The effect of the host plant on the adults of both natural enemies was also examined. M. pygmaeus preferred to consume B. tabaci over E. mundus when immature stages and adults of B. tabaci and E. mundus were offered. They consumed a larger amount of healthy B. tabaci nymphs and adults than of parasitised nymphs or E. mundus adults. The predator M. pygmaeus interfered with the reproduction of E. mundus females on cotton but not on tomato. However, B. tabaci nymphal mortality on tomato associated with parasitoid host feeding was also lower when the adult parasitoids coexisted with the predators. The joint release of M. pygmaeus and E. mundus adults did not increase the control of the whitefly B. tabaci.  相似文献   

7.
The suitability of Aphis craccivora Koch (Hemiptera: Aphididae) and Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) biotype-B eggs and nymphs as prey for pre-imaginal development and survival, adult longevity, and fecundity of the lacewing, Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) was evaluated under laboratory conditions at 25±1°C, 50±10% RH and a photoperiod of 16 h L:8 h D. Survival of C. pallens from first instar to adult eclosion was significantly different between the larvae that fed on the two prey species. C. pallens fed on A. craccivora completed development from egg to adult emergence, but those fed on eggs and nymphs of B. tabaci could not complete development, resulting in abnormal pupae and no normal adults emerged. The net reproductive rate (R 0), intrinsic rate of natural population increase (r m ), finite rate of increase (λ), mean generation time (T), index of population trend (I), doubling time (DT), and gross reproductive of rate (GRR) of C. pallens that fed on A. craccivora were 201.9 eggs per female, 0.13/d, 1.1/d, 40.1 d, 68.5, 5.2 d, 203.1 eggs per female, respectively. These results could be useful for mass-rearing of C. pallens and for understanding its population dynamics in the field in relation to the availability of different prey species.  相似文献   

8.
Intraguild predation of Orius majusculus (Reuter) (Heteroptera: Anthocoridae) on Encarsia formosa (Gahan) (Hymenoptera: Aphelinidae), both natural enemies of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), was studied under laboratory conditions. The experiments quantified prey consumption by 5th instar nymphs and adults of O. majusculus offered unparasitised 3rd, early 4th or 4th instar B. tabaci nymphs or parasitised nymphs containing 2nd or 3rd larval instar or pupal parasitoids. In addition, prey preference of the two stages of O. majusculus for parasitised or unparasitised whitefly nymphs was studied using nine different prey combinations. Both predator stages readily preyed upon on both unparasitised and parasitised B. tabaci. In no-choice experiments, predation on 3rd instar E. formosa by adult predators was the highest, while predator nymphs preyed most on unparasitised 3rd instar B. tabaci and 2nd instar parasitoids. Predation of predator stages was lowest on 4th instar B. tabaci and E. formosa pupae. In all prey combinations, both stages of O. majusculus showed a significant preference for parasitised over unparasitised whitefly nymphs except for the combination of 5th instars of O. majusculus with early 4th instar whiteflies and E. formosa pupae. The results indicate that intraguild interactions between O. majusculus and E. formosa may have negative effects on biological control of B. tabaci.  相似文献   

9.
Abstract: Biological control provides an environmentally harmonious and potentially stable management tactic to combat noxious pests such as Bemisia tabaci, notorious for its resistance to synthetic pesticides. Bioassays conducted under control chamber conditions integrating applications of the parasitoid Encarsia formosa, reared for 20 years on Trialeurodes vaporariorum, and the fungus Verticillium lecanii on the third‐fourth instar nymphs of B. tabaci on tomato, showed a comparable effect between the parasitoid‐fungus combined treatment and the fungus treatment alone (70.7% vs. 70.4%). Analysis of our results indicates antagonism between the two biocontrol agents related to the parasitoids’ ability to discriminate between infected and healthy B. tabaci nymphs. The parasitoid treatment alone produced 36.3% mortality, with no mortality in the distilled water controls. The behavioural performance of the parasitoid could have either genetic or environmental causes. Bioassays studying the feeding habit of the imported mirid predator Macrolophus caliginosus (adults) and the indigenous mirid Camptotylus reuteri (nymphs and adults) on eggs, or early second instar nymphs of B. tabaci, and choice preference tests indicated a significant difference in feeding between M. caliginosus and C. reuteri. There was no significant difference in percentage feeding of M. caliginosus on eggs (2.2%) or second instar nymphs (8.0%). There was a significant difference in feeding of M. caliginosus adults (18.6%) when offered eggs and second instars in the same arena compared with eggs or second instars offered separately. These results could be attributed to the biological behaviour of the predator having a type III functional response. Studies with the local C. reuteri species showed no significant difference in adult and nymphal consumption on second instars of B. tabaci compared with nymphs on eggs. However, C. reuteri adults fed less on eggs compared with nymphs. This local predatory species appears to be more efficient than M. caliginosus in feeding on particular stages of B. tabaci without depending on prey density. This is further supported by the low consumption of both adults and nymphs in the choice test (4% and 2.3%, respectively) compared with M. caliginosus adults (18.6%).  相似文献   

10.
The predatory mite Typhlodromips swirskii (Athias–Henriot) is commonly used to suppress pest populations of thrips and whitefly in commercial greenhouses. Many generalist phytoseiid mites can be reared on astigmatid factitious prey. This study investigated the life table parameters of T. swirskii to the astigmatid mite Suidasia medanensis (Oudemans) and the capture success ratio of T. swirskii to different life stages of the prey. Juvenile development time and survival was 5.01 ± 0.10 days and 93 %, respectively. The intrinsic (r m ) and finite (λ) rates of increase were 0.222 and 1.249, respectively, with average oviposition rate of 1.71 ± 0.07 eggs/female/day. The capture success ratio of T. swirskii to S. medanensis was: eggs > freeze killed adults > nymphs > live adults. Typhlodromips swirskii was concluded to exhibit good population growth rates with S. medanensis as prey and, a prey population with predominance of eggs and nymphs to be advantageous to the predator due to an unidentified defence mechanism of adult prey.  相似文献   

11.
The cotton whitefly, Bemisia tabaci (Gennadius) B‐biotype, is fed on by a wide variety of generalist predators, but there is little information on these predator–prey interactions, especially under field conditions. In this study, a real‐time polymerase chain reaction (PCR) assay was developed to quantify B. tabaci B‐biotype remains in predator gut. The B. tabaci B‐biotype genomic DNA copy number was referred to the actual amount of BT1 isolate, the B. tabaci B‐biotype specific DNA fragment. The numbers of BT1 isolate in one B. tabaci B‐biotype egg, individual adult and a single red‐eyed nymph were 2.56 × 103, 2.56 × 104, and 1.29 × 104 copies, respectively. When Propylaea japonica adults fed on one, two, four, eight or 16 red‐eyed nymphs, the detected numbers of BT1 isolate ranged from 2.77 × 104 to 4.05 × 105 copies, forming a strong linear relationship (R2 = 0.9899). Following the consumption of two red‐eyed nymphs, prey DNA was detectable in 100% of P. japonica at t = 0, decreasing to 80.0% and 60.0% after 1–4 h and 8 h of digestion, respectively, with 3.36 × 104–1.25 × 103 BT1 isolate copies. The predation by field‐collected predators, 26 larvae of P. japonica, and of Harmonia axyridis each, Chrysopa spp. larvae (Chrysopa pallens and C. formosa, 18 individuals in total), and a single adult of Scymnus hoffmanni, 19 adults of Orius sauteri and nine adult spiders (Erigonnidium graminicolum and Neoscona doenitzi), on B. tabaci B‐biotype were quantified. Of the 99 analysed predator individuals, 3.65 × 102–4.60 × 105 copies of BT1 isolate, equivalent to 0.8–18.8 red‐eyed nymphs were detected. These results suggest that TaqMan real‐time PCR technology may provide a rapid and sensitive method for quantifying B. tabaci B‐biotype remains in predator guts and will be invaluable in assessing the food web relationship between prey and arthropod predators.  相似文献   

12.
Intraspecific competition in immature Amblyseius fallacis, Amblyseius andersoni, Typhlodromus occidentalis and Typhlodromus pyri was examined in the laboratory using small cages at five different predator densities (two, four, eight, 16 and 32) in the absence and presence of prey 100 eggs of two-spotted spider mite, Tetranychus urticae (Koch), at 25 ± 1°C, 80% RH and 16L:8D photoperiod. In the absence of spider mite prey, some individuals of immature phytoseiids showed increased development and surival with increasing predator densities up to certain limits, but none survived to the adult stage, except for a single male each of A. andersoni and A. fallacis who completed development by cannibalizing on conspecifics at a density of 32 predators per cage. In the absence of spider mite prey, the mean immature survival time was independent of the initial predator density, but the variance of survival time increased with predator density. In the presence of prey, the proportion of immatures surviving to adulthood generally decreased with initial predator density and dropped sharply to almost none at the predator density of 32 for A. fallacis, eight for A. andersoni, 16 for T. occidentalis and four for T. pyri. The number of prey consumed per predator during the first day generally decreased with predator density in all four species, as prey available per predator decreased and the competition for food increased with predator density. Our data indicate that scramble competition is operating in these four species. Although cannibalism was occasionally observed, especially after the exhaustion of prey and in the generalist predators such as A. andersoni, the immatures of these phytoseiids were less influenced by the interference of conspecifics than by the increasing difficulty of finding food at high predator densities. The implications of this study for understanding phytoseiid population dynamics and their use in biological control are discussed.  相似文献   

13.
The functional response of adult Nabis kinbergii (Hemiptera: Nabidae) to density of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) was investigated under laboratory conditions. Holling' s (1959) type Ⅱ model was found to be a good fit for the observed functional response of this predator. The numbers of P. xylostella consumed increased with temperature from 15℃ to 35℃. The maximum number of prey killed was observed at 35℃, with average of 10.3 and 8.3 forth instar larvae consumed by adult females and males of N. kinbergii, respectively. The predation of N. kinbergii on P. xylostella increased with successive immature stages. The number of prey consumed by predators decreased as the body size of prey increased. An average of 131 eggs or 95 larvae of P. xylostella were killed by a single of female adult in 24 hours at 24"C. The pupae of P. xylostella were observed to be eaten by fifth instar nymphs and adults N. kinbergiiin numbers of less than an average of 0.7 pupae per predator in 24 hours at 24"C. Predation preference by N. kinbergii was also investigated. The number of P. xylostella and Myzus persicae killed by female N. kinbergii was not significantly different, but males killed significantly more P. xylostella than M. persicae. Both eggs and larvae of P. xylosteUa were killed in significantly greater number than those of Pieris rapae in the same feeding arena.  相似文献   

14.
1. A type of arms race that includes predation, counterattacks and cross‐counterattacks occurs between the phytophagous mite Stigmaeopsis nanjingensis (Ma et Yuan), which lives in self‐woven nests and exhibits cooperative sociality, and its specialised phytoseiid mite predator, Typhlodromus bambusae Ehara. 2. First, the efficiency of the S. nanjingensis (prey) counterattacking T. bambusae (predator) was observed. The prey females frequently locked the immature predators out of their nests using silk web, and the predators subsequently died of starvation. Furthermore, the prey males often killed immature T. bambusae mites after they invaded the nests. 3. This reversal of roles in the predator–prey system was then re‐reversed (returned to a normal state) by the behaviour of T. bambusae females. Immature predators could maintain their predacious natures due to the presence of attending adult females, which are able to cope with the prey counterattack behaviours.  相似文献   

15.
Based on the hypothesis that matching diets of intraguild (IG) predator and prey indicate strong food competition and thus intensify intraguild predation (IGP) as compared to non‐matching diets, we scrutinized diet‐dependent mutual IGP between the predatory mites Neoseiulus cucumeris and N. californicus. Both are natural enemies of herbivorous mites and insects and used in biological control of spider mites and thrips in various agricultural crops. Both are generalist predators that may also feed on plant‐derived substances such as pollen. Irrespective of diet (pollen or spider mites), N. cucumeris females had higher predation and oviposition rates and shorter attack latencies on IG prey than N. californicus. Predation rates on larvae were unaffected by diet but larvae from pollen‐fed mothers were a more profitable prey than those from spider‐mite fed mothers resulting in higher oviposition rates of IG predator females. Pollen‐fed protonymphs were earlier attacked by IG predator females than spider‐mite fed protonymphs. Spider mite‐fed N. californicus females attacked protonymphs earlier than did pollen‐fed N. californicus females. Overall, our study suggests that predator and prey diet may exert subtle influences on mutual IGP between bio‐control agents. Matching diets did not intensify IGP between N. californicus and N. cucumeris but predator and prey diets proximately influenced IGP through changes in behaviour and/or stoichiometry.  相似文献   

16.
This study evaluated the predatory capacity of Euseius alatus (DeLeon) as a biological control agent of the pest mite Oligonychus ilicis (McGregor) on coffee leaves under laboratory conditions, using arenas containing 25 O. ilicis per coffee (Coffea arabica) leaf to one specimen of each stage of the predator mite. The functional response and oviposition rate of adult females of E. alatus were evaluated on coffee leaf arenas and offered from 1 to 125 immature stages of O. ilicis per arena. The number of preys killed and the number of eggs laid by the predator were evaluated every 24 h during 8 days. The preys consumed were daily replaced. Male and female adults of E. alatus were the most efficient in killing all developmental stages of O. ilicis. Larvae and nymphs of O. ilicis were the most consumed by all stages of the predatory mite. The functional response and oviposition rates of E. alatus increased as the prey density increased, with a positive and highly significant correlation. Regression analysis suggested a type II functional response, with a maximum predation of 22 O. ilicis/arena and a maximum oviposition rate of 1.7 eggs/day at a density of 70 O. ilicis/arena.  相似文献   

17.
Gaeolaelaps aculeifer (Canestrini, 1883) is a soil-dwelling predatory mite with potential for use as a biological control agent of fungus gnats (Diptera: Sciaridae) in mushroom production. The life table, predation rate and population growth rate of G. aculeifer on a diet of larvae of the sciarid fly, Lycoriella auripila, at 23?±?1°C, 60?±?5% RH and a photoperiod of 0:24 (L:D)?h was investigated. The results revealed that the duration of egg, larva, protonymph, deutonymph, females and males of G. aculeifer were 3.8?±?0.1, 1.4?±?0.1, 3.9?±?0.1, 4.1?±?0.1, 67.7?±?2.8 and 60.3?±?3.1 days, respectively. Net reproductive rate (R0) was 54.8?±?7.1 offspring, intrinsic rate of increase (r) was 0.12?±?0.01 offspring day?1, finite rate of increase (λ) was 1.13?±?0.01 day?1and mean generation time (T) was 32.3?±?0.6 days. The predator consumed a mean of 0.08?±?0.05, 1.73?±?0.18, 3.16?±?0.28 and 75.9?±?7.1 third instar L. auripila larvae during the larval (1.3?±?0.1 days), protonymph (3.9?±?0.1 days), deutonymph (4.1?±?0.1 days) and adult (52.6?±?2.2 days) stages. Population parameters and consumption rates suggest that G. aculeifer has good potential as a biological control agent of L. auripila in mushroom production.  相似文献   

18.
Effects on development, longevity, fecundity and predation of the predatory phytoseiid mite Typhlodromus mangiferus Zaher and El-Brolossy were studied in the laboratory at different temperatures and relative humidities using four prey mite species: the motile stages of the eriophyid mango bud mite Aceria mangiferae Sayed, the eriophyid leaf coating and webbing mite Cisaberoptus kenyae Keifer, the eriophyid mango rust mite Metaculus mangiferae (Attiah) and nymphs of the tetranychid mango red mite Oligonychus mangiferus (Rahman and Sabra). The increase of different temperatures and decrease of relative humidities from 25°C and 60% to 30°C and 55% and 35°C and 50% shortened development and increased reproduction and prey consumption. The developmental durations were almost similar when the predator was fed on eriophyids compared to that on tetranychid. The maximum reproduction (2.70, 2.08, 1.97 and 1.66 eggs/ ♀ /day) was recorded at the highest temperature and the lowest relative humidity, while the minimum reproduction (1.7, 1.54, 1.53, and 1.06 eggs/ ♀ /day) was noted at the lowest temperature and highest relative humidity with all mango prey species. Life table parameters indicated that feeding of T. mangiferus on A. mangiferae led to the highest reproduction rate (rm = 0.204 and 0.139 females/female/day), while feeding on O. mangiferus gave the lowest reproduction rate (rm = 0.137 and 0.116) at 35°C and 50% relative humidity and 25°C and 60% relative humidity, respectively. T. mangiferus seems to be a voracious predator of both mango eriophyid and tetranychid mites. The adult female daily consumed about 127 A. mangiferae, 97 C. kenyae, 86 M. mangiferae, and 18 O. mangiferus at 35°C and 50% relative humidity, while it devoured only 99.81, 86, 81, and 15 individuals, respectively at 25°C and 60% relative humidity. The present study revealed that each injurious mite is thought to be profitable prey species to T. mangiferus as a facultative predator.  相似文献   

19.
Neoseiulus californicus (McGregor) is a predatory mite employed for biological control of the agricultural pest Tetranychus urticae (Koch). We explored whether environmental differences, in this case the trichome densities of abaxial leaf surfaces of strawberry cultivars (‘Maehyang’ and ‘Sulhyang’ varieties) affect the functional response of adult female N. californicus preying on immature stages (egg, larva and nymph) of T. urticae. We also evaluated the functional response of N. californicus to eggs of T. urticae at different temperatures (15, 20, 25, 30 and 35°C). We conducted a logistic regression of the proportion of prey consumed as a function of initial prey density to identify functional response types, and used nonlinear least‐squares regression and the random predator equation to estimate attack rates and handling times. The functional response of adult female N. californicus to T. urticae was not influenced by non‐glandular trichomes on abaxial leaves but was affected by temperature. Overall, adult female N. californicus exhibited a type 2 functional response to T. urticae. The handling time of N. californicus was highest (1.9970 h) against T. urticae nymphs. The attack rate did not change much at 15–30°C, but was significantly higher at 35°C. The handling time decreased significantly with increasing temperature at 15–35°C. At 35°C, the attack rate was highest (0.2087) and the handling time was lowest (0.9511 h).  相似文献   

20.
To prevent predation on their eggs, prey often avoid patches occupied by predators. As a result, they need to delay oviposition until they reach predator-free patches. Because many species allocate energy to egg production in a continuous fashion, it is not clear what kind of mechanism prey use to delay oviposition. We used females of the phytoseiid mite Neoseiulus cucumeris to study these mechanisms. Females were placed in patches with pollen, a food source they use for egg production, and they were exposed to another phytoseiid mite, Iphiseius degenerans, which is an intraguild predator of N. cucumeris juveniles. We found that the oviposition of N. cucumeris females on patches with the predator was lower than on patches without the predator. Cues left by the intraguild predator were not sufficient to elicit such behaviour. Females of N. cucumeris reduced oviposition when exposed to the predator by retaining the egg inside their body, resulting in a lower developmental rate once these eggs were laid. Hence, females are capable of retaining eggs, but the development of these eggs continues inside the mother’s body. In this way, females gain some time to search for less risky oviposition sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号