首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 9-month laboratory study was carried out to determine the impact of herbivory by a moth with shoot-boring larvae, Dichrorampha odorata Brown and Zachariades (Lepidoptera: Tortricidae) on growth and reproductive ability of its host plant, Chromolaena odorata (L.) King and Robinson (Asteraceae), a major invasive alien plant species in southern Africa. Newly hatched D. odorata larvae were inoculated onto 0 (control), 50 and 100% of the shoot tips of C. odorata in the laboratory. At all treatment levels, the basal stem diameter of C. odorata was not affected by D. odorata larval feeding. Larval feeding by D. odorata significantly reduced the height of the main shoot and flower production in C. odorata relative to the control treatment but promoted branching by increasing the number of shoot tips. However, the differences in plant height and number of flowers between the 50 and 100% inoculation levels were not statistically significant. Dichrorampha odorata is the first shoot-tip attacking agent that is being released as a biological control agent against C. odorata in South Africa. In general, the impacts of D. odorata on the weed were relatively small even though statistically significant. The findings of this study suggest that high levels of damage by the moth will modestly reduce the height, flower production, and the competitiveness of C. odorata, thereby contributing to the biological control of the weed in South Africa.  相似文献   

2.
Actinote anteas from Costa Rica was screened as a biological control candidate forChromolaena odorata in South Africa. Preliminary starvation trials suggest thatA. anteas is species specific. There are seven larval instars and the life cycle is completed in 101–169 days. The culture died out after three generations possibly because of incompatibility with the form of the local species ofC. odorata or disease.  相似文献   

3.
Larvae of the arctiid moth,Pareuchaetes insulata, from Florida fed on the leaves ofChromolaena odorata, a serious composite, alien weed in Natal, South Africa. In starvation test trials using 48 plant species,P. insulata completed its development onC. odorata andAgeratum houstonianum. Subsequent attempts to cultureP. insulata on these two plants was only successful onC. odorata. The biology ofP. insulata is similar to that of two other well studiedPareuchaetes species namelyP. pseudoinsulata andP. aurata aurata. Repeated defoliation ofC. odorata byP. insulata could contribute to its control as has been found withP. pseudoinsulata in Guam.Pareuchaetes insulata has been approved for release as a biological control agent ofC. odorata in South Africa.  相似文献   

4.
The leaf-mining fly Calycomyza eupatorivora Spencer (Diptera: Agromyzidae) has become widely established in the eastern regions of South Africa, following its release for the biological control of the invasive shrub Chromolaena odorata (L.) King and Robinson. This study was conducted to gain some insight into the impact of C. eupatorivora populations, by assessing their seasonal activity, habitat preferences, levels of leaf exploitation and extent of larval mortality in the field over a 1-year period. Leaf mining intensity was poorly synchronised with leaf availability, with leaf exploitation peaking at the end of the growing season of C. odorata. Although significantly more mines were recovered on plants growing in shaded situations, the percentage of available leaves that were exploited for mining was not significantly different between plants growing in shaded versus open situations. Overall, the levels of leaf damage were trivial with mines recovered from <5% of available leaves that were sampled during the study. Besides leaf-quality requirements, these low levels of leaf exploitation may have been influenced by high larval mortality which varied between 60 and 83%, depending on whether lower or higher estimates were used. These evaluations have verified the results of earlier laboratory studies which suggested that the impact of C. eupatorivora on mature populations of C. odorata in South Africa will be negligible.  相似文献   

5.
The effect of host plant dissimilarity on insect preference and performance was tested using two morphological forms of Chromolaena odorata (L.) King & Robinson (Asteraceae) (one from Florida, USA, another from South Africa), and a specialist herbivore, Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae: Arctiinae) from Florida, USA, that was introduced as a biological control agent in South Africa. Although this insect did establish at one site, of some 21 sites at which over 800 000 individuals were released, its population level in the field has remained low after an initial outbreak in 2006. To explain the poor performance of P. insulata, we hypothesised that P. insulata larvae prefer Floridian C. odorata to the southern African C. odorata, which is morphologically and probably genetically distinct, and that larvae reared on Floridian C. odorata should have higher fitness and performance. We tested this by comparing insect performance metrics on each of the two plant forms in laboratory experiments. Apart from pupal mass, which was significantly greater on southern African C. odorata, P. insulata performance metrics were similar on both plant forms; there were no significant differences in total leaf area consumed, egg and larval development, immature survival rates, feeding index, host suitability index, growth index, and fecundity between the Floridian and southern African C. odorata plants. In sum, we could not demonstrate that differences in plant forms in C. odorata are responsible for the poor performance of P. insulata in South Africa.  相似文献   

6.
The invasive tree Solanum mauritianum Scop. has been targeted for biological control in South Africa and New Zealand, by deploying insect agents that could constrain its excessive reproductive output. The flower-feeding weevil Anthonomus santacruzi (Curculionidae) was approved for release in South Africa in 2007 but following the loss of the original culture in quarantine, new stocks were introduced from Argentina in 2008–2009. This study was initiated to confirm that the host range of the new culture was the same as that of the previous one, but also to assess the risks associated with the weevil's release in New Zealand. Different testing procedures, including no-choice tests and multi-choice tests in different arenas, produced inconsistent and ambiguous results. During no-choice tests, oviposition and larval development to adulthood occurred on three non-target species including two native South African and one native New Zealand Solanum species. However, subsequent multi-choice tests and a risk assessment suggested that the risks of anything more than collateral damage to non-target Solanum species are low. Overall, these data do not deviate substantially from the results of the original quarantine tests which facilitated the release of A. santacruzi in South Africa in 2009. Although we argue that none of the New Zealand native and cultivated species are at risk, stronger evidence from open-field trials and chemical ecology studies may be required to convince the regulatory authorities that A. santacruzi is suitable for release in New Zealand.  相似文献   

7.
The gall fly Cecidochares connexa (Diptera: Tephritidae) is a potential biological control agent for Chromolaena odorata in Australia. Its host specificity was determined against 18 species in the tribe Eupatorieae (Family Asteraceae) in which C. odorata belongs, in quarantine in Brisbane, Australia. Oviposition occurred and flies developed on only C. odorata and Praxelis clematidea, both of which are in the subtribe Praxelinae. P. clematidea is considered a weed outside tropical America. In both multiple-species-minus-C. odorata choice tests and single-species no-choice tests, the mean number of galls/plant was significantly greater on C. odorata (48 and 41, respectively) than on P. clematidea (2 and 9, respectively). There were also significantly more adults emerging from C. odorata (mean 129 and 169, respectively) in the two types of tests than from P. clematidea (1 and 8, respectively). Paired choice, multiple generation (continuation) and time dependent tests further clarified the extent that C. connexa could develop on P. clematidea. In these tests, the mean number of galls formed and the mean number of emerging adults were consistently less for P. clematidea than C. odorata and populations of C. connexa could not be maintained on P. clematidea. Galls were not seen on any other plant species tested. This study supports the results of host specificity testing conducted in seven other countries and confirms that C. connexa poses little risk to other plant species in Australia. C. connexa has been released in 10 countries and an application seeking approval to release in Australia has been submitted to the Australian Government.  相似文献   

8.
The life history and host range of the lantana beetle, Alagoasa extrema, a potential biocontrol agent for Lantana spp. were investigated in a quarantine unit at the Alan Fletcher Research Station, Brisbane, Australia. Adults feed on leaves and females lay batches of about 17 eggs on the soil surface around the stems of plants. The eggs take 16 days to hatch and newly emerged larvae move up the stem to feed on young leaves. Larvae feed for about 23 days and there are three instars. There is a prepupal non-feeding stage that lasts about 12 days and the pupal stage, which occurs in a cocoon in the soil, lasts 16 days. Teneral adults remain in the cocoon for 3 days to harden prior to emergence. Males live for about 151 days while females live for about 127 days. The pre-oviposition period is 19 days. In no-choice larval feeding trials, nine plant species, representing three families, supported development to adult. Three species, Aloysia triphylla, Citharexylum spinosum and Pandorea pandorana were able to support at least two successive generations. These results confirm those reported in South Africa and suggest that A. extrema is not sufficiently specific for release in Australia. Furthermore, it is not recommended for release in any other country which is considering biological control of lantana.  相似文献   

9.
ABSTRACT

Chromolaena odorata (L.) R.M. King and H. Robinson (Asteraceae) is a perennial weedy shrub of neotropical origin and a serious biotic threat in its invasive range. The Asian-West Africa (AWA) biotype of C. odorata present in West Africa is both morphologically and genetically different from the southern African (SA) biotype. The AWA biotype was first introduced into Nigeria in the late 1930s and rapidly spread across West Africa. Currently, 12 of the 16 countries in West Africa have been invaded, with significant negative effects on indigenous flora and fauna. However, locals in West Africa have found several uses for the weed. As chemical, physical and other conventional methods were unsustainable, costly and largely ineffective, three biological control agents, Apion brunneonigrum (Coleoptera: Brentidae), Pareuchaetes pseudoinsulata (Lepidoptera: Erebidae) and Cecidochares connexa (Diptera: Tephritidae), have been released in West Africa between the 1970s and the early 2000s. However, only C. connexa and P. pseudoinsulata established, contributing to the control of the weed, in six and four countries in West Africa respectively. Limited research funding, the absence of post-release evaluations of the established agents, and the ‘conflict of interest’ status of C. odorata (i.e. being beneficial for local use but damaging to ecosystem services and agriculture), are serious factors deterring the overall biological control effort. Here, using historical records and field surveys, we examine the invasion history, spread, impacts, and management of C. odorata in West Africa and make recommendations for the sustainable management of C. odorata in the region.  相似文献   

10.
The host range of Mada polluta Mulsant (Coleoptera:Coccinnellidae) was studied to assess its suitability as a biological control agent of Tecoma stans (L.) Juss ex Kunth var stans (Bignoniaceae), an invasive weed in South Africa. Biology of M. polluta and its host range were determined in the laboratory using no-choice and multi-choice feeding, oviposition and larval survival tests. Out of 36 plant species from 12 plant families (Bignoniaceae, Acanthaceae, Asteraceae, Verbenaceae, Lamiaceae, Oleaceae, Cucurbitaceae, Fabaceae, Scrophulariaceae, Solanaceae, Apiaceae, Chenopodiaceae and Poaceae) within the order Lamiales that were tested during the host specificity testing, M. polluta showed a very strong preference for T. stans, depositing its eggs on T. stans and none on non-target plant species. In no-choice tests, an average of 246 eggs was laid on T. stans, and from these, 133 larvae developed to adulthood. The beetle also showed very promising biological attributes that will contribute to its success as a biological control agent of T. stans. These attributes include highly damaging larvae and adults, high fecundity (532 eggs/female) and a short life cycle (four weeks). The short life cycle will enable multiple generations per year and rapid population increase in the field. It is concluded that M. polluta is sufficiently host-specific to be released against T. stans in South Africa. It is, therefore, strongly recommended that permission be granted to release this beetle from quarantine for biological control of T. stans in South Africa.  相似文献   

11.
Abstract. Thirteen species of Australian acacias are invasive plants in agricultural and native vegetation areas of South Africa. Biological control programmes for Australian acacias in South Africa have been implemented and are aimed at suppressing reproductive vigour and, in some cases, vegetative growth of these weeds. Gall-forming midges are under consideration as potential biological control agents for invasive acacias in South Africa. Entomological surveys in southern Australia found a diverse cecidomyiid fauna associated with the buds, flowers and fruits of Acacia species. Nine new Dasineura species are described and two species, D. acaciaelongifoliae (Skuse) and D. dielsi Rübsaamen, are redescribed. The newly described taxa are D. fistulosa sp.n. , D. furcata sp.n. , D. glauca sp.n. , D. glomerata sp.n. , D. oldfieldii sp.n. , D. oshanesii sp.n. , D. pilifera sp.n. , D. rubiformis sp.n. and D. sulcata sp.n. All eleven species induce galls on ovaries and prevent the formation of fruit. Two general types of gall are caused. Type A comprises woody, tubular galls with larvae living inside ovaries (D. acaciaelongifoliae, D. dielsi, D. fistulosa, D. furcata, D. glauca, D. glomerata, D. oldfieldii). Type B includes soft-tissued, globose galls that belong to four subtypes: inflated, baglike, hairy galls with larvae living between ovaries (D. pilifera); pyriform, pubescent swellings with larvae living inside ovaries (D. rubiformis); globose, hairy, swellings with larvae living superficially on ovaries in ovoid chambers (D. oshanesii); and inconspicuous, glabrous swellings with larvae living superficially on ovaries in shallow groovelike chambers (D. sulcata). The gall types are associated with a particular pupation pattern. In type A galls, larvae pupate within larval chambers in galls, whereas in type B galls pupation takes place between ovaries in galls or in the soil beneath the host tree. Gall midges responsible for the same general gall type are morphologically related and differ from species causing the other gall type. Phylogenetic analysis of a 410 bp fragment of the mitochondrial cytochrome b gene supports the division of the gall midge species into two groups except for D. sulcata, which appears as a subgroup of the group causing type A galls. The interspecific divergence values in group A species were between 0.5 and 3.9% with intraspecific divergence estimates of 0–0.2%. Gall midges causing type B galls had interspecific divergence values of 4.6–7.3% and intraspecific divergence values of 0–3.7%. Closely related biology and morphology together with low cytochrome b divergence estimates suggest a more recent speciation in group A when compared with species of group B. Dasineura rubiformis and D. dielsi are proposed as potential biological control agents for Acacia mearnsii De Wild. and Acacia cyclops A. Cunn. ex G. Don, respectively, in South Africa due to their narrow host range and ability to form high population densities that reduce seed formation. Both species produce galls with low biomass, which makes them compatible with commercial exploitation of their host species in Africa.  相似文献   

12.
A mirid,Eccritotarsus catarinensis(Carvalho), was studied as a potentially damaging natural enemy for water hyacinth, (Eichhornia crassipes(Mart.) Solms-Laub.), in South Africa. In the laboratory, eggs were inserted into the leaf tissue parallel to the leaf surface. The four nymphal instars fed gregariously with the adults mainly on the undersurface of the leaves, causing severe chlorosis at high population levels. The duration of immature stages (egg and nymphs) was approximately 23 days, while the adults survived for approximately 50 days. Favorable biological characteristics ofE. catarinensisincluded a high rate of increase, gregarious habits, long-lived and mobile adults, and several generations per year. Laboratory host range of the mirid was determined by adult choice trials on 67 plant species in 36 families and adult no-choice trials on five species in the Pontederiaceae. Feeding was recorded on all Pontederiaceae tested and oviposition on four of the five species. However, these plant species proved to be inferior hosts forE. catarinensisin comparison to water hyacinth, suggesting thatE. catarinensiswould be an acceptable natural enemy for water hyacinth in South Africa.  相似文献   

13.
14.
Stacked wooden fruit bins are frequent overwintering sites for overwintering diapausing codling moth larvae. Control strategies against the codling moth (Cydia pomonella) (Lepidoptera: Tortricidae) in South Africa have been hampered by the reinfestation of orchards from nearby stacked infested fruit bins and by the movement of infested bins between orchards. Worldwide, wooden fruit bins are systematically being replaced with plastic bins, however in South Africa this will not be accomplished in the near future. The objective of this study was to evaluate the potential of two recycled commercially available entomopathogenic nematode (EPN) species, Heterorhabditis bacteriophora and Steinernema feltiae, as well as of a local species, Steinernema yirgalemense, to disinfest miniature wooden fruit bins under controlled conditions in the laboratory. After dipping miniature bins loaded with codling moth larvae in a suspension of 25?IJs/mL of each of the three EPN species, under optimum conditions of temperature and humidity, the highest percentage of control was obtained using S. feltiae (75%). The addition of adjuvants significantly increased S. feltiae infectivity to >95%, whereas it did not result in a significant increase in H. bacteriophora or S. yirgalemense infectivity.  相似文献   

15.
Recent studies have demonstrated, through their contrasting results, that relationships between nitrogen levels in host plants and phytophagous insect performance are not simple. This study examined the effect of varying fertilisation regimes on the invasive alien plant, Chromolaena odorata (L.) (Asteraceae) and the response of a specialist folivore (a biological control agent), Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae). C. odorata plants were treated with 3 different levels of fertilisation and plant characteristics were measured within 2–3 months of fertiliser application. Leaves from each of the three treatments were fed to newly hatched larvae until pupation in order to determine the effect of nitrogen fertilisation on herbivore performance metrics such as survival, development time, fecundity and longevity. High and medium fertilisation significantly increased foliar nitrogen concentrations, basal stem diameter, leaf length, shoot height and above-ground biomass of C. odorata plants relative to low fertilisation. When individuals of P. insulata were fed on leaves from medium- or high-fertilisation treatments, they developed faster, grew to a larger size (by 8%) and achieved higher fecundity (19–22%) than leaves from the low-fertilisation treatment. The results suggest that in mass-rearing, increased production of this biological control agent will occur in high- or medium-fertilised plants.  相似文献   

16.
Bioassays were conducted to determine the susceptibility of egg masses and young larvae of two pine processionary moth species, Thaumetopoea pityocampa and Thaumetopoea wilkinsoni, to two strains (ARSEF4556, V275) of the entomopathogenic fungus Metarhizium brunneum. Mortality of treated eggs by both strains ranged from 96% to 99% but not all of this was caused by M. brunneum since control groups also experienced egg mortality due to saprophytic fungi. Still, larvae hatched in the laboratory from eggs treated with M. brunneum were all killed by this fungus, acquiring M. brunneum conidia, whereas larval mortality was 0% in the control groups. Young larvae of both pine processionary moth species were also highly susceptible to ARSEF4556 and V275 with larval mortality ranging between 94% and 100%, 8 days post-inoculation, with the vast majority of larvae being killed within the first 2–4 days. Larval mortality was dose dependent. Results were consistent across the two pine processionary moth species, showing that the pathogenicity of M. brunneum to both eggs and young larvae might be promising for biological control of these insect pests. The study also showed that non-target parasitoids of pine processionary moth eggs were also susceptible to M. brunneum. Further work is required to understand and reduce the M. brunneum effect on non-target insects.  相似文献   

17.
Tecoma stans (Bignoniaceae), is an evergreen shrub that has a wide natural distribution in the tropical and subtropical parts of the western hemisphere. This shrub is native to Mexico and the southern regions of the USA. This weed is widely distributed in South Africa and neighbouring countries. As part of the biological control initiative, a leafmining fly, Pseudonapomyza sp. (Diptera: Agromyzidae), was imported into South Africa, and was subsequently studied as a potential biological control agent for T. stans. During no-choice tests involving 46 plant species in 16 families, Pseudonapomyza sp. only oviposited and developed on T. stans. Neither oviposition nor larval development was recorded on the closely related and indigenous plant species. When six plant species in the Bignoniaceae family were exposed to Pseudonapomyza sp. during multi-choice tests, oviposition and larval development only occurred on T. stans. It was concluded that Pseudonapomyza sp. was sufficiently host-specific to be released against T. stans in South Africa. Pseudonapomyza sp. also displayed very promising biological attributes that could enhance its effectiveness to control T. stans.  相似文献   

18.
H. E. Williams 《BioControl》2006,51(1):127-138
The possible preference that the leaf-feeding flea-beetle, Alagoasa extrema Jacoby (Coleoptera: Chrysomelidae: Alticinae), might have for different South African naturalized varieties of its host plant, Lantana camara L. (Verbenaceae), was studied under quarantine laboratory conditions. Studies included adult choice trials, larval no-choice trials and multi-generation no-choice trials using five L. camara varieties. Results indicated that A. extrema exhibited a degree of varietal preference under laboratory conditions. Variety 029 White Pink proved to be the most suitable host, although the other four tested varieties were able to support viable populations of A. extrema for three consecutive generations. Should A. extrema be released as biocontrol agent for L. camara in South Africa, all five of the tested varieties should be able to support viable populations of A. extrema in the field.  相似文献   

19.
The stem-mining weevil, Pereskiophaga brasiliensis, was a candidate biological control agent for the invasive cactus Pereskia aculeata in South Africa. In host specificity trials, it developed on two indigenous test plant species under choice and no-choice conditions. Pereskiophaga brasiliensis is therefore not suitably host specific for release in South Africa.  相似文献   

20.
Secusio extensa (Lepidoptera: Arctiidae) was evaluated as a potential biological control agent for Madagascar fireweed, Senecio madagascariensis (Asteraceae), which has invaded over 400 000 acres of rangeland in the Hawaiian Islands and is toxic to cattle and horses. The moth was introduced from southeastern Madagascar into containment facilities in Hawaii, and host specificity tests were conducted on 71 endemic and naturalized species (52 genera) in 12 tribes of Asteraceae and 17 species of non‐Asteraceae including six native shrubs and trees considered key components of Hawaiian ecosystems. No‐choice feeding tests indicated that plant species of the tribe Senecioneae were suitable hosts with first instars completing development to adult stage on S. madagascariensis (78.3%), Delairea odorata (66.1%), Senecio vulgaris (57.1%), Crassocephalum crepidioides (41.2%), and at significantly lower rates on Emilia fosbergii (1.8%) and Erechtites hieracifolia (1.3%). A low rate of complete larval development also was observed on sunflower, Helianthus annuus (11.6%), in the tribe Heliantheae. However, sunflower was rejected as a potential host in larval‐feeding and adult oviposition choice tests involving the primary host S. madagascariensis as control. Although larvae died as first instars on most test species, incomplete development and low levels of feeding were observed on nine species in the tribes Heliantheae, Cardueae and Lactuceae. Larvae did not feed on any non‐Asteraceae tested, including species with similar pyrrolizidene alkaloid chemistry, crops, and six ecologically prominent native species. Because all species of Senecioneae are non‐native and weedy in Hawaii, these results indicate that S. extensa is sufficiently host‐specific for introduction for biological control. High levels of feeding damage observed on potted plants indicate that S. extensa can severely impact the target fireweed as well as D. odorata, a noxious weed in native Hawaiian forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号