首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
It has earlier been shown by in situ hybridization that the 5 S RNA genes are located in region 2A of chromosome II in Chironomus tentans [1]. In the present study the resolution in this chromosome region could be considerably improved by using the inversion 1 A/9C of chromosome II, which carries region 2A, not in the usual position close to one end of chromosome II, but in the middle of the chromosome. It was then revealed that electrophoretically isolated 5 S RNA hybridized in situ with two adjacent bands in the region 2A. It was also observed that in heterozygotes harbouring one normal chromosome II and one with the inversion 1 A/9C, there is a close physical contact between the bands containing the 5 S RNA genes and the nucleolar organizer region.  相似文献   

2.
M. C. Zetka  A. M. Rose 《Genetics》1992,131(2):321-332
The rearrangement hIn1(I) was isolated as a crossover suppressor for the right end of linkage group (LG) I. By inducing genetic markers on this crossover suppressor and establishing the gene order in the homozygote, hIn1(I) was demonstrated to be the first genetically proven inversion in Caenorhabditis elegans. hIn1(I) extensively suppresses recombination in heterozygotes in the right arm of chromosome I from unc-75 to unc-54. This suppression is associated with enhancement of recombination in other regions of the chromosome. The enhancement observed maintains the normal distribution of events but does not extend to other chromosomes. The genetic distance of chromosome I in inversion heterozygotes approaches 50 map units (m.u.), approximately equal to one chiasma per meiosis. This value is maintained in hIn1(I)/szT1(I;X) heterozygotes indicating that small homologous regions can pair and recombine efficiently. hIn1(I)/hT2(I;III) heterozygotes share no uninverted homologous regions and segregate randomly, suggesting the importance of chiasma formation in proper segregation of chromosomes. The genetic distance of chromosome I in these heterozygotes is less that 1 m.u., indicating that crossing over can be suppressed along an entire chromosome. Since one of our goals was to develop an efficient balancer for the right end of LGI, the effectiveness of hIn1(I) as a balancer was tested by isolating and maintaining lethal mutations. The meiotic behaviour of hIn1(I) is consistent with other genetic and cytogenetic data suggesting the meiotic chromosomes are monocentric. Rare recombinants bearing duplications and deficiencies of chromosome I were recovered from hIn1(I) heterozygotes, leading to the proposal the inversion was paracentric.  相似文献   

3.
To facilitate genetic screens to identify and maintain recessive mutations that map to the short arm of human chromosome 1, we have utilized chromosome engineering to generate two mouse strains that carry large inversions on the distal region of mouse chromosome 4. The inversion intervals are 16 and 22 cM in size together they cover approximately half of chromosome 4. Since recombination between the wild-type and inversion chromosomes does not occur within these inversion intervals, mutant alleles of genes mapping to this region can be identified and maintained. Therefore, these inversion chromosomes work as balancer chromosomes. These inversions have the additional advantage that they are tagged with genes encoding the visible coat color markers tyrosinase and agouti, and therefore the dosage of the inversion chromosome (+/+, Inv/+, Inv/Inv) can be visually recognized. These inversion strains will be extremely useful for mutagenesis screens that focus on functional annotation of human chromosome 1p.  相似文献   

4.
Molecular probes were used as markers in the backcross (Czech II X BALB/cPt) X Czech II to determine the positions of six genes on mouse chromosome 16 (MMU 16). The order of the genes mapped is (centromere), protamine-1 (Prm-1), immunoglobulin lambda 1 light chain (Igl-1), preprosomatostatin (Smst), an endogenous mouse mammary tumor virus locus (Mtv-6), and two more distal sequences, superoxide dismutase, cytoplasmic form (Sod-1), and the proto-oncogene sequence Ets-2. The largest recombination frequency between any two adjacent markers is 24 cM, and thus the position of any marker on MMU 16 that is polymorphic between these two strains can be readily determined in this backcross. A region of MMU 16 which corresponds to the Down syndrome region of human chromosome 21 is located near the distal end of the chromosome.  相似文献   

5.
Recessive mutations in three autosomal genes, him-1, him-5 and him-8, cause high levels of X chromosome nondisjunction in hermaphrodites of Caenorhabditis elegans, with no comparable effect on autosomal disjunction. Each of the mutants has reduced levels of X chromosome recombination, correlating with the increase in nondisjunction. However, normal or elevated levels of recombination occur at the end of the X chromosome hypothesized to contain the pairing region (the left end), with recombination levels decreasing in regions approaching the right end. Thus, both the number and the distribution of X chromosome exchange events are altered in these mutants. As a result, the genetic map of the X chromosome in the him mutants exhibits a clustering of genes due to reduced recombination, a feature characteristic of the genetic map of the autosomes in non-mutant animals. We hypothesize that these him genes are needed for some processive event that initiates near the left end of the X chromosome.  相似文献   

6.
Terminal inversion duplications of the short arm of chromosome 8 are one of the more common chromosome rearrangements in humans. We report an infant with multiple congenital anomalies, in whom karyotype analysis showed a terminal inversion duplication of 8p including additional material at the distal end of the derivative chromosome, shown to be of chromosome 18q origin. Terminal inversion duplications of 8p are the result of meiotic recombination between inverted olfactory gene receptor repeats in 8p. This recombination generates a dicentric intermediate that breaks during anaphase, and the broken chromosome end is stabilized by telomere healing or telomere capture. The origin of the telomeric region in the majority of constitutional chromosome deletions studied to date was shown to be from telomere healing; the de novo addition of telomeric repeats. In the proband a cytogenetically detectable piece of chromosome 18q was present on the distal end of the derivative 8, suggesting that this chromosome was stabilized by telomere capture of 18q. FISH analyses of additional cases may yield information as to whether telomere capture or telomere-healing events are the predominant mechanism of chromosome stabilization in terminal inversion duplications of 8p.  相似文献   

7.
8.
M. Goldway  A. Sherman  D. Zenvirth  T. Arbel    G. Simchen 《Genetics》1993,133(2):159-169
A multicopy plasmid was isolated from a yeast genomic library, whose presence resulted in a twofold increase in meiotic nondisjunction of chromosome III. The plasmid contains a 7.5-kb insert from the middle of the right arm of chromosome III, including the gene THR4. Using chromosomal fragments derived from chromosome III, we determined that the cloned region caused a significant, specific, cis-acting increase in chromosome III nondisjunction in the first meiotic division. The plasmid containing this segment exhibited high spontaneous meiotic integration into chromosome III (in 2.4% of the normal meiotic divisions) and a sixfold increase (15.5%) in integration in nondisjunctant meioses. Genetic analysis of the cloned region revealed that it contains a ``hot spot' for meiotic recombination. In DNA of rad50S mutant cells, a strong meiosis-induced double strand break (DSB) signal was detected in this region. We discuss the possible relationships between meiosis-induced DSBs, recombination and chromosome disjunction, and propose that recombinational hot spots may be ``pairing sites' for homologous chromosomes in meiosis.  相似文献   

9.
Klysik J  Dinh C  Bradley A 《Genomics》2004,83(2):303-310
Segmental inversions causing recombination suppression are an essential feature of balancer chromosomes. Meiotic crossing over between homologous chromosomes within an inversion interval will lead to nonviable gametes, while gametes generated from recombination events elsewhere on the chromosome will be unaffected. This apparent recombination suppression has been widely exploited in genetic studies in Drosophila to maintain and analyze stocks carrying recessive lethal mutations. Balancers are particularly useful in mutagenesis screens since they help to establish the approximate genomic location of alleles of genes causing phenotypes. Using the Cre-loxP recombination system, we have constructed two mouse balancer chromosomes carrying 8- and 30-cM inversions between Wnt3 and D11Mit69 and between Trp53 and EgfR loci, respectively. The Wnt3-D11Mit69 inversion mutates the Wnt3 locus and is therefore homozygous lethal. The Trp53-EgfR inversion is homozygous viable, since the EgfR locus is intact and mutations in p53 are homozygous viable. A dominantly acting K14-agouti minigene tags both rearrangements, which enables these balancer chromosomes to be visibly tracked in mouse stocks. With the addition of these balancers to the previously reported Trp53-Wnt3 balancer, most of mouse chromosome 11 is now available in balancer stocks.  相似文献   

10.
Chromosome Rearrangements in CAENORHABDITIS ELEGANS   总被引:1,自引:0,他引:1  
A method for selecting unlinked duplications of a part of the X chromosome of C. elegans is described. Five such duplications have been identified. One of them, Dp (X;V)1, is translocated to linkage group V, where it suppresses crossing over along the left half of linkage group V. Dp(X;V)1 homozygotes grow slowly and are sterile. The other four duplications are associated with chromosome fragments, as observed cytologically by fluorescence microscopy, and tend to be lost. Their frequency of loss is higher in strains homozygous for a mutation that promotes nondisjunction of X chromosomes. The recombination frequencies between two of these duplications and the X have been measured: the frequencies are at least 50 times less than for X-X recombination in the same region. The duplications may prove useful as balancers of recessive lethal mutations.  相似文献   

11.
Asami Y  Jia DW  Tatebayashi K  Yamagata K  Tanokura M  Ikeda H 《Gene》2002,291(1-2):251-257
Etoposide and teniposide, derivatives of podophyllotoxin, are inhibitors of DNA topoisomerase II and are potent anticancer agents. An adverse effect linked to the use of these drugs is the development of acute myeloid leukemia, a disorder usually associated with chromosomal translocation. To examine podophyllotoxin-induced DNA rearrangement, we developed an assay system to measure illegitimate recombination in Saccharomyces cerevisiae chromosomes. This approach uses juxtaposed CAN1-CYH2 negative selection markers that are introduced into the LEU2 locus, which is located on chromosome III, in a yeast strain carrying the mutated can1 and cyh2 genes. Upon formation of a deletion over the active CAN1-CYH2 genes, a cell becomes resistant to both canavanine and cycloheximide. To introduce drugs into the cell, we used a yeast strain carrying an ISE2 mutation, thereby making the cell drug-permeable. Here we show that treatment of cells with etoposide (VP-16) increases the rate of illegitimate recombination in yeast, indicating that VP-16 stimulates DNA topoisomerase-mediated illegitimate recombination. Structural analysis of the resulting recombinants indicate that most are formed by deletion mutations on chromosome III, which take place between short homologous regions of DNA. We propose a model for illegitimate recombination, in which VP-16 facilitates formation of a cleavable complex between DNA topoisomerase II and DNA, thus promoting DNA double-strand breakage with the resulting DNA ends joined by a non-homologous mechanism.  相似文献   

12.
J. F. Leslie 《Genetica》1985,67(2):109-119
T(IIL; VL;IIR; VR) BLNC-1 is a compound chromosome rearrangement inNeurospora crassa that combines two reciprocal translocations:T(IIL; VL) AR30 which interchanges the left end of linkage group II with the left end of linkage group V, andT(IIR;VR) ALS154 which interchanges the right end of linkage group II with the right end of linkage group V.BLNC-1 acts as a crossover suppressor for most of both linkage groups II and V since single crossovers between the rearrangement breakpoints result in progeny with lethal unbalanced duplications and deficiencies. The integrity ofBLNC-1 following meiosis was tested in crosses of markedBLNC-1 by marked Normal sequence, with markers located at critical points on linkage groups II and V. Although recombination between distal markers in the four arms was reduced markedly, double crossovers in the long intervening regions occurred with a frequency of 21%. Of these double crossovers, most were coincidental crossovers, one in each of the long intervening regions, resulting in the resolution of the complex into its component rearrangements (16%), while a minority of the double crossovers (5%) were crossovers involving only one of the two component linkage groups, and resulted in the insertion of a segment between the breakpoints. - TheBLNC-1 balancer can be used for: (1) mapping new loci to linkage groups II and V, especially for identifying markers mapping near the tips of the linkage groups; (2) for isolating genetically intact chromosomes from natural populations or for quantitative genetic studies; and (3) for studying recombinational hot-spots which can be detected as escapes from crossover suppression. -Based on experience withBLNC-1, future two-chromosome balancers should be designed with two breakpoints near, but not at, the opposite ends of the chromosome to be balanced, and the other two breakpoints close to, but spanning, the centromere of a second chromosome. Such a construction when combined with appropriately placed selective markers should prevent breakdown of the complex, and should resemble an inversion in eliminating crossover products. Contribution no. 85-218-J from the Department of Plant Pathology, Kansas Agricultural Experiment Station, Kansas State University, Manhattan.  相似文献   

13.
K. S. McKim  K. Peters    A. M. Rose 《Genetics》1993,134(3):749-768
Previous studies have shown that isolated portions of Caenorhabditis elegans chromosomes are not equally capable of meiotic exchange. These results led to the proposal that a homolog recognition region (HRR), defined as the region containing those sequences enabling homologous chromosomes to pair and recombine, is localized near one end of each chromosome. Using translocations and duplications we have localized the chromosome I HRR to the right end. Whereas the other half of chromosome I did not confer any ability for homologs to pair and recombine, deficiencies in this region dominantly suppressed recombination to the middle of the chromosome. These deletions may have disrupted pairing mechanisms that are secondary to and require an HRR. Thus, the processes of pairing and recombination appear to utilize at least two chromosomal elements, the HRR and other pairing sites. For example, terminal sequences from other chromosomes increase the ability of free duplications to recombine with their normal homologs, suggesting that telomere-associated sequences, homologous or nonhomologous, play a role in facilitating meiotic exchange. Recombination can also initiate at internal sites separated from the HRR by chromosome rearrangement, such as deletions of the unc-54 region of chromosome I. When crossing over was suppressed in a region of chromosome I, compensatory increases were observed in other regions. Thus, the presence of the HRR enabled recombination to occur but did not determine the distribution of the crossover events. It seems most likely that there are multiple initiation sites for recombination once homolog recognition has been achieved.  相似文献   

14.
Ectopic recombination in the yeast Saccharomyces cerevisiae has been investigated by examining the effects of mutations known to alter allelic recombination frequencies. A haploid yeast strain disomic for chromosome III was constructed in which allelic recombination can be monitored using leu2 heteroalleles on chromosome III and ectopic recombination can be monitored using ura3 heteroalleles on chromosomes V and II. This strain contains the spo13-1 mutation which permits haploid strains to successfully complete meiosis and which rescues many recombination-defective mutants from the associated meiotic lethality. Mutations in the genes RAD50, SPO11 and HOP1 were introduced individually into this disomic strain using transformation procedures. Mitotic and meiotic comparisons of each mutant strain with the wild-type parental strain has shown that the mutation in question has comparable effects on ectopic and allelic recombination. Similar results have been obtained using diploid strains constructed by mating MATa and MAT alpha haploid derivatives of each of the disomic strains. These data demonstrate that ectopic and allelic recombination are affected by the same gene products and suggest that the two types of recombination are mechanistically similar. In addition, the comparison of disomic and diploid strains indicates that the presence of a chromosome pairing partner during meiosis does not affect the frequency of ectopic recombination events involving nonhomologous chromosomes.  相似文献   

15.
Large-scale genomic rearrangements including inversions, deletions, and duplications are significant in bacterial evolution. The recently completed Brucella melitensis 16M and Brucella suis 1330 genomes have facilitated the investigation of such events in the Brucella spp. Suppressive subtractive hybridization (SSH) was employed in identifying genomic differences between B. melitensis 16M and Brucella abortus 2308. Analysis of 45 SSH clones revealed several deletions on chromosomes of B. abortus and B. melitensis that encoded proteins of various metabolic pathways. A 640-kb inversion on chromosome II of B. abortus has been reported previously (S. Michaux Charachon, G. Bourg, E. Jumas Bilak, P. Guigue Talet, A. Allardet Servent, D. O'Callaghan, and M. Ramuz, J. Bacteriol. 179:3244-3249, 1997) and is further described in this study. One end of the inverted region is located on a deleted TATGC site between open reading frames BMEII0292 and BMEII0293. The other end inserted at a GTGTC site of the cyclic-di-GMP phosphodiesterase A (PDEA) gene (BMEII1009), dividing PDEA into two unequal DNA segments of 160 and 977 bp. As a consequence of inversion, the 160-bp segment that encodes the N-terminal region of PDEA was relocated at the opposite end of the inverted chromosomal region. The splitting of the PDEA gene most likely inactivated the function of this enzyme. A recombination mechanism responsible for this inversion is proposed.  相似文献   

16.
Operon structure of flagellar genes in Salmonella typhimurium   总被引:7,自引:0,他引:7  
Summary In Salmonella typhimurium, more than 40 genes have been shown to be involved in flagellar formation and function and almost all of them have been assigned to three regions of the chromosome, termed region I, region II, and region III. In the present study, a large number of transposon-insertion mutants in these flagellar genes were isolated using Tn10 and Mud1. The flaV gene was found to be a strong hot spot for Tn10 insertion. Complementation analysis of the polarity effects exerted by the transposon-insertion mutants defined 13 different flagellar operons; 3 in region I, 4 in region II, and 6 in region III. These results are compared with the reported arrangement of the corresponding genes in Escherichia coli.  相似文献   

17.
Studies of linkage disequilibrium across the HLA class II region have been useful in predicting where recombination is most likely to occur. The strong associations between genes within the 85-kb region from DQB1 to DRB1 are consistent with low frequency of recombination in this segment of DNA. Conversely, a lack of association between alleles of TAP1 and TAP2 (approximately 15 kb) has been observed, suggesting that recombination occurs here with relatively high frequency. Much of the HLA class II region has now been sequenced, providing the tools to undertake detailed analysis of recombination. Twenty-seven families containing one or two recombinant chromosomes within the 500-kb interval between the DPB1 and DRB1 genes were used to determine patterns of recombination across this region. SSCP analysis and microsatellite typing yielded identification of 127 novel polymorphic markers distributed throughout the class II region, allowing refinement of the site of crossover in 30 class II recombinant chromosomes. The three regions where recombination was observed most frequently are as follows: the 45-kb interval between HLA-DNA and RING3 (11 cases), the 50-kb interval between DQB3 and DQB1 (6 cases), and an 8.8-kb segment of the TAP2 gene (3 cases). Six of the 10 remaining recombinants await further characterization, pending identification of additional informative markers, while four recombinants were localized to other intervals (outliers). Analysis of association between markers flanking HLA-DNA to RING3 (45 kb), as well as TAP1 to TAP2 (15 kb), by use of independent CEPH haplotypes indicated little or no linkage disequilibrium, supporting the familial recombination data. A notable sequence motif located within a region associated with increased rates of recombination consisted of a (TGGA)12 tandem repeat within the TAP2 gene.  相似文献   

18.
The gene encoding topoisomerase II in yeast is unique and essential, required for both mitotic and meiotic proliferation. The use of temperature-sensitive mutants in topoisomerase II have demonstrated roles in the relaxation of tortional stress, reduction of recombination rates, and in the separation of sister chromatids after replication. In vertebrate cells, topoisomerase II was shown to be the most abundant component of the metaphase chromosomal scaffold, and has been shown to play a role in chromosome condensationin vitro. The cell cycle control of chromosome condensation may well require phosphorylation of topoisomerase II, since the enzyme is more highly phosphorylated in metaphase than in G1. Recent studies have identified casein kinase II as the major enzyme phosphorylating topoisomerase II in intact yeast cells. The target sites of CKII are exclusively in the C-terminal 400 amino acids of topoisomerase II, the region that is most divergent among the eukaryotic type II enzymes and which is absent in the bacterial gyrase homologues.Abbreviations topoII topoisomerase II - CKII Casein Kinase II - SV40 Simian Virus 40  相似文献   

19.
Comparison of the physical and recombination maps of the mouse X chromosome   总被引:2,自引:0,他引:2  
The locations of five random mouse genomic DNA markers and five cloned genes, including the genes for clotting factors VIII and IX (Cf-8 and Cf-9), Duchenne muscular dystrophy (Dmd), phosphoglycerate kinase-1 (Pgk-1), and alpha-galactosidase (Ags), on the mouse X chromosome were determined by in situ hybridization. The five random DNA markers provide new genetic loci with useful restriction fragment length polymorphisms between mouse strains and species, including one locus close to the centromeric region of the mouse X chromosome. The physical map and the recombination map of these loci on the X chromosome were compared. There was good agreement in the order of loci. Relative distances between loci were consistent along the X chromosome, with the exception of the telomeric end of the long arm, where the recombination fraction observed between loci closely associated on the physical map was higher than that between similarly spaced markers located in the proximal region of the X chromosome. These results are discussed in comparison to the human X-chromosome map.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号