共查询到20条相似文献,搜索用时 0 毫秒
1.
J. Bryjak 《Bioprocess and biosystems engineering》1995,13(4):177-181
The effect of mixing penicillin acylase with poly(ethyleneimine) is discussed. The properties of the polymer-enzyme system were evaluated for a wide range of enzyme concentrations (0.3–45.5 mg/cm3) and poly(ethyleneimine) concentrations (0.0001–10% wt). It was shown that addition of poly(ethyleneimine) to crude enzyme preparation caused precipitation of ballast protein and stabilization of the enzyme fraction remaining in the supernatant. The soluble fraction had stable activity for 21 days storage at 37 °C while the native enzyme lost about 80% of its initial activity. Additionally, it was ascertained that the polymer very slightly affected the properties of penicillin acylase in the PEI-enzyme preparations. Finally, possible ways of using the polymer-enzyme preparations in a membrane reactor are suggested.This work was supported by Government Committee of Science: Grant KBN # 3 0321 91 1 相似文献
2.
E. V. Durdenko S. M. Kuznetsova S. A. Tikhonenko V. I. Emelyanenko E. A. Saburova 《Biophysics》2010,55(4):535-543
The temperature stability of the cytoplasmic enzyme of glycolysis, lactate dehydrogenase from pig muscle (isoenzyme M4) in complex with anionic polyelectrolyte poly(styrenesulfonate) has been investigated by the methods of adiabatic differential scanning microcalorimetry, own protein fluorescence, and circular dichroism. Calorimetric investigations of the complex of lactate dehydrogenase with poly(styrenesulfonate) in 50 mM phosphate buffer at pH 7.0 have shown that the temperature of the transition and enthalpy of lactate dehydrogenase thermal denaturation sharply decreases with growing weight ratio poly(styrenesulfonate)/lactate dehydrogenase, though at 20°C the enzyme activity of lactate dehydrogenase remains unchanged for several hours irrespective of the addition of poly(styrenesulfonate). The addition of phosphate ions to the solution enhances the resistance of lactate dehydrogenase to both thermal denaturation and inactivation by polyelectrolyte. The data obtained are interpreted from the viewpoint of a special role of two anion-binding centers in intersubunits contacts of lactate dehydrogenase, which enhance its resistance to both thermal denaturation and destruction by polyelectrolyte. 相似文献
3.
Incorporating expression data in metabolic modeling: a case study of lactate dehydrogenase 总被引:1,自引:0,他引:1
Downer J Sevinsky JR Ahn NG Resing KA Betterton MD 《Journal of theoretical biology》2006,240(3):464-474
Integrating biological information from different sources to understand cellular processes is an important problem in systems biology. We use data from mRNA expression arrays and chemical kinetics to formulate a metabolic model relevant to K562 erythroleukemia cells. MAP kinase pathway activation alters the expression of metabolic enzymes in K562 cells. Our array data show changes in expression of lactate dehydrogenase (LDH) isoforms after treatment with phorbol 12-myristate 13-acetate (PMA), which activates MAP kinase signaling. We model the change in lactate production which occurs when the MAP kinase pathway is activated, using a non-equilibrium, chemical-kinetic model of homolactic fermentation. In particular, we examine the role of LDH isoforms, which catalyse the conversion of pyruvate to lactate. Changes in the isoform ratio are not the primary determinant of the production of lactate. Rather, the total concentration of LDH controls the lactate concentration. 相似文献
4.
Cesar Mateo Bruno Fernandes Fred van Rantwijk Andreas Stolz Roger A. Sheldon 《Journal of Molecular Catalysis .B, Enzymatic》2006,38(3-6):154-157
Three different nitrilases lost 50–100% of their activity upon exposure to oxygen for 40 h, whereas their activity was fully retained under an argon atmosphere. This effect is ascribed to a reaction of oxygen, presumably with the catalytic cysteine residue.
Co-aggregates of the nitrilases and high MW poly(ethyleneimine) were prepared by precipitation; these were physically very stable and protein release was not observed. The PEI co-aggregates of the nitrilases were much more oxygen-tolerant than the freely dissolved enzymes. The nitrilase from Pseudomonas fluorescens EBC 191, in particular, retained its full activity upon exposure to oxygen for 40 h. This result is ascribed to a low local oxygen concentration in the biocatalyst, due to the salting-out effect of the polycationic PEI. 相似文献
5.
The temperature stability of the cytoplasmic enzyme of the glycolysis of lactate dehydrogenase from a pig muscle (isoenzyme M4) in a complex with the anion polyelectrolyte poly(styrenesulfonate) has been investigated by the methods of adiabatic differential scanning microcalorimetry, the own protein fluorescence, and circular dichroism. Calorimetric investigations of complex of lactate dehydrogenase with poly(styrenesulphonate) in 50 mM phosphate buffer at pH 7.0 have shown that the temperature of the transition and enthalpy of lactate dehydrogenase thermal denaturation sharply decreases with growing weight ratio poly(styrenesulphonate)/lactate dehydrogenase, though at 20 degrees C the enzyme activity of lactate dehydrogenase remains unchanged for several hours irrespective of the addition of poly(styrenesulphonate). The addition of phosphate ions to the solution enhances the resistance of lactate dehydrogenase to both thermal denaturation and inactivation by polyelectrolyte. The data obtained are interpreted from the viewpoint of a special role of two anion-binding centers in intersubunits contacts of lactate dehydrogenase, which enhance its resistance to both thermal denaturation and destruction by polyelectrolyte. 相似文献
6.
A Iu Tsygankov Iu A Motorin A E Dobrushkin A D Vol'fson A F Orlovski? 《Biokhimii?a (Moscow, Russia)》1986,51(4):590-595
The effect of polymers (proteins, polyaminoacids, polyethylenimine) on kinetic parameters of lactate dehydrogenase (LDH) from porcine skeletal muscle was studied. Activation of the enzyme which was partially due to the association of LDH dimers was observed. A hypothesis was proposed, according to which the contribution of dissociation of oligomeric enzymes in the regulation of their activity in vivo is negligible due to the equilibrium shift towards association in dissociable enzyme systems. 相似文献
7.
Poly(ADP-ribose) polymerase (PARP) is an intracellular enzyme involved in DNA repair and in building poly-ADP-ribose polymers on nuclear proteins using NAD+. While the majority of PARP resides in the nucleus, several studies indicated that PARP may also be located in the cytosol or in the mitochondrial matrix. In this study we found several poly-ADP-ribosylated proteins in isolated rat liver mitochondria following hydrogen peroxide (H2O2) or nitric oxide donor treatment. Protein poly-ADP-ribosylation was more intense in isolated mitochondria than in whole tissue homogenates and it was not associated with increased nuclear PARP activity. We identified five poly-ADP-ribose (PAR) positive mitochondrial bands by protein mass fingerprinting. All of the identified enzymes exhibited decreased activity or decreased levels following oxidative or nitrosative stress. One of the identified proteins is dihydrolipoamide dehydrogenase (DLDH), a component of the alpha-ketoglutarate dehydrogenase (KGDH) complex, which uses NAD+ as a substrate. This raised the possibility that KGDH may have a PARP-like enzymatic activity. The intrinsic PARP activity of KGDH and DLDH was confirmed using a colorimetric PARP assay kit and by the incubation of the recombinant enzymes with H2O2. The KGDH enzyme may, therefore, have a novel function as a PARP-like enzyme, which may play a role in regulating intramitochondrial NAD+ and poly(ADP-ribose) homeostasis, with possible roles in physiology and pathophysiology. 相似文献
8.
It has been shown by X-ray structure analysis that proteins have specific anion-binding sites for sulfate, citrate, and phosphate ions; however, the functional role of these anions is not always clear. Thus, it is unknown which of two phosphate anions, mono- or divalent, determines the stability of cellular proteins under stress conditions. In the present work, the influence of phosphate, sulfate, and chloride on the stability of lactate dehydrogenase (LDH) in the presence of poly(styrenesulfonate) (PSS) has been investigated by the methods of steady-state kinetics and intrinsic protein fluorescence. The study is based on the analysis of differences between the influence of phosphate and sulfate ions on the process at two pH values, 6.2 and 7.0, at which the ratio of the concentrations of mono- and bivalent phosphate forms differs, whereas sulfate remains in the bivalent form. It was shown that the differences between the influence of phosphate and sulfate ions at pH 7.0 were greater; divalent phosphate ions much more effectively stabilized LDH against destruction by a polyelectrolyte compared with sulfate and monovalent phosphate. It was concluded that, of two anion-binding sites of the LDH molecule, the intersubunit center plays the most important role in its stabilization against destruction by polyelectrolyte, and, of two forms of phosphate anions, its bivalent form HPO 4 ?2 plays the stabilizing role. 相似文献
9.
10.
Metal-catalyzed oxidation (MCO) of proteins leads to the conversion of some amino acid residues to carbonyl derivatives, and may result in loss of protein function. It is well documented that reactions with oxidation products of sugars, lipids, and amino acids can lead to the conversion of some lysine residues of proteins to N(epsilon)-(carboxymethyl)lysine (CML) derivatives, and that this increases their metal binding capacity. Because post-translational modifications that enhance their metal binding capacity should also increase their susceptibility to MCO, we have investigated the effect of lysine carboxymethylation on the oxidation of bovine serum albumin (BSA) by the Fe(3+)/ascorbate system. Introduction of approximately 10 or more mol CML/mol BSA led to increased formation of carbonyls and of the specific oxidation products glutamic and adipic semialdehydes. These results support the view that the generation of CML derivatives on proteins may contribute to the oxidative damage that is associated with aging and a number of age-related diseases. 相似文献
11.
12.
The content of protein carbonyls and thiobarbituric acid reactive substances (TBARS) in the wild and catalase-deficient strains of the yeast Saccharomyces cerevisiae grown in glucose and ethanol media are compared. The deficient strain cells reproduced 10.6-fold slower in ethanol-containing medium. Activity of glucose-6-phosphate dehydrogenase in YWT1 cells was 1.7-fold lower when yeast are grown in ethanol, and content of protein carbonyls was 4.7-fold higher, than when they are grown in the medium with glucose. At the same time, reproduction of the wild type cells in ethanol was 2.7-fold slower and carbonyl groups of protein content was 2-fold lower, than under cultivation in glucose. TBARS content in both strains was similar when they were grown in ethanol and in glucose. It has been supposed that catalases play a certain role in the protection of S. cerevisiae proteins against oxidative modification when they are grown on the media with glucose and ethanol. 相似文献
13.
14.
Payne CM Crowley C Washo-Stultz D Briehl M Bernstein H Bernstein C Beard S Holubec H Warneke J 《Cell death and differentiation》1998,5(7):623-636
Bile salts induce apoptosis and are implicated as promoters of colon cancer. The mechanisms by which bile salts produce these effects are poorly understood. We report that the cytotoxic bile salt, sodium deoxycholate (NaDOC), activates the key stress response proteins, NF-kappaB and poly(ADP-ribose) polymerase (PARP). The activation of NF-kappaB and PARP, respectively, indicates that bile salts induce oxidative stress and DNA damage. The pre-treatment of cells with specific inhibitors of these proteins [pyrrolidine dithiocarbamate (NF-kappaB inhibitor) and 3-aminobenzamide (PARP inhibitor)] sensitizes cells to the induction of apoptosis by NaDOC, indicating that these stress response pathways are protective in nature. Colon cancer risk has been reported to be associated with resistance to apoptosis. We found an increase in activated NF-kappaB at the base of human colon crypts that exhibit apoptosis resistance. This provides a link between an increased stress response and colon cancer risk. The implications of these findings with respect to apoptosis and to colon carcinogenesis are discussed. 相似文献
15.
16.
Maria Rosaria Faraone-Mennella 《Biochimie et biologie cellulaire》2005,83(3):396-404
Epigenetic states that allow chromatin fidelity inheritance can be mediated by several factors. One of them, histone variants and their modifications (including acetylation, methylation, phosphorylation, poly(ADP-ribosyl)ation, and ubiquitylation) create distinct patterns of signals read by other proteins, and are strictly related to chromatin remodelling, which is necessary for the specific expression of a gene, and for DNA repair, recombination, and replication. In the framework of chromatin-controlling factors, the poly(ADP-ribosyl)ation of nuclear proteins, catalysed by poly(ADP-ribose)polymerases (PARPs), has been implicated in the regulation of both physiological and pathological events (gene expression/amplification, cellular division/differentiation, DNA replication, malignant transformation, and apoptotic cell death). The involvement of PARPs in this scenario has raised doubts about the epigenetic value of poly(ADP-ribosyl)ation, because it is generally activated after DNA damage. However, one emerging view suggests that both the product of this reaction, poly(ADP-ribose), and PARPs, particularly PARP 1, play a fundamental role in recruiting protein targets to specific sites and (or) in interacting physically with structural and regulatory factors, through highly reproducible and inheritable mechanisms, often independent of DNA breaks. The interplay of PARPs with protein factors, and the combinatorial effect of poly(ADPribosyl)ation with other post-translational modifications has shed new light on the potential and versatility of this dynamic reaction. 相似文献
17.
A combination of hybridization (in vivo and in vitro), immunochemical, and electrophoretic analyses reveals that both smallmouth bass, Micropterus dolomieui (Lacépède), and largemouth bass, M. salmoides (Lacépède), possess three homopolymeric lactate dehydrogenase (LDH) isozymes, A4, B4, and E4. The retinal-specific E4 isozymes of these two parental species possess different electrophoretic mobilities. The two bass species were hybridized to produce the interspecific F1 hybrids. In addition, F2 and F3 hybrid generations were produced. The genetic data from these crosses indicate that the retinal-specific LDH isozyme is the product of a distinct nuclear gene (E locus) on an autosomal chromosome. This E gene appears to segregate independently of the gene for supernatant MDH. The LDH E gene is highly active in the bass neural retina and less active in other neural tissues. However, unlike in most teleosts, the bass LDH E gene also functions in such nonneural tissues as the heart and kidney.This research was supported by NSF grant GB 16425 to G. S. Whitt and by funds provided by the Illinois Natural History Survey to W. F. Childers. 相似文献
18.
19.
The complex of poly(dG).poly(dC) with arginine: stabilization of the B form and transition to multistranded structures 总被引:1,自引:0,他引:1
We have studied by X-ray diffraction fibers of complexes of poly(dG).poly(dC) with N-alpha-acetyl-L-arginine ethylamide. Although these polynucleotides favour the A form of DNA, in this complex it is never found, thus confirming that arginine prevents the appearance of this form of DNA. At high relative humidity the B form is present. Upon dehydration two new structures appear. One of them is a triple helix, most likely formed by poly(dC+).poly(dG).poly(dC). The other structure found also has features which indicate a multistranded conformation. 相似文献
20.
K Stark P Seubert G Lynch M Baudry 《Biochemical and biophysical research communications》1989,165(2):858-864
The present study tested the hypothesis that calpain is responsible for the limited proteolytic conversion of xanthine dehydrogenase (XD) to xanthine oxidase (XO). We compared the effects of various proteases on the activity and molecular weight of a purified preparation of xanthine dehydrogenase from rat liver. In agreement with previous reports, trypsin treatment produced a complete conversion of XD to XO accompanied by a limited proteolysis of XDH from an Mr of 140 kD to an Mr of 90 kD. Treatment with calpain I or calpain II did not produce a conversion from XD to XO nor did it result in partial proteolysis of the enzyme. Similarly, trypsin treatment partially degraded a reversibly oxidized form of xanthine dehydrogenase while calpain I or calpain II were ineffective. The possibility that an endogenous inhibitor prevented the proteolysis of XDH by calpain I or II was excluded by verifying that brain spectrin, a known calpain substrate, was degraded under the same incubation conditions. The results indicate that calpain is not likely to be responsible for the in vivo conversion of XD to XO under pathological conditions. 相似文献