首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Pregnancy loss is a major source of infertility in dairy cows. Despite a fertilization rate after insemination (AI) of approximately 90%, calving rates are 30%–50%, indicating the occurrence of extensive embryonic and foetal losses. The aim of this study was to establish the extent and pattern of embryonic and foetal loss in Swedish Red (SR) and Swedish Holstein (SH) dairy cows, as well as, the relationship to oestrus intensity (OI) and progesterone (P4) concentration. In total, 2130 AIs and 16,176 milk P4 samples from 359 SR and 212 SH dairy cows were included in the study. Pregnancy losses were estimated using data from P4 values combined with AI information and calving data.

Results

Total pregnancy loss from AI to the day of calving was 65%. Early embryonic loss, late embryonic loss and foetal loss were estimated to be 29, 14 and 13%, respectively. There is strong evidence in the literature that P4 concentrations at different time points are associated with pregnancy loss. In the present study, cows with pregnancy losses had significantly higher P4 levels at the day of AI and significantly lower P4 concentration at days 10, 21 and 30 after AI compared to pregnant cows. Swedish Red cows had significantly lower total pregnancy losses compared to SH cows (62% and 68% respectively, P?=?0.017). Early embryonic loss was 6.7% points lower for cows inseminated at a stronger OI (OI?=?3) compared to at a weaker OI (OI?=?2, P?=?0.006). Cows inseminated at ovulation number?≥?5 had significantly lower early pregnancy losses compared to cows inseminated at first or second ovulation (11.5 and 8% points, respectively, P?<?0.05). With an increase of one SD of milk (448 kg ECM) during the first 60 days in milk, early embryonic loss increased by 4.7% points (P?=?0.006).

Conclusions

It is important to increase the number of cows calving per insemination by reducing embryo/foetal loss. This outcome can be achieved by management and breeding for optimal P4 levels at critical time points, and by considering oestrus expression in the breeding programmes to facilitate the correct timing of insemination.
  相似文献   

2.
The objective of this study was to compare the effectiveness of the Ovsynch and controlled internal drug releasing (CIDR) protocols under commercial conditions for the treatment of cystic ovarian disease in dairy cattle. A total of 401 lactating dairy cows with ovarian cysts were alternatively allocated to two treatment groups on the day of diagnosis. Cows in the Ovsynch group were treated with GnRH on Day 0, PGF2alpha on Day 7, GnRH on Day 9, with timed insemination 16-20 h later. Cows in the CIDR group were treated with a CIDR insert on Day 0 for 7 days; on Day 7, the CIDR was removed, and cows were treated with PGF2alpha. All cows in the CIDR group were observed for estrus and cows exhibiting estrus within 7 days following removal of the CIDR and PGF2alpha administration were inseminated. The outcomes of interest for this experiment were the likelihood to be inseminated, return to cyclicity (determined by a CL on Day 21), conception and pregnancy rates. Data for these variables were analyzed using logistic regression. The percentage of cows inseminated in the Ovsynch and CIDR groups were 82 and 44%, respectively. Cows in the Ovsynch group were 5.8 times more likely to be inseminated than cows in the CIDR group. Cows with a low BCS were 0.48 times less likely to be inseminated than cows with a high BCS. The percentage of cows with a CL on Day 21 for the Ovsynch and CIDR groups was 83 and 79%, respectively (P > 0.05). Cows with a low BCS were 0.49 times less likely to have CL on Day 21 than cows with a high BCS. Conception and pregnancy rates for cows in the Ovsynch group were 18.3 and 14.4%, respectively. Conception and pregnancy rates for cows in the CIDR group were 23.1 and 9.5%, respectively. There was no significant differences between conception or pregnancy rates in cows in both groups. Primiparous cows were 2.6 times more likely to conceive than multiparous cows. In conclusion, the results of this study suggested that fertility was not different between cows with ovarian cysts treated with either the Ovsynch or the CIDR protocols in this dairy herd. In addition, primiparous cows had an increased likelihood for conception compared to multiparous cows, and cows with a low BCS were less likely to be inseminated or have a CL on Day 21, regardless of treatment.  相似文献   

3.
We wished to compare the effect of summer heat stress on pregnancy rate in cows that were inseminated at a set interval associated with a synchronized ovulation vs those inseminated upon routine estrus detection. The study was carried out on a commercial dairy farm in Florida from May to September 1995. Lactating dairy cows were given PGF2 alpha (25 mg i.m.) at 30 + 3 d postpartum and randomly assigned to be inseminated at a set time (Timed group) or when estrus was detected (Control group). Cows in the Timed group were synchronized by sequential administration of Buserelin (8 micrograms i.m.) on Day 0 at 1600 h, PGF2 alpha (25 mg i.m.) on Day 7 at 1600 h and Buserelin (8 micrograms i.m.) on Day 9 at 1600 h. They were inseminated on Day 10 between 0800 and 0900 h (Day 9 + 16 h). Cows in the Control group were given PGF2 alpha at 57 + 3 d postpartum and inseminated when detected in estrus. Estrus detection or insemination rate for control insemination cows was 18.1 +/- 2.5% versus 100% for time inseminated cows (P < 0.01). Mean interval from PGF2 alpha to insemination was shorter for time inseminated cows (3 +/- 2.1 d < 35.5 +/- 1.9 d; P < 0.01). Pregnancy rate was greater for time inseminated cows (13.9 +/- 2.6 > 4.8 +/- 2.5%; P < 0.01) as was overall pregnancy rate by 120 d postpartum (27.0 +/- 3.6 > 16.5 +/- 3.5%; P < 0.05). Number of days open for cows conceiving by 120 d postpartum was less for time inseminated cows (77.6 +/- 3.8 < 90.0 +/- 4.2 d; P < 0.05), as was interval to first service (58.7 +/- 2.1 < 91.0 +/- 1.9 d; P < 0.01). Services per conception were greater for time inseminated cows (1.63 +/- 0.10 > 1.27 +/- 0.11; P < 0.05). The timed insemination program did improve group reproductive performance. However, the timed insemination program will not protect the embryo from temperature-induced embryonic mortality, but management limitations induced by heat stress on estrus detection are eliminated. An economical evaluation of the timed insemination program indicates an increase in net revenue per cow with implementation of timed insemination for first service during the summer months.  相似文献   

4.
Using two PGF treatments 14 days apart as a way to enhance estrus detection rate following the 2nd treatment is a reproductive management tool that continues to be used on large dairy farms. In one study, in cows with a functional CL and a dominant follicle, treatment with cloprostenol vs. dinoprost resulted in greater peripheral estradiol concentrations. The objective of the present study was to determine if cloprostenol could enhance pregnancy rates of cows in a large dairy herd using a PGF program for 1st artificial insemination (AI). Lactating dairy cows (n = 4549) were randomly assigned to receive two treatments of either 500 μg cloprostenol or 25 mg dinoprost 14 days apart, with the 2nd treatment on the 1st day of the voluntary waiting period (57 DIM). Cows detected in estrus within 5 days after the 2nd treatment were inseminated. There was no effect of treatment on day of estrus detection, with 78% of cows inseminated on Days 3 or 4 following treatment. Cloprostenol increased (P < 0.01) estrus detection rates in 1st parity cows compared to dinoprost, 42.4 vs. 34.0%. In cows inseminated on Days 3 or 4 after treatment, cloprostenol increased (P = 0.05) conception rates compared to dinoprost, 38.3 vs. 34.4%. When treatments and parities were combined, conception rates increased (P < 0.02) with interval after treatment (27.0, 36.4, and 44.5% for Days 1 or 2, Days 3 or 4, and Day 5, respectively). Cloprostenol increased (P = 0.02) overall pregnancy rate compared to dinoprost, 14.4 vs. 12.2%. In summary, cloprostenol increased fertility in 1st parity cows inseminated on Days 3 or 4 following treatment and subsequently enhanced pregnancy rates of 1st parity lactating dairy cows compared to dinoprost. Fertility appeared greater in cows expected to have had a young antral ovarian follicle at treatment.  相似文献   

5.
A total of 585 repeat-breeder dairy cows was used to study the effect of GnRH treatment, either at or prior to insemination, on the pregnancy rate. The cows were divided into 6 treatment groups. Cows in Group 1 (n = 142) were observed in estrus, and 11 +/- 0.42 hours (mean +/- SEM) later they were given 100 ug, i.m. gonadotropin releasing hormone (GnRH) and were inseminated. Cows in Group 2 (n = 139) were observed in estrus and were inseminated 11.4 +/- 0.43 hours later. Cows in Group 3 (n = 33) were monitored for estrus with an activated heatmount detector but were not observed in estrus; they were inseminated 1.5 +/- 0.87 hours later and were given 100 ug, i.m. GnRH. Cows in Group 4 (n = 35) were not observed in estrus, but they did activate the heatmount detector and were inseminated 2.2 +/- 0.87 hours later. Cows in Group 5 (n = 107) were observed in estrus, given 100 ug, i.m. GnRH 2.0 +/- 0.40 hours later, and were inseminated 9 +/- 0.60 hours after GnRH treatment. Cows in Group 6 (n = 129) were observed in estrus and were inseminated 10 +/- 0.50 hours later. Pregnancy rates were analyzed by Chi-square. Interactions between pregnancy rate, treatment and time of insemination were evaluated using ANOVA and LSM (P < 0.05). There was no effect on pregnancy rate when GnRH was given at or prior to insemination. Cows inseminated on the basis of observed estrus had a higher pregnancy rate (P < 0.05) than cows inseminated on the observation of an activated heatmount detector. From the results of this study, it is concluded that treatment with GnRH at or prior to insemination did not improve the pregnancy rate of repeat-breeder dairy cows.  相似文献   

6.
A total of 309 ultrasonographic tests was performed on 100 inseminated dairy cows during the course of the first trimester of pregnancy and on 13 noninseminated controls. The reliability (defined as the proportion of cows pregnant or nonpregnant by rectal palpation at 60–90 days compared to those diagnosed as pregnant or nonpregnant by ultrasonography) and accuracy (defined as the proportion of cows correctly identified as pregnant or nonpregnant) of the ultrasonographic results at different intervals after A.I., are reported. It was found that near 100% reliable results could be obtained for positive diagnosis from 45 days onwards and that the ultrasonographic results were 100% reliable for negative diagnosis from 40 days onwards. Furthermore, 7 out of 100 inseminated cows which were diagnosed as negative by early pregnancy diagnosis 21–24 days after A.I. were found to be positive at the ultrasonographic test after 30 days but interestingly enough failed to carry the conceptus until rectal palpation occurred (60 days). The total late embryonic mortality was 23%.  相似文献   

7.
The reproductive efficiency of Friesian dairy cows was investigated in a three (oestrous synchronisation technique) x two (seasons of the year) factorial design. The 90 primiparous and multiparous cows (winter, n=42; summer, n=48) were allocated at random to three synchronisation treatments (n=30 cows per treatment). In treatment 1 (GPG), the cows were administered 15 mg PGF(2alpha) i.m. at 30 +/- 3 days postpartum, 100 microg GnRH i.m. at 51 +/- 3 days and 15 mg PGF(2alpha) 7 days later. A second 100 microg dose of GnRH was given after, further 2 days and fixed time AI occurred 16-20 h later. In treatment 2 (PG-PG), 15 mg PGF(2alpha) was administered i.m. to each cow on three occasions at successive 14 days interval starting at 30 +/- 3 days postpartum and the cows were inseminated at observed oestrus following the third dose of PGF(2alpha). Cows in treatment 3 (PG) had a single administration of 15 mg PGF(2alpha) i.m. at 57+/-3days postpartum and were inseminated as in treatment 2. Mean daily ambient temperature was 10.9 degrees C in winter (November-March) and 20.2 degrees C in summer (June-October). The cows were confined in an open-fronted shed and had ad libitum access to a complete diet with a 37:63 forage to concentrate ratio. Body condition score was assessed at 57 +/- 3 days postpartum. Cow rectal temperature at insemination, milk yield, reproductive data and climatic variables were recorded. Blood samples were collected for progesterone assay on days 4, 11, 18, 25, 32, 39 and 46 post-AI from 54 of the cows (19 GPG; 17 PG-PG; 18 PG). Pregnancy rate to first AI was 36.7% (11/30) for GPG and 16.7% (5/30) for both PG-PG and PG treatments. The difference was not significant. The cumulative pregnancy rate after third AI were GPG 83.3% (25/30), PG-PG 60.0% (18/30) and PG 60.0% (18/30; P<0.057). The cumulative pregnancy rate for cows inseminated in the winter (81.0%; 34/42) was higher (P<0.01) than for those inseminated in the summer (56.3%; 27/48). The interval from calving to first service was shorter (P<0.05) in treatment PG-PG (65.4+/-1.3 days) than in PG (69.2+/-1.3 days). Mean plasma progesterone concentrations post-AI of pregnant cows were higher (P<0.001) for GPG cows than those for PG-PG and PG cows. Plasma progesterone levels of pregnant cows tended to be higher (P=0.087) in winter than in summer. In conclusion, although the cumulative pregnancy rate was higher for GPG cows, it may be appropriate to correct the nutrition and management of the herd before resorting to synchronisation techniques to improve animal reproductive performances.  相似文献   

8.
Embryonic mortality contributes to repeat-breeding in dairy cows; luteal insufficiency is a known cause of embryonic mortality. The objective of this study was to assess the efficacy of supplementation with exogenous progesterone for 14 days on pregnancy maintenance in inseminated repeat-breeder dairy cows. On Day 5 after insemination, treated cows ( n=143 ) received a modified PRID (i.e. without estradiol capsule), which was removed on Day 19. Control cows ( n=148 ) did not receive any treatment. Overall there was no effect of PRID supplementation on pregnancy rates. However, when the study population was stratified by parity and stage of lactation, PRID supplementation significantly improved pregnancy rate in first and second parity late lactation cows (risk ratio = 3.26; 95% CI 1.22, 8.69). Pregnancy rates did not differ between PRID-treated cows with ( n=81 ) and without vaginitis. Control cows tended ( P=0.077 ) to have a higher proportion of abortions than PRID-treated cows (7/50 versus 2/51, respectively). In conclusion, young late lactation repeat-breeder cows benefited from progesterone supplementation, in terms of maintaining pregnancy until traditional time of pregnancy diagnosis.  相似文献   

9.
The effect of intravenous cloprostenol treatment at the time of insemination on reproductive performance was consecutively evaluated in three different subpopulations of high producing lactating dairy cows: Study (1) early postpartum synchronized and fixed-time inseminated (about 50 days in milk) cows (n = 379: 187 control and 192 treated cows); Study (2) presumed high fertility cows first inseminated between 90 and 120 days postpartum (n = 248: 124 control and 124 treated cows); and Study (3) heat stressed repeat breeder cows (n = 183: 93 control and 90 treated cows). Data were analyzed using multiple regression methods. Study 1: Parity (primiparous versus multiparous), milk production, body condition score at AI, insemination season (cool versus warm period) and treatment were included in the analysis as potential factors affecting ovulation, double ovulation, return to estrus, and pregnancy to first AI and to second AI (first AI plus return AI) rates. Logistic regression analysis indicated that the final model for ovulation rate only included the interaction (P = 0.002) between insemination season and treatment. Cloprostenol treatment at insemination led to a 4.2-fold increase in the ovulation rate in cows inseminated during the warm period. There were no significant effects of treatment, parity, milk production, body score or the insemination season on the return to estrus rate. The only variables included in the final logistic model for double ovulation and pregnancy to first AI rates were treatment and season, respectively. Treatment led to a 2.6-fold increase (P = 0.001) in the double ovulation rate, whereas cows inseminated in the warm period were 2.1 times less likely (P = 0.007) to become pregnant at first AI compared to those inseminated in the cool season. The variables included in the final logistic model for the pregnancy rate to second AI were treatment and season. Cloprostenol given at AI increased the risk of pregnancy 1.9 times (P = 0.002), and cows inseminated during the warm season were two times less likely to become pregnant (P = 0.003). No significant interactions were found among these three dependent variables (double ovulation and pregnancy to first and to second AI rates). Study 2: Logistic regression analysis of all the dependent variables: return to estrus, and pregnancy to first and to second AI (first AI plus return to AI) rates indicated no significant effects of treatment, parity, days in milk, milk production or body score at AI. No significant interactions were found. Study 3: The final model for the pregnancy rate only included the interaction between parity (primiparous versus multiparous) and treatment. Days in milk, milk production and insemination number showed no significant effect on pregnancy rate. Cloprostenol treatment at insemination increased the pregnancy rate in primiparous repeat breeder cows (odds ratio: 3.6). The treatment group and parity showed significant (P < 0.0001) interaction. This interaction suggests that cloprostenol treatment of primiparous cows at insemination might enhance pregnancy yet have no effect in multiparous cows. Our findings indicate that cloprostenol administered at insemination promotes ovulation and double ovulation in lactating dairy cows. Cloprostenol treatment showed no benefit in cows with acceptable reproductive performance, suggesting that cloprostenol treatment at AI may only be useful in cows in which stress factors affect ovulation and in repeat breeder cows.  相似文献   

10.
The objective of this study was to determine the reproductive performance of lactating dairy cows treated with GnRH and/or PGF2a for synchronization of estrus and ovulation. Between Days 43 and 57 post partum, a total of 374 dairy cows was divided into 4 groups. Cows in Group 1 (n = 62) were treated with 25 mg, i.m. PGF2a on Days 43 and 57; cows in Group 2 (n = 65) were not treated at this time; cows in Group 3 (n = 118) were treated with 100 ug, i.m. GnRH on Day 50, 25 mg, i.m. PGF2a on Day 57, 100 ug, i.m. GnRH on Day 59, and time-inseminated 16 h later; cows in Group 4 (n = 129) were treated with 25 mg, i.m. PGF2a once on Day 57. Cows in Groups 1 and 4 were inseminated at an induced estrus within 7 d after the last PGF2a treatment, and cows in Group 2 were inseminated at a noninduced estrus within a corresponding period of time. Conception rate, estrus detection rate and pregnancy rate were analyzed using logistic regression, and controlled for lactation number, body condition score and time of year. Days from calving to conception were analyzed using the GLM procedures of SAS, and the model included group, body condition score, lactation number, time of year, and their interactions. Cows in Group 3 had a significantly higher pregnancy rate than cows in Groups 1, 2 and 4. Orthogonal contrasts of mean days from calving to conception showed that cows in Group 3 had significantly (P < 0.01) less days from calving to conception than cows in Group 1 and Group 4. There was a significant effect of time of year on pregnancy rate and days from calving to conception, but there was no interaction between time of year and these reproductive characteristics. There was no effect of body condition score and lactation number on the reproductive characteristics evaluated. From the results of this study, it was concluded that better reproductive performance was observed in cows inseminated at a synchronized ovulation than in those inseminated at a synchronized estrous period.  相似文献   

11.
Lactating dairy cows (n = 157) designated for slaughter under the 1986 U.S. Dairy Termination Program were utilized in two trials to determine the effects of a second insemination on fertility. Cows that had been previously inseminated at estrus were inseminated again at 12-24 d later, when not in estrus. Cows that were reinseminated into the uterine body had significantly lower pregnancy rates (4% vs 40.6% for controls). Differences in pregnancy rates when the reinsemination was performed in the mid-cervical region were not significant (34.8% vs 50% for controls). Based upon these studies, intrauterine insemination of cows displaying questionable signs of estrus should be avoided in previously inseminated cows.  相似文献   

12.
The objective of this study was to evaluate the effects of GnRH administered at Day 12 post-AI on the reproductive performance of dairy cows. Holstein-Friesian dairy cows (n=103) on a large Hungarian dairy farm were allocated randomly to treated (n=54) or control (n=49) groups. Twelve days after AI, treated cows received a GnRH agonist i.m., while the control group received a placebo (physiological saline). Progesterone radioimmunoassay was used to determine the correct timing of artificial insemination (Day 0) and the incidence of luteal insufficiency on Day 12. Ultrasonography and radioimmunoassay for pregnancy-associated glycoprotein were used to detect pregnancy and late embryonic/fetal mortality between Days 32 and 55 after AI. Three cows from each group were inseminated when progesterone concentrations were >1.0 ng/mL, and six cows (four from the treated and two from the control group) had luteal insufficiency (progesterone<1.0 ng/mL) on Day 12. Late embryonic/fetal mortality occurred in three treated cows and in two control cows. When these cows were removed from the model, calving rates after first service were 59.6% (28/47) and 59.1% (26/44) for treated and control cows, respectively (P>0.05). There was no significant difference between treated and control cows when they were inseminated before or after Day 100 from calving. In summary, administration of a GnRH agonist on Day 12 after AI did not improve reproductive performance in dairy cows. However, our approach may be used for the field evaluation of different treatment protocols.  相似文献   

13.
A total of 226 out of 245 postpartum lactating dairy cows in a commercial dairy farm were allocated to two groups of oestrous synchronisation protocols in order to evaluate reproductive performance. One group was treated with oestradiol benzoate (ODB) and PGF2alpha on day 10 of the oestrous cycle with insemination at the detected oestrus, the second group underwent the Ovsynch (OVS) protocol (GnRH + PGF2alpha + GnRH) with timed AI. Pregnancy was diagnosed by ultrasonography on day 28 after AI and confirmed by rectal palpation on day 45. A higher (P < 0.001) proportion of cows in OVS (100%) were inseminated within (19.2 +/- 3.8 h) following the second GnRH injection than those of cows in EPE (ODB + PGF2alpha + ODB) (70.6%) inseminated at the detected oestrus within (35.6 +/- 5.2 h) following the second ODB injection. Pregnancy rates for the first AI at day 28 (64.0 +/- 4.6, 62.4 +/- 5.5%) and at day 45 post-insemination (40.4 +/- 4.7, 40.0 +/- 5.6%) for OVS and EPE cows respectively, did not differ between the two treatments, whereas, the overall pregnancy rates tended to be higher (P < 0.08) for the OVS (85.1 +/- 3.8%) cows than the EPE cows (74.1 +/- 4.5%). No differences were observed in pregnancy rates for first AI and overall up to fourth AI between primiparous (34.7 +/- 5.8 and 85.3 +/- 4.7%) and multiparous cows (43.5 +/- 4.5 and 77.4 +/- 3.6%). Days open for pregnant cows tended to be lower (P < 0.08) for OVS (76.2 +/- 3) than for EPE cows (84.7 +/- 4), while days open were higher (P < 0.05) in primiparous cows (85.3 +/- 4) than in multiparous cows (75.6 +/- 3). The results indicate that pregnancy rates for first AI were similar, but overall pregnancy rates up to the fourth AI tended to be higher for OVS than EPE cows, while days open was tended to be lower for OVS than EPE cows.  相似文献   

14.
Lactating Holstein dairy cows (n=1,533) were allocated to one of three treatment groups, with Group I (n=514) receiving 10 mug of a GnRH analogue (buserelin) at artificial insemination (AI) and Group II (n=503) receiving 10 mug of the same analogue at both the time of AI and at 12 days post AI. Herdmates in Group III (n=516) were inseminated on the same day and served as contemporary AI controls. The trial was conducted on five large dairy farms during the spring and summer months in Saudi Arabia. Pregnancy rates were determined by palpation per rectum between 33 and 50 days following AI. The first service pregnancy rate for the control cows (42.4%) was lower (P<0.05) than that for cows treated with the GnRH analogue at AI (48.8%) or for the combined treatment at AI and at Day 12 post AI (51.5%). No additive effect on the pregnancy rate was noted from the combined analog treatment. The overall increase in pregnancy rate from the analogue treatment at AI resulted from an 11% increase in pregnancy rate in first parity cows over that of contemporary controls (P<0.05) and a 14.7% increase in pregnancy for cows mated at 40 to 59 days post partum and treated with the analogue at AI over that of the corresponding controls (P<0.05). The pregnancy rates from repeat AI (interval 相似文献   

15.
Milk progesterone concentration (P4), milk yield, milk composition, ovarian structures and pregnancy status were studied in 108 cows treated with two doses of PGF 14 days apart and inseminated at fixed time (TAI) 80-82 h later. The synchronization protocol was started at 70+/-1.4 days after parturition. Milk P4 profiles revealed that anestrus, failure of luteolysis following treatment with PGF and failure to ovulate following luteolysis were the main reasons for low pregnancy rate with TAI. Anestrous cows had a higher percentage of milk fat (P<0.05) and higher fat to protein ratio (P<0.01), and cows that did not undergo luteolysis had higher milk yield (P<0.05) and lower percentage of milk protein (P<0.05) than cows that responded to PGF treatment. Cows that did not undergo luteolysis and cows that did not ovulate following luteolysis had lower milk P4 during the luteal phase preceding the second PGF injection (P<0.01 and P<0.05, respectively). Pregnancy rates 24 and 47 days after TAI in cows that responded as expected to the synchronization treatment were 62% and 54%, respectively. Pregnancy was precluded in non-responsive cows. The largest follicle at the time of TAI in cows experiencing late embryonic mortality was smaller (P=0.02) than in cows that successfully maintained pregnancy. Results suggest that a primary reason for low pregnancy rate in dairy cows after administration of PGF and TAI is inappropriate ovarian function prior to, or following treatment.  相似文献   

16.
In the present study, two new short estrus synchronization methods have been developed for lactating dairy cows. The study was completed in three consecutive phases. In experiment (Exp) 1, 32 cows, that were not detected in estrus since calving between the 50th and 84th post-partum days, were treated with PGF2alpha (PGF, d-cloprostenol, 0.150 mg), estradiol propionate (EP, 2mg) and GnRH (lecirelina, 50 microg) at 24h intervals, respectively, and timed artificial insemination (TAI) was performed 48 h after PGF. Different from Exp 1, EP and GnRH were given at 48 and 60 h, respectively after PGF in Exp 2 (n=20), instead of 24 and 48 h. Ovulations were investigated by ultrasound for 7 days starting from the day of PGF treatment, and ovulation rates were compared with the ones obtained in Exp 1. In Exp 3, cows were given the same treatments as Exp 2, but treatments started at certain estrus stages. Cows detected in estrus and with a confirmed ovulation (n=27) after the second PGF given 11 days apart were assigned to three treatment groups. Treatment was initiated at Day 3 (group metestrus, n=9), Day 12 (group diestrus, n=9) and Day 18 (group proestrus, n=9) after ovulation. All cows included in Exp 3 were TAI between 16 and 20 h after GnRH treatment. In Exp 2 and 3, blood samples were obtained once every 2 days, starting from Day 0 to the 10th day after GnRH injection, and once every 4 days between the 10th and the 22nd days after GnRH to examine post-treatment luteal development. During the study, animals exhibiting natural estrus were inseminated and served as controls (n=85). The rate of estrus was found to be significantly higher in cows with an active corpus luteum (CL) at the start of Exp 1 (72.7% vs. 30.0%, P<0.05) and the pregnancy rate tended to be higher than cows without an active CL (40.9% vs. 10.0%, P=0.08). Compared to those in Exp 1, cows in Exp 2 had higher rates of synchronized ovulation (94.1% vs. 59.1%, P=0.013). In Exp 3, estrus (P<0.001) and pregnancy rates (P=0.01) were found to be significantly higher in cows in the proestrus group than in those in the metestrus group. Comparable pregnancy rates were obtained from the first and second inseminations in Exp 1 and 3 with results from those inseminated at natural estrus (P>0.05). It was concluded from the study that the treatment in Exp 1 and 3 could result in comparable pregnancy rates after timed AI of lactating dairy cows at random stages of the estrus cycle relating to those inseminated at natural estrus, but the stage of the estrus cycle can have significant effects on pregnancy rates.  相似文献   

17.
The objectives of the experiment were to evaluate the efficacy of using progesterone concentrations in milk and palpation per rectum on days 21 or 22 postbreeding to estimate pregnancy and evaluate management practices; and to investigate physiological occurrences leading to incorrect diagnosis of pregnancy when serial samples of milk were collected. Of particular interest were indications of early embyronic death and insemination of cows not in estrus. Milk samples were collected at the afternoon milking of days 0 or 1 (day 0 = day of estrus), 9 or 10, 21 or 22 and 27 or 28 following breeding in 200 lactating dairy cows. Tentative diagnosis of pregnancy was made based on concentrations of progesterone in milk on days 21 and 22 alone and on days 21 or 22 and 27 or 28. In addition all cows were palpated per rectum on days 21 or 22 postbreeding and a tentative pregnancy diagnosis was made. Pregnancy was confirmed by examination of the genital tract per rectum between 35 and 50 days after breeding. Values of 4 ng/ml or greater and/or the presence of a mature corpus luteum were considered positive signs of pregnancy. Progesterone in milk ranged from 0.1 to 18 ng/ml. On days 0 or 1, 9 or 10, 21 or 22 and 27 or 28 concentrations of progesterone in milk averaged 1.5 +/- 0.3, 11.1 +/- 0.5, 12.0 +/- 0.4 12.5 +/- 0.5 ng/ml for pregnant cows. Corresponding samples from nonpregnant cows averaged 1.2 +/- 0.2, 10.3 +/- 0.4, 3.0 +/- 0.4, 6.8 +/- 0.6 ng/ml, respectively. Ninety-six and 104 cows were classified as pregnant and nonpregnant on days 21 or 22 as compared to 78 and 118 cows diagnosed as pregnant and nonpregnant on days 21 or 22 and 27 or 28 combined. Pregnancy detection by progesterone in milk on days 21 or 22 with pregnancy determined via rectal palpation 35 to 50 days postbreeding was 77 and 100% accurate for positive and negative diagnosis, respectively. The percent agreement using progesterone in milk on days 21 or 22 and 27 or 28 combined was 95 and 100%, respectively, for positive and negative diagnosis. Diagnosis based on rectal palpation 21 or 22 days postbreeding was 63 92 (69%) and 76 88 (87%) for pregnant and nonpregnant cows, respectively. Ten of the 200 cows had progesterone concentratins in milk of > 4 ng/ml at the time of breeding. Six of these cows were pregnant from a previous insemination. The other four cows were nonpregnant and were inseminated during the luteal phase of the cycle. In conclusion, measurement of progesterone in milk is a useful tool in early detection of pregnant and nonpregnant cows and may be useful in detecting reproductive problems in a dairy herd. It will probably be most useful when used in combination with later pregnancy diagnosis per rectum .  相似文献   

18.
The objectives of the present study were to determine the effects of resynchronization with GnRH on Day 21 after artificial insemination (AI) on pregnancy rate and losses of pregnancy in lactating dairy cows. Holstein cows (n=585) on two dairy farms were assigned to one of two treatments in a randomized complete block design. On Day 21 after a pre-enrollment AI, animals assigned to the resynchronization (RES) group received 100 microg of GnRH i.m., whereas animals in the control (CON) group received no treatment. All animals were examined ultrasonographically on Days 21 and 28 after AI, and blood samples were taken for progesterone measurement on Day 21. Pregnancy was diagnosed on Day 28 and reconfirmed 14 days later. Nonpregnant cows on Day 28 were inseminated using timed AI after the completion of the Ovsynch protocol 10 and 17 days after enrollment in the study for RES and CON groups, respectively. Progesterone concentration > or =2.35 ng/ml was used as an indicator of pregnancy on Day 21. For RES and CON cows, pregnancy rate at Days 21 (70.9% versus 73.0%, P<0.56), 28 (33.1% versus 33.6%; P<0.80) and 42 (27.0% versus 26.8%; P<0.98) after the pre-enrollment AI did not differ. Administration of GnRH on Day 21 after AI had no effect on pregnancy loss in RES and CON groups from days 21 to 28 (53.2% versus 53.5%; P<0.94) and days 28 to 42 (17.9%; P<0.74) after AI. Pregnancy rate after the resynchronization period was similar for both treatment groups. Resynchronization with GnRH given on Day 21 after AI for initiation of a timed AI protocol prior to pregnancy diagnosis does not affect pregnancy rate and pregnancy loss in lactating dairy cows.  相似文献   

19.
The present study was conducted to determine the influence of management factors on pregnancy attrition in dairy cattle. Data from 3162 diagnosed pregnancies in parous cows and 1050 in heifers at 9 commercial dairy herds in northeastern Spain were used. Pregnancy diagnosis by palpation per rectum was performed from 30 to 70 d post insemination. Pregnancy attrition was registered when pregnancy diagnosis resulted negative in a second palpation carried out between 120 and 150 d following insemination. Overall proportion of pregnancy losses was 7.9% (9.6% in parous cows and 2.8% in heifers). Data analysis was performed by multiple logistic regression methods. For all animals, effect of time of pregnancy diagnosis was shown (Odds ratio = 0.97 for 1 d increase; P = 0.0042). Conceptus loss in heifers was lower than in parous cows (Odds ratio = 0.28; P = 0.0001), and a higher proportion of pregnancy attritions was detected in animals inseminated in spring, summer and winter, compared to those inseminated in autumn (P < 0.04). Herd effect on pregnancy attrition was also significant. Similar results were observed in the subanalysis for parous cows and, furthermore, no effect of lactation number and of interval from previous calving to pregnancy was shown in this group. In heifers, no effect of time of pregnancy diagnosis and of insemination season on pregnancy attrition was shown, and only a herd effect was observed. Our data suggest that the influence of parity status (heifer vs cow) could affect the proportion of pregnancy attrition rather than early diagnosis, and, in pregnant cows, adaptation to seasonal changes associated with temperature decreases seem more efficient.  相似文献   

20.
Our objective was to determine whether rates of luteolysis or pregnancy differed in lactating dairy cows of known progesterone status and either known or unknown luteal status after either cloprostenol or dinoprost was injected as part of a timed-insemination program. In Experiment 1, 2358 lactating dairy cows in six herds were given two injections of PGF 14 d apart (Presynch), with the second injection given 12 to 14 d before the onset of a timed AI protocol (Ovsynch). Cows (n = 1094) were inseminated when detected in estrus after the Presynch PGF injections. Cows not inseminated (n = 1264) were enrolled in the Ovsynch protocol and assigned randomly to be treated with either cloprostenol or dinoprost as part of the timed-AI protocol. In cows having pretreatment concentrations of progesterone ≥ 1 ng/mL and potentially having a functional corpus luteum (CL) responsive to cloprostenol (n = 558) or dinoprost (n = 519), dinoprost increased (P < 0.05) luteal regression from 86.6 to 91.3%. Despite a significant increase in luteolysis, pregnancies per AI did not differ between luteolytic agents (dinoprost = 37.8% and cloprostenol = 36.7%). Fertility was improved in cows of both treatments having reduced concentrations of progesterone at 72 h and in cows showing signs of estrus. In Experiment 2, an ovulation-resynchronization program was initiated with GnRH or saline in 427 previously inseminated lactating dairy cows of unknown pregnancy status in one herd. Seven days later, pregnancy was diagnosed and nonpregnant cows were blocked by number of CL and assigned randomly to be treated with cloprostenol or dinoprost. Compared with cloprostenol, dinoprost increased (P < 0.05) luteal regression from 69.1 to 78.5%, regardless of the number of CL present or the total luteal volume per cow. Pregnancies per AI did not differ between dinoprost (32.8%) and cloprostenol (31.3%). Although dinoprost was more effective than cloprostenol at inducing luteolysis in lactating dairy cows exposed to an Ovsynch or ovulation-resynchronization protocol, resulting fertility did not differ between products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号