首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phased psoralen cross-links do not bend the DNA double helix   总被引:1,自引:0,他引:1  
T E Haran  D M Crothers 《Biochemistry》1988,27(18):6967-6971
Although the chemical reaction of psoralens with nucleic acids is well understood, the structure of psoralen-DNA cross-linked products is still not clear. Model building studies base on the crystal structure of the psoralen-thymine monoadduct suggest that each cross-link bends the DNA double helix by 46.5 degrees [Pearlman, D. A., Holbrook, S. R., Pirkle, D. H., & Kim, S.-H. (1985) Science (Washington, D.C.) 227, 1304-1308]. On the other hand, Sinden and Hagerman [Sinden, R. R., & Hagerman, P. J. (1984) Biochemistry 23, 6299-6303] find that, in solution, psoralen cross-linked DNA is not bent. Here we use gel electrophoresis to test the validity of the current models. We have synthesized a series of DNA fragments (21-24 base pairs in length), each containing one unique T-A site for 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) cross-linking. Because of an estimated 28 degrees unwinding of the helix by HMT [Wiesehahn, G., & Hearst, J. E. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2703-2707], one expects that the 22-bp cross-linked fragment will be repeated nearly in phase with the average helical screw when multimerized. In that sequence ligation will maximally amplify any deformation to the double helix. We find that the ligated multimers of cross-linked DNA migrate close to the multimers of non-cross-linked DNA on polyacrylamide gels. Our observations place an upper limit of 10 degrees on DNA bending induced by psoralen cross-linking and indicate unwinding by about 1 bp, as well as stiffening of the double helix. These properties are not unexpected for classical intercalators.  相似文献   

2.
3.
For the effective recognition of C x G interruption in homopurine-homopyrimidine duplex DNA, we examined triplex-forming ability and sequence-selectivity of a triplex-forming oligonucleotide (TFO) involving of 2'-O, 4'-C-methylene bridged nucleic acid with 1-isoquinolone base analogue. We found that the modified TFO formed stable triplex with high binding affinity and sequence-selectivity.  相似文献   

4.
The ability of purified nuclear lamin A, lamin B, lamin C, and vimentin from Ehrlich ascites tumor cells to bind nucleic acids was investigated in vitro via a quantitative filter binding assay. At low ionic strength, vimentin bound more nucleic acid than the nuclear lamins and showed a preference for G-containing nucleic acids. Nuclear lamins A and C were quite similar in their binding properties and bound G- and C-containing nucleic acids preferentially. The binding of poly(dT) by the lamins A and C was reduced in competition experiments by both poly(dG) and poly(dC), but not by poly(dA). Lamin B bound only oligo and poly(dG); no other nucleic acids tested were bound or could compete with the binding of oligo(dG). Vimentin, lamin A, and lamin C specifically bound a synthetic oligonucleotide human (vertebrate) telomere model. The Ka for vimentin (2.7 X 10(7) M-1) was approximately 10-fold higher than those for lamin A (2.8 X 10(6) M-1) and lamin C (2.9 X 10(6) M-1). Lamin B did not bind detectable amounts of the telomere model. Washing of lamin A- and lamin C-nucleic acid complexes, formed at low ionic strength, with solutions containing 150 mM KCl resulted in the elution of 30% of bound poly(dG)12-18 and 70% of bound synthetic oligonucleotide telomere model. These results, using purified individual proteins, are in good agreement with data from competition experiments with vimentin but are at odds with data obtained previously using a crude preparation of nuclear matrix proteins containing all three nuclear lamin proteins (Comings, D. E., and Wallack, A. S. (1978) J. Cell Sci. 34, 233-246). The nuclear lamins A and C and vimentin possess nucleic acid-binding properties that might permit their binding to specific base sequences and/or unique DNA structure, such as that observed for the binding of the telomere model. The significance of the higher affinity binding of nucleic acids by the cytoplasmic protein vimentin (compared with the nuclear lamins) remains to be elucidated.  相似文献   

5.
Oligodeoxynucleotides with an internal intercalating agent have been targeted to single-stranded sequences containing hairpin structures. The oligonucleotide binds to nonadjacent single-stranded sequences on both sides of the hairpin structure in such a way as to form a three-way junction. The acridine derivative is inserted at a position that allows it to interact with the three-way junction. The melting temperature (Tm) of complexes formed between the hairpin-containing target and oligonucleotides containing one internal acridine derivative was higher than that obtained with the same target and an unmodified oligonucleotide (DeltaTm = +13 degrees C). The internal acridine provided the oligonucleotide with a higher affinity than covalent attachment to the 5' end. Oligonucleotides could also be designed to recognize a hairpin-containing single-stranded nucleic acid by formation of Watson-Crick hydrogen bonds with a single-stranded part and Hoogsteen hydrogen bonds with the stem of the hairpin. An internal acridine derivative was introduced at the junction between the two domains, the double helix domain with Watson-Crick base pairs and the triple helix domain involving Hoogsteen base triplets in the major groove of the hairpin stem. Oligonucleotides with an internal acridine or an acridine at their 5' end have similar binding affinities for the stem-loop-containing target. The bis-modified oligonucleotide containing two acridines, one at the 5' end and one at an internal site, did not exhibit a higher affinity than the oligonucleotides with only one intercalating agent. The design of oligonucleotides with an internal intercalating agent might be of interest to control gene expression through recognition of secondary structures in single-stranded targets.  相似文献   

6.
We describe a non-isotopic, semi-automated method for large-scale multiplex analysis of nucleic acid sequences, using the cystic fibrosis transmembrane regulator (CFTR) gene as an example. Products of a multiplex oligonucleotide ligation assay (OLA) are resolved electrophoretically from one another and from unligated probes under denaturing conditions with fluorescence detection. One ligation probe for each OLA target carries a fluorescent tag, while the other probe carries an oligomeric non-nucleotide mobility modifier. Each OLA product has a unique electrophoretic mobility determined by the ligated oligonucleotides and the mobility-modifier oligomer arbitrarily assigned (coded) to its target. The mobility range for practical mobility modifiers is much wider than the accessible range from unmodified ligated oligonucleotides of practical length. Each mobility modifier is built from phosphoramidite monomers in a stepwise manner on its associated oligonucleotide using an automated synthesizer. The resulting mobility modifiers lower the probe-target duplex Tm by less than 3 degrees C and retard probe-target annealing by less than 50%, with negligible effect on OLA yield and specificity. This method is especially useful for allelic discrimination in highly polymorphic genes such as CFTR.  相似文献   

7.
The synthesis and properties of a bridged nucleic acid analogue containing a N3'-->P5' phosphoramidate linkage, 3'-amino-2',4'-BNA, is described. A heterodimer containing a 3'-amino-2',4'-BNA thymine monomer, and thymine and methylcytosine monomers of 3'-amino-2',4'-BNA and their 5'-phosphoramidites, were synthesized efficiently. The dimer and monomers were incorporated into oligonucleotides by conventional 3'-->5' assembly, and 5'-->3' reverse assembly phosphoramidite protocols, respectively. Compared to a natural DNA oligonucleotide, modified oligonucleotides containing the 3'-amino-2',4'-BNA residue formed highly stable duplexes and triplexes with single-stranded DNA (ssDNA), single-stranded RNA (ssRNA), and double-stranded DNA (dsDNA) targets, with the average increase in melting temperature (T(m)) against ssDNA, ssRNA and dsDNA being +2.7 to +4.0 degrees C, +5.0 to +7.0 degrees C, and +5.0 to +11.0 degrees C, respectively. These increases are comparable to those observed for 2',4'-BNA-modified oligonucleotides. In addition, an oligonucleotide modified with a single 3'-amino-2',4'-BNA thymine residue showed extraordinarily high resistance to nuclease degradation, much higher than that of 2',4'-BNA and substantially higher even than that of 3'-amino-DNA and phosphorothioate oligonucleotides. The above properties indicate that 3'-amino-2',4'-BNA has significant potential for antisense and antigene applications.  相似文献   

8.
For the effective recognition of C:G interruption in homopurine-homopyrimidine duplex DNA, we examined triplex-forming ability and sequence-selectivity of a triplex-forming oligonucleotide (TFO) involving of 2'-O,4'-C-methylene bridged nucleic acid with 2-pyridone base analogue. We found that the modified TFO formed stable triplex with high binding affinity and sequence-selectivity.  相似文献   

9.
The 31P chemical shifts of all 13 phosphates and the chemical shifts of nearly all of the non-exchangeable protons of a symmetrical 14 base pair lac pseudooperator DNA fragment have been assigned by regiospecific labeling with oxygen-17 and two-dimensional NMR techniques. At 22 degrees C, 8 of the 13 phosphorus resonances can distinctly be resolved while the remaining 5 resonances occur in two separate overlapping regions. The 31P chemical shifts of this particular 14 base pair oligonucleotide do not follow the general observation that the more internal the phosphate is located within the oligonucleotide sequence the more upfield the 31P resonance occurs, as shown from other 31P assignment studies. Failure of this general rule is believed to be a result of helical distortions that occur along the oligonucleotide double helix, on the basis of the analysis of Callidine [Callidine, C.R. (1982) J. Mol. Biol. 161, 343-352]. Notable exceptions to the phosphate position relationship are 5'-Py-Pu-3' dinucleotide sequences, which resonate at a lower field strength than expected in agreement with similar results as reported by Ott and Eckstein [Ott, J., & Eckstein, F. (1985) Biochemistry 24, 253]. A reasonable correlation exists between 31P chemical shifts values of the 14-mer and the helical twist sum function of Calladine. The most unusual 31P resonance occurs most upfield in the 31P spectrum, which has been assigned to the second phosphate position (5'-GpT-3') from the 5' end. This unusual chemical shift may be the result of the predicted large helical twist angle that occurs at this position in the 14-mer sequence. Further, it is believed that the large helical twist represents a unique structural feature responsible for optimum binding contact between lac repressor protein and this 14-mer lac pseudooperator segment. Assignments of proton resonances were made from two-dimensional 1H-1H nuclear Overhauser effect (NOESY) connectivities in a sequential manner applicable to right-handed B-DNA, in conjunction with two-dimensional homonuclear and heteronuclear J-correlated spectroscopies (1H-1H COSY and 31P-1H HETCOR). Most nonexchangeable base proton and deoxyribose proton (except for some unresolved H4', H5', and H5" protons) resonances were assigned.  相似文献   

10.
An oligonucleotide P3'-->N5' phosphoramidate (5'-amino-DNA) attracts much attention because of its potential for application to DNA sequencing; however, its ability to hybridize with complementary strands is low. To overcome this drawback of the 5-amino-DNA, we have designed and successfully synthesized a novel nucleic acid analogue having a P3'-->N5' phosphoramidate linkage and a constrained sugar moiety, 5'-amino-3'-C,5'-N-methylene bridged nucleic acid (5'-amino-3',5'-BNA). The binding affinity of the 5'-amino-3',5'-BNA towards complementary DNA and RNA strands was investigated by UV melting experiments. The melting temperature (Tm) of the duplex comprising the 5'-amino-3',5'-BNA and its complementary strand was much higher than that of the duplex containing the corresponding 5-amino-DNA.  相似文献   

11.
NMR signal assignments for DNA oligomers have been performed by the well-established sequential assignment procedures based on NOESY and COSY. The H4'/H5'/H5' resonance region is congested and difficult to analyze without the use of isotope-labeled DNA oligomers. Here a DNA dodecamer constructed with 2'-deoxy[5'-(13)C]ribonucleotides, 5'-d(*C*G*C*G*A*A*T*T*C*G*CG)-3' (*N = [5'-(13)C]Nucleotide), was prepared in an effort to analyze the H4'/H5'/H5' resonance region by 2D 1H-13C HMQC-NOESY. In the C5' and H1' resonance region, weak and strong cross peaks for C5'(i)-H1'(i) and C5'(i)-H1'(i-1), respectively, were found, thus enabling the sequential assignment within this region. A similar sequential assignment route was found between C5' and H2'. Proton pair distances evaluated from the canonical B-DNA as well as A-DNA indicated that these sequential-assignment routes on a 2D 1H-13C HMQC-NOESY spectrum work for most nucleic acid stem regions.  相似文献   

12.
Helicase-catalyzed disruption of double-stranded nucleic acid is vital to DNA replication, recombination, and repair in all forms of life. The relative influence of specific chemical interactions between helicase and the substrate over a series of multistep catalytic events is still being defined. To this end, three modified DNA oligonucleotides were designed to serve as substrates for the bacteriophage T4 helicase, Dda. A 5'-DNA-PNA-DNA-3' chimera was synthesized, thereby, conferring both a loss of charge and altering the conformational flexibility of the oligonucleotide. The second modified oligonucleotide possessed a single methylphosphonate replacement on the phosphate backbone, creating a gap in the charge distribution of the substrate. The third modification introduced an abasic site into the oligonucleotide sequence. This abasic site retains the charge distribution of the normal DNA substrate yet alters the conformational flexibility of the oligonucleotide. The loss of a base also serves to disrupt the hydrogen-bonding lattice, the intramolecular base-stacking interactions, as well as the intermolecular base-stacking interactions between aromatic amino acid side chains and the substrate. Our results indicate that a gap in the charge distribution along the backbone of the substrate has a more pronounced effect upon helicase-catalyzed unwinding than does the loss of a single base. While all three substrates exhibited some degree of inhibition, analysis of both pre-steady-state and excess enzyme experiments places a greater value upon the electrostatic interactions between helicase and the substrate.  相似文献   

13.
The synthesis and hybridization properties of novel nucleic acid analogs, alpha-anomeric oligodeoxyribonucleotide N3'-->P5' phosphoramidates, are described. The alpha-3'-aminonucleoside building blocks used for oligonucleotide synthesis were synthesized from 3'-azido-3'-deoxythymidine or 3'-azido-2',3'-dideoxyuridine via acid catalyzed anomerization or transglycosylation reactions. The base-protected alpha-5'-O-DMT-3'-aminonucleosides were assembled into dimers and oligonucleotides on a solid support using the oxidative phosphorylation method.1H NMR analysis of the alpha-N3'-->P5' phosphoramidate dimer structures indicates significant differences in the sugar puckering of these compounds relative to the beta-N3'-->P5' phosphoramidates and to the alpha-phosphodiester counterparts. Additionally, the ability of the alpha-oligonucleotide N3'-->P5' phosphoramidates to form duplexes was studied using thermal denaturation experiments. Thus the N3'-->P5' phosphoramidate decamer containing only alpha-thymidine residues did not bind to poly(A) and exhibited lower duplex thermal stability with poly(dA) than that for the corresponding beta-anomeric phosphoramidate counterpart. A mixed base decamer alpha-CTTCTTCCTT formed duplexes with the RNA and DNA complementary strands only in a parallel orientation. Melting temperatures of these complexes were significantly lower, by 34-47 or 15-25 degrees C, than for the duplexes formed by the isosequential beta-phosphoramidates in antiparallel and parallel orientations respectively. In contrast, the alpha-decaadenylic N3'-->P5' phosphoramidate formed duplexes with both RNA and DNA complementary strands with a stability similar to that of the corresponding beta-anomeric phosphoramidate. Moreover, the self-complementary oligonucleotide alpha-ATATATATAT did not form an alpha:alpha homoduplex. These results demonstrate the effects of 3'-aminonucleoside anomeric configuration on sugar puckering and consequently on stability of the duplexes.  相似文献   

14.
Utilizing a new method for modeling furanose pseudorotation (D. A. Pearlman and S.-H. Kim, J. Biomol. Struct. Dyn. 3, 85 (1985)) and the empirical multiple correlations between nucleic acid torsion angles we derived in the previous report (D. A. Pearlman and S.-H. Kim, previous paper in this issue), we have made an energetic examination of the entire conformational spaces available to two nucleic acid oligonucleotides: d(ApApApA) and ApApApA. The energies are calculated using a semi-empirical potential function. From the resulting body of data, energy contour map pairs (one for the DNA molecule, one for the RNA structure) have been created for each of the 21 possible torsion angle pairs in a nucleotide repeating unit. Of the 21 pairs, 15 have not been reported previously. The contour plots are different from those made earlier in that for each point in a particular angle-angle plot, the remaining five variable torsion angles are rotated to the values which give a minimum energy at this point. The contour maps are overall quite consistent with the experimental distribution of oligonucleotide data. A number of these maps are of particular interest: delta (C5'-C4'-C3'-O3')-chi (O4'-C1'-N9-C4), where the energetic basis for an approximately linear delta-chi correlation can be seen: zeta (C3'-O3'-P-O5')-delta, in which the experimentally observed linear correlation between zeta and delta in DNA(220 degrees less than zeta less than 280 degrees) is clearly predicted; zeta-epsilon (C4'-C3'-O3'-P), which shows that epsilon increases with decreasing zeta less than 260 degrees; alpha (O3'-P-O5'-C5')-gamma (O5'-C5'-C4'-C3') where a clear linear correlation between these angles is also apparent, consistent with experiment; and several others. For the DNA molecule studied here, the sugar torsion delta is predicted to be the most flexible, while for the RNA molecule, the greatest amount of flexibility is expected to reside in alpha and gamma. Both the DNA and RNA molecules are predicted to be highly polymorphic. Complete energy minimization has been performed on each of the minima found in the energy searches and the results further support this prediction. Possible pathways for B-form to A-form DNA interconversion suggested by the results of this study are discussed. The results of these calculations support use of the new sugar modeling technique and torsion angle correlations in future conformational studies of nucleic acids.  相似文献   

15.
16.
The crystal structure of the duplex formed by oligo(2',3'-dideoxy-beta-d-glucopyranosyl)nucleotides (homo-DNA) revealed strongly inclined backbone and base-pair axes [Egli,M., Pallan,P.S., Pattanayek,R., Wilds,C.J., Lubini,P., Minasov,G., Dobler,M., Leumann,C.J. and Eschenmoser,A. (2006) Crystal structure of homo-DNA and nature's choice of pentose over hexose in the genetic system. J. Am. Chem. Soc., 128, 10847-10856]. This inclination is easily perceived because homo-DNA exhibits only a modest helical twist. Conversely, the tight coiling of strands conceals that the backbone-base inclinations for A- (DNA and RNA) and B-form (DNA) duplexes differ considerably. We have defined a parameter eta(B) that corresponds to the local inclination between sugar-phosphate backbone and base plane in nucleic acid strands. Here, we show its biological significance as a predictive measure for the relative strand polarities (antiparallel, aps, or parallel, ps) in duplexes of DNA, RNA and artificial nucleic acid pairing systems. The potential of formation of ps duplexes between complementary 16-mers with eight A and U(T) residues each was investigated with DNA, RNA, 2'-O-methylated RNA, homo-DNA and p-RNA, the ribopyranosyl isomer of RNA. The thermodynamic stabilities of the corresponding aps duplexes were also measured. As shown previously, DNA is capable of forming both ps and aps duplexes. However, all other tested systems are unable to form stable ps duplexes with reverse Watson-Crick (rWC) base pairs. This observation illustrates the handicap encountered by nucleic acid systems with inclinations eta(B) that differ significantly from 0 degrees to form a ps rWC paired duplex. Accordingly, RNA with a backbone-base inclination of -30 degrees , pairs strictly in an aps fashion. On the other hand, the more or less perpendicular orientation of backbone and bases in DNA allows it to adopt a ps rWC paired duplex. In addition to providing a rationalization of relative strand polarity with nucleic acids, the backbone-base inclination parameter is also a determinant of cross-pairing. Thus, systems with strongly deviating eta(B) angles will not pair with each other. Nucleic acid pairing systems with significant backbone-base inclinations can also be expected to display different stabilities depending on which terminus carries unpaired nucleotides. The negative inclination of RNA is consistent with the higher stability of duplexes with 3'- compared to those with 5'-dangling ends.  相似文献   

17.
Novel bicyclo nucleosides, 2'-O,4'-C-ethylene nucleosides and 2'-O,4'-C-propylene nucleosides, were synthesized as building blocks for antisense oligonucleotides to further optimize the 2'-O,4'-C-methylene-linkage of bridged nucleic acids (2',4'-BNA) or locked nucleic acids (LNA). Both the 2'-O,4'-C-ethylene- and propylene-linkage within these nucleosides restrict the sugar puckering to the N-conformation of RNA as do 2',4'-BNA/LNA. Furthermore, ethylene-bridged nucleic acids (ENA) having 2'-O,4'-C-ethylene nucleosides had considerably increased the affinity to complementary RNA, and were as high as that of 2',4'-BNA/LNA (DeltaT(m)=+3 approximately 5 degrees C per modification). On the other hand, addition of 2'-O,4'-C-propylene modifications in oligonucleotides led to a decrease in the affinity to complementary RNA. As for the stability against nucleases, incorporation of one 2'-O,4'-C-ethylene or one 2'-O,4'-C-propylene nucleoside into oligonucleotides considerably increased their resistance against exonucleases to an extent greater than 2',4'-BNA/LNA. These results indicate that ENA is more suitable as an antisense oligonucleotide and is expected to have better antisense activity than 2',4'-BNA/LNA.  相似文献   

18.
2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) monomers bearing novel unnatural nucleobases, 4-(3-benzamidophenyl)-2-pyridone and 2-(N-methylbenzamido)thiazole, were synthesized and successfully incorporated into oligonucleotides. UV melting experiments showed that the corresponding oligonucleotide derivatives formed stable triplexes with dsDNA targets even in the presence of a T.A interruption.  相似文献   

19.
Complete libraries of oligonucleotides were used as substrates for Thermus thermophilus DNA ligase, on a M13mp18 ssDNA template. A 17mer primer was used to start a polymerisation process. Ladders of ligation products were analysed by gel electrophoresis. Octa-, nona- and decanucleotide libraries were compared. Nonanucleotides were optimum for polymerisation and up to 15 monomers were ligated. The fidelity of incorporation was studied by sequencing 28 clones (2268 bases) of nonanucleotide polymers, 12 monomers in length. Of the ligated monomers, 79% were the correct complementary sequence. In a total of 57 (2.5%) mispaired bases, there was a strong bias to G.T, G.A, G.G and A.G mismatches. Of the mismatches, 86% were found to be purines on the incoming oligonucleotide, of which 71% were G. There is evidence for clustering of mismatches within specific 9mers and at specific positions within these 9mers. The most frequent mismatches were at the 5'-terminus of the oligonucleotide, followed by the central position. We suggest that sequence selection was imposed by the ligase and not just by base pairing interactions. The ligase directs polymerisation in the 3' to 5' direction which we propose is linked to its role in lagging strand DNA replication.  相似文献   

20.
We previously described and characterized RNase T1 RNA fingerprints of an N-, a B-, and five B leads to NB-tropic murine leukemia viruses derived from BALB/c mice (Faller and Hopkins, J. Virol. 23:188-195, 1977, and J. Virol. 24:609-617, 1977). These viruses share the majority of their large RNase T1-resistant oligonucleotides, but each possesses some "unique" oligonucleotides relative to the others. We have ordered the large T1-resistant oligonucleotides of the N-, the B-, and one NB-tropic virus relative to the 3' end of their genomes to obtain oligonucleotide maps. These maps indicate that (i) the large T1 oligonucleotides shared by the N-, B-, and NB-tropic viruses probably occupy the same relative positions on their genomes; (ii) the 14 T1 oligonucleotides that differ between the N- and B-tropic viruses are derived from regions scattered along the genomes; and (iii) an oligonucleotide that is present in five NB-tropic viruses but not in their B-tropic virus progenitors lies toward the 5' end of the NB-tropic virus oligonucleotide map.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号