首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rheumatoid arthritis, T cells, B cells, macrophages, and dendritic cells invade the synovial membranes, establishing complex microstructures that promote inflammatory/tissue destructive lesions. B cell involvement has been considered to be limited to autoantibody production. However, recent studies suggest that B cells support rheumatoid disease through other mechanisms. A critical element of rheumatoid synovitis is the process of ectopic lymphoid neogenesis, with highly efficient lymphoid architectures established in a nonlymphoid tissue site. Rheumatoid synovitis recapitulates the pathways of lymph node formation, and B cells play a key role in this process. Furthermore, studies of rheumatoid lesions implanted in immunodeficient mice suggest that T cell activation in synovitis is B cell dependent, indicating the role played by B cells in presenting antigens and providing survival signals.  相似文献   

2.
T cell activation in rheumatoid synovium is B cell dependent   总被引:31,自引:0,他引:31  
Rheumatoid arthritis results from a T cell-driven inflammation in the synovial membrane that is frequently associated with the formation of tertiary lymphoid structures. The significance of this extranodal lymphoid neogenesis is unknown. Microdissection was used to isolate CD4 T cells residing in synovial tissue T cell/B cell follicles. CD4 T cells with identical TCR sequences were represented in independent, nonadjacent follicles, suggesting recognition of the same Ag in different germinal centers. When adoptively transferred into rheumatoid arthritis synovium-SCID mouse chimeras, these CD4 T cell clones enhanced the production of IFN-gamma, IL-1beta, and TNF-alpha. In vivo activity of adoptively transferred CD4 T cells required matching of HLA-DRB1 alleles and also the presence of T cell/B cell follicles. HLA-DRB1-matched synovial tissues that were infiltrated by T cells, macrophages, and dendritic cells, but that lacked B cells, did not support the activation of adoptively transferred CD4 T cell clones, raising the possibility that B cells provided a critical function in T cell activation or harbored the relevant Ag. Dependence of T cell activation on B cells was confirmed in B cell depletion studies. Treatment of chimeric mice with anti-CD20 mAb inhibited the production of IFN-gamma and IL-1beta, indicating that APCs other than B cells could not substitute in maintaining T cell activation. The central role of B cells in synovial inflammation identifies them as excellent targets for immunosuppressive therapy.  相似文献   

3.
4.

Introduction  

The local production of pathogenic autoantibodies by plasma cells in synovium is one of the hallmarks of rheumatoid arthritis (RA). There may be a potential link between ectopic lymphoid neogenesis and the local autoimmunity in rheumatoid synovium. The unfolded protein response (UPR) has key roles in the development and maintenance of plasma cells secreting immunoglobulin. This study was designed to explore the potential links between the activation of the UPR of infiltrating plasma cells in inflamed peripheral joints and the histopathological variants of rheumatoid synovitis as well as the local production of pathogenic autoantibodies.  相似文献   

5.
A unique feature in inflammatory tissue of rheumatoid arthritis (RA) is the formation of ectopic lymphoid aggregates with germinal center (GC)-like structures that can be considered to contribute to the pathogenesis of RA, because local production of the autoantibody, rheumatoid factor, is thought to be a causative factor in tissue damage. However, the factors governing the formation of GC in RA are presently unknown. To begin to address this, the expression of B cell attracting chemokine (BCA-1) (CXCL13), a potent chemoattractant of B cells, was examined in the synovium of patients with RA or with osteoarthritis (OA). Expression of BCA-1 mRNA was detected in all RA samples, but in only one of five OA samples. Lymphoid follicles were observed in four of seven RA samples and in two of eight OA samples, and in most of them BCA-1 protein was detected in GC. BCA-1 was not detected in tissues lacking lymphoid follicles. Notably, BCA-1 was detected predominantly in follicular dendritic cells in GC. CD20-positive B cells were aggregated in regions of BCA-1 expression, but not T cells or macrophages. These data suggest that BCA-1 produced by follicular dendritic cells may attract B cells and contribute to the formation of GC-like structures in chronic arthritis.  相似文献   

6.
7.
Normally the immune response is restricted to the peripheral secondary lymphoid organs. However, additional ectopic lymphoid tissue may develop at chronic sites of inflammation. In the synovium of rheumatoid arthritis patients the local production of proinflammatory cytokines seems to support the formation of a precisely structured microenvironment, which allows an antigen dependent immune response to take place. The analysis of the V-gene repertoire expressed in synovial B cells demonstrated that in the inflamed synovium a germinal centre reaction takes place. Antigen presented by a network of follicular dendritic cells may activate synovial B cells and support their differentiation into plasma cells secreting high affinity antibodies. The specificity of these antibodies remains to be determined.  相似文献   

8.
Autoimmunity is often accompanied by the development of ectopic lymphoid tissues in the target organ, and these tissues have been believed to have close relevance to the severity of the disease. However, the true relationship between the extent of such lymphoid structures and the intensity or type of immune responses mediated by self-reactive T cells has remained unclear. In the present study, we generated transgenic mice expressing TCR from an autoimmune gastritis (AIG)-inducing Th1 cell clone specific for one of the major stomach self-Ags, H(+)/K(+)-ATPase alpha subunit. The transgenic mice spontaneously develop massive lymphoid neogenesis with a highly organized tissue structure in the gastric mucosa, demonstrating Ag-specific, T cell-mediated induction of the lymphoid tissues. Nevertheless, the damage of surrounding tissue and autoantibody production were considerably limited compared with those in typical AIG induced by neonatal thymectomy. Such a moderate pathology is likely due to the locally restricted activation and Th2 skewing of self-reactive T cells, as well as the accumulation of naturally occurring regulatory T cells in the target organ. Altogether, the findings suggest that lymphoid neogenesis in chronic autoimmunity does not simply correlate with the destructive response; rather, the overall activation status of the T cell network, i.e., the balance of self-reactivity and tolerance, in the local environment has an impact.  相似文献   

9.
B-cells of the rheumatoid synovial tissue are a constant part of and, in some histopathological subtypes, the dominant population of the inflammatory infiltrate, located in the region of tissue destruction. The pattern of B-cell distribution and the relationship to the corresponding antigen-presenting cells (follicular dendritic reticulum cells: FDCs) show a great variety. B-cells may exhibit (i) a follicular organization forming secondary follicles; (ii) follicle-like patterns with irregularly formed FDC networks, and (iii) a diffuse pattern of isolated FDCs. Molecular analysis of immunoglobulin VH and VL genes from human synovial B-cell hybridomas and synovial tissue demonstrates somatic mutations due to antigen activation. The FDC formations in the synovial tissue may therefore serve as an environment for B-cell maturation, which is involved in the generation of autoantibodies. An autoantibody is defined as "pathogenic" if it fulfills the Witebsky-Rose-Koch criteria for classical autoimmune diseases: definition of the autoantibody; induction of the disease by transfer of the autoantibody; and isolation of the autoantibody from the disease-specific lesion. B-cells from rheumatoid synovial tissue show specificity for FcIgG, type II collagen, COMP, sDNA, tetanus toxoid, mitochondrial antigens (M2), filaggrin and bacterial HSPs. The contributions of these antigens to the pathogenesis of RA are still hypothetical. A possible contribution could derive from crossreactivity and epitope mimicry: due to crossreaction, an antibody directed originally against a foreign infectious agent could react with epitopes from articular tissues, perpetuating the local inflammatory process. The characteristic distribution pattern, the localisation within the area of tissue destruction, the hypermutated IgVH and IgVL genes, and their exclusive function to recognize conformation-dependent antigens suggest a central role for B-cells in the inflammatory process of rheumatoid arthritis. Therefore, the analysis of synovial B-cell hybridomas and experimental expression of synovial IgVH and IgVL genes will help to characterise the antigens responsible for the pathogenesis of rheumatoid arthritis.  相似文献   

10.
In about 20% of patients with rheumatoid arthritis, B and T lymphocytes recruited into the inflamed synovium are organized into complex microstructures, which resemble secondary lymphoid organs. The development of such lymphoid aggregates with germinal centers appears to contribute to the pathogenesis of the disease. Growing evidence indicates that chemokines and their receptors control the recruitment and positioning of leukocytes as well as their organization into node-like lymphoid structures. Here, we comment on recent studies highlighting the importance of chemokines in rheumatoid arthritis, in particular of B-cell-activating chemokine-1 in lymphoid neogenesis in the inflamed synovium.  相似文献   

11.
Ectopic formation of secondary lymphoid tissue is initiated by the local attraction of naive T and B cells. In this study, we describe a novel type of organized lymphoid structure in the lung of human idiopathic pulmonary fibrosis, with key features of lymphoid neogenesis, including: 1) recently activated CD40 ligand (CD40L)+ T cells; 2) variable numbers of activated CD40+/CD40L+ B cells, sometimes organized in follicles; 3) fully mature dendritic cells (DC) expressing CD40, CD83, CD86, and DC-lysosome-associated membrane protein; 4) the expression of the chemokine CCL21; 5) the presence of vessels with characteristics of high endothelial venules; and 6) a dense network of follicular DC. Surprisingly, these structures are devoid of CCR7+ naive T cells, proliferating lymphocytes, and germinal centers, suggesting that newly recruited activated DC and Ag-experienced lymphocytes can drive lymphoid neogenesis and that factors present within the lymphoid aggregates, such as CD40L, are essential to induce DC maturation.  相似文献   

12.
B lymphocytes play several critical roles in the pathogenesis of rheumatoid arthritis. They are the source of the rheumatoid factors and anticitrullinated protein antibodies, which contribute to immune complex formation and complement activation in the joints. B cells are also very efficient antigen-presenting cells, and can contribute to T cell activation through expression of costimulatory molecules. B cells both respond to and produce the chemokines and cytokines that promote leukocyte infiltration into the joints, formation of ectopic lymphoid structures, angiogenesis, and synovial hyperplasia. The success of B cell depletion therapy in rheumatoid arthritis may depend on disruption of all these diverse functions.  相似文献   

13.
Demonstration of ectopic germinal center-like structures (GC-LSs) in chronically inflamed tissues in patients with autoimmune disorders is a relatively common finding. However, to what extent ectopic lymphoid structures behave as true GC and are able to support class switch recombination (CSR) and somatic hypermutation (SHM) of the Ig genes is still debated. In addition, no information is available on whether CSR and SHM can take place in the absence of GCs at extrafollicular sites in an ectopic lymphoid tissue. In this study, we show that in salivary glands (SGs) of Sj?gren's syndrome (SS) activation-induced cytidine deaminase (AID), the enzyme responsible for CSR and SHM is invariably expressed within follicular dendritic cell (FDC) networks but is not detectable in SGs in the absence of ectopic GC-LSs, suggesting that FDC networks play an essential role in sustaining the Ag-driven B cell proliferation within SS-SGs. We also show that the recently described population of interfollicular large B cells selectively expresses AID outside ectopic GC in the T cell-rich areas of periductal aggregates. Finally, we report that AID retains its exclusive association with numerous, residual GCs in parotid SS-MALT lymphomas, whereas neoplastic marginal zone-like B cells are consistently AID negative. These results strongly support the notion that ectopic lymphoid structures in SS-SGs express the molecular machinery to support local autoantibody production and B cell expansion and may play a crucial role toward lymphomagenesis.  相似文献   

14.
In rheumatoid arthritis, T cells and B cells participate in the immune responses evolving in the synovial lesions. Interaction between T cells and B cells is probably antigen specific because complex microstructures typical of secondary lymphoid organs are generated. Differences between patients in forming follicles with germinal centers, T-cell-B-cell aggregates without germinal center reactions, or loosely organized T-cell-B-cell infiltrates might reflect the presence of different antigens or a heterogeneity in host response patterns to immune injury. Tertiary lymphoid microstructures in the rheumatoid lesions can enhance the sensitivity of antigen recognition, optimize the collaboration of immunoregulatory and effector cells, and support the interaction between the tissue site and the aberrant immune response. The molecular basis of lymphoid organogenesis studied in gene-targeted mice will provide clues to why the synovium is a preferred site for tertiary lymphoid tissue. B cells have a critical role in lymphoid organogenesis. Their contribution to synovial inflammation extends beyond antibody secretion and includes the activation and regulation of effector T cells.  相似文献   

15.
Secondary lymphoid tissue is developmentally programmed and characterized by well-ordered compartmentalization of lymphocyte subsets and specialized stromal cells supporting the tissue architecture. By contrast, tertiary lymphoid tissue is defined as that induced in ectopic sites by inflammation, although its immunological role is largely unknown. In this study, we characterize the lymphoid tissue induced in the chronic lesion of murine autoimmune gastritis (AIG). Within the lymphoid cluster in the gastric mucosa, there is a clear segregation of T and B cells. Follicle-like B cell areas are always located on the luminal side of the mucosa, while T cells are located in the basal part. A typical lymphoid reticular network and follicular dendritic cells support the structure. Importantly, complement receptor 1(+) follicular dendritic cells within the follicle express a B cell homing chemokine, CXC chemokine ligand 13. The number and size of the clusters correlate with the age of the mice and the serum autoantibody titer, suggesting the functional importance of the clusters in local Ab production, although involvement of the autoantibody in the disease progression is still unclear. AIG gastric lesions are known to constitute a Th1-biased, memory T cell-dependent immunomicroenvironment. The expression pattern of cytokines, including lymphotoxin-beta, and chemokines in the AIG stomach is consistent with this observation. Taken together, these facts suggest that, during the chronic phase of autoimmunity, long-lasting lymphocyte infiltration probably induces a unique tertiary lymphoid tissue that has a function distinct from that of regional lymph nodes. These neolymphoid tissues may maintain the local self reactivity supporting the vicious cycle of Th1-type reaction as well as autoantibody production.  相似文献   

16.
In rheumatoid arthritis, T cells and B cells participate in the immune responses evolving in the synovial lesions. Interaction between T cells and B cells is probably antigen specific because complex microstructures typical of secondary lymphoid organs are generated. Differences between patients in forming follicles with germinal centers, T-cell–B-cell aggregates without germinal center reactions, or loosely organized T-cell–B-cell infiltrates might reflect the presence of different antigens or a heterogeneity in host response patterns to immune injury. Tertiary lymphoid microstructures in the rheumatoid lesions can enhance the sensitivity of antigen recognition, optimize the collaboration of immunoregulatory and effector cells, and support the interaction between the tissue site and the aberrant immune response. The molecular basis of lymphoid organogenesis studied in gene-targeted mice will provide clues to why the synovium is a preferred site for tertiary lymphoid tissue. B cells have a critical role in lymphoid organogenesis. Their contribution to synovial inflammation extends beyond antibody secretion and includes the activation and regulation of effector T cells.  相似文献   

17.
The production of IgG rheumatoid factors in the inflamed synovium of many patients with rheumatoid arthritis (RA) implies that local sites exist where plasma cell precursors undergo isotype switching and affinity maturation by somatic mutation and selection. Lymphonodular infiltrates of the synovium-containing germinal centers (GCs), are candidates to fulfill such function in the rheumatoid patient. It has been suggested that these GCs are organized around, obviously ectopic, follicular dendritic cells (FDCs). The present study attempts to find out whether these putative FDCs 1) are specific for RA, 2) have the same phenotype and functional capacity as FDCs in lymphoid organs, and 3) may locally differentiate from fibroblast-like synoviocytes (FLS). Synovial biopsies from patients with RA versus non-RA, yet arthritic backgrounds, were compared. Cells with the FDC phenotype were found in both RA and non-RA tissues as well as in single cell suspensions thereof. When FLS were cultured in vitro, part of these cell lines could be induced with IL-1beta and TNF-alpha to express the FDC phenotype, irrespective of their RA or non-RA background. By contrast, the FDC function, i.e., stable binding of GC B cells and switching off the apoptotic machinery in B cells, appeared to be the prerogative of RA-derived FLS only. The present data indicate that FDC function of FLS in RA patients is intrinsic and support the idea that synovial fibroblast-like cells have undergone some differentiation process that is unique for this disease.  相似文献   

18.

Introduction  

The purpose of this study was to quantitatively evaluate the contribution of synovial lymphoid aggregates to autoantibody (rheumatoid factor [RF] and anti-cyclic citrullinated peptide [anti-CCP]) and total immunoglobulin (IgG and IgM) production in rheumatoid arthritis (RA) patients and the effect thereon of the B-cell-depleting antibody, rituximab, in the ARISE (Assessment of Rituximab's Immunomodulatory Synovial Effects) trial.  相似文献   

19.
In rheumatoid synovial tissues, synovial fibroblasts are activated by proinflammatory cytokines and proliferate to develop hyperplastic pannus tissues, which irreversibly damage the affected joints. We recently reported that the cyclin-dependent kinase inhibitors p16(INK4a) and p21(Cip1) are not expressed in vivo in rheumatoid synovial fibroblasts, but are readily inducible in vitro. This observation was followed by the successful treatment of rat adjuvant arthritis by local p16(INK4a) gene transfer, showing that the inhibition of the cell cycle of the synovial cells ameliorates the arthritis. In this study, we show that another animal model of rheumatoid arthritis, murine collagen-induced arthritis, can be effectively treated by local gene transfer of p21(Cip1) as well as that of p16(INK4a). The anti-arthritic effects were observed even when the treatment was conducted after the arthritis had developed. Furthermore, the effects included suppression of the expression of proinflammatory cytokines such as IL-1ss, IL-6, and TNF-alpha. Our results demonstrate that the ectopic expression of cyclin-dependent kinase inhibitors not only prevents synovial overgrowth but also ameliorates the proinflammatory milieu in the affected joints. The induction of p21(Cip1) in rheumatoid synovial tissues by pharmacological agents may also be an effective strategy to treat rheumatoid arthritis.  相似文献   

20.
Ankylosing spondylitis (AS) is a common, inflammatory rheumatic disease that primarily affects the axial skeleton and is associated with sacroiliitis, uveitis, and enthesitis. Unlike other autoimmune rheumatic diseases, such as rheumatoid arthritis or systemic lupus erythematosus, autoantibodies have not yet been reported to be a feature of AS. We therefore wished to determine whether plasma from patients with AS contained autoantibodies and, if so, characterize and quantify this response in comparison to patients with rheumatoid arthritis (RA) and healthy controls. Two high density nucleic acid programmable protein arrays expressing a total of 3498 proteins were screened with plasma from 25 patients with AS, 17 with RA, and 25 healthy controls. Autoantigens identified were subjected to Ingenuity Pathway Analysis to determine the patterns of signaling cascades or tissue origin. 44% of patients with ankylosing spondylitis demonstrated a broad autoantibody response, as compared with 33% of patients with RA and only 8% of healthy controls. Individuals with AS demonstrated autoantibody responses to shared autoantigens, and 60% of autoantigens identified in the AS cohort were restricted to that group. The autoantibody responses in the AS patients were targeted toward connective, skeletal, and muscular tissue, unlike those of RA patients or healthy controls. Thus, patients with AS show evidence of systemic humoral autoimmunity and multispecific autoantibody production. Nucleic acid programmable protein arrays constitute a powerful tool to study autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号