首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An assay for the Ca pump ATPase of intact human red blood cells (RBCs) was developed. The assay utilized a small volume (typically 10 microliters) of packed RBCs in 1 ml of a buffer of known composition. The assay was based on the exposure of intact RBCs to the ionophore, A23187, in the presence of Ca. Such exposure caused a rapid degradation of ATP in RBCs. This degradation process is modeled in a numerical simulation in a companion paper (Vincenzi, F. F. and Hinds, T. R. (1992) Biochim. Biophys. Acta 1105, 63-70). The loss of ATP followed pseudo-first-order kinetics, and the rate constants for ATP degradation was taken as a measure of the capacity of the Ca pump ATPase. A number of variables were examined to optimize the activity of the ATPase. These variables included the concentrations of Ca and A23187. Because A23187 can promote loss of cellular Mg, it was necessary to include MgCl2 in the incubation medium to optimize ATPase activity. Likewise, it was determined that inclusion of iodoacetic acid optimized the rate of ATP loss, presumably by preventing the resynthesis of ATP from ADP and inorganic phosphate. Cobalt inhibited the ionophore-dependent loss of ATP by apparent competition with Ca for binding to A23187. Results of many assays demonstrated substantial differences in the rate constant for ATP loss in RBCs from different individuals. RBCs were selected according to density. Density associated loss of Ca pump ATPase activity was observed both by the intact RBC assay, and by assay of Ca pump ATPase activity in saponin lysates of RBCs. The correlation coefficient between the two assays was 0.93. It is suggested that the rate constant for ATP loss in intact RBCs exposed to A23187 and Ca can be taken as a measure of the Ca pump ATPase activity. This may be useful when isolated membrane ATPase assays fail (e.g., dog RBCs). The intact cell assay can also be carried out on very small volumes of cells and may be of particular value when RBC volumes are limited.  相似文献   

2.
Previous work in several laboratories revealed little or no Ca2+ pump ATPase activity and little or no activation of the ATPase by calmodulin (CaM) in membranes isolated from dog red blood cells (RBCs). In the present work, intact RBCs from dogs were exposed to the ionophore, A23187, in the presence of Ca2+. A rapid, apparently first order, loss of ATP occurred under these conditions. The first order rate constant was 0.0944 min-1, or approximately 47% of that found in human RBCs under the same conditions. The anti-CaM drug, trifluoperazine, inhibited the loss of ATP and the Ca2+ activation curve of ATP loss in intact cells resembled that observed for CaM-activated Ca2+ pump ATPase in isolated human membranes. Taken together, these data are consistent with the interpretation that the dog RBC membrane contains a CaM-activated Ca2+ pump ATPase.  相似文献   

3.
T R Hinds  W P Hammond  L Maggio-Price  R A Dodson  F F Vincenzi 《Blood cells》1989,15(2):407-20; discussion 421-6
A mild hereditary nonspherocytic anemia in Beagle dogs was studied. Compared to RBCs from normal dogs, RBCs from hemolytic Beagles were larger on average, contained more potassium, and exhibited an approximately 50% decrease in rate of loss of ATP induced by Ca and the ionophore, A23187. Under certain conditions, this rate of ATP loss can be taken as a measure of the Ca pump ATPase activity of intact RBCs. From RBC fractionation studies it appeared that the defective Ca pump ATPase was acquired during the relatively short life-span of the hemolytic RBC. Significant loss of Ca pump ATPase may be causally related to the hemolytic anemia. The mechanism(s) by which Ca pump ATPase activity is lost in this hemolytic anemia remain(s) to be determined.  相似文献   

4.
1. The bivalent cation ionophore A23187 was used to increase the intracellular concentration of Ca2+ in pigeon erythrocytes to investigate whether the increase in cyclic AMP content caused by adrenaline might be influenced by a change in intracellular Ca2+ in intact cells. 2. Incubation of cells with adrenaline, in the concentration range 0.55--55 muM, resulted in an increase in the concentration of cyclic AMP over a period of 60 min. The effect of adrenaline was inhibited by more than 90% with ionophore A23187 (1.9 muM) in the presence of 1 mM-Ca2+. This inhibition could be decreased by decreasing either the concentration of the ionophore or the concentration of extracellular Ca2+, and was independent of the concentration of adrenaline. 3. The effect of ionophore A23187 depended on the time of incubation. Time-course studies showed that maximum inhibition by ionophore A23187 was only observed when the cells were incubated with the ionophore for at least 15 min before the addition of adrenaline. 4. The inhibition by ionophore A23187 depended on the concentration of extracellular Ca2+. In the absence of Mg2+, ionophore A23187 (1.9 muM) inhibited the effect of adrenaline by approx. 30% without added Ca2+, by approx. 66% with 10 muM-Ca2+ and by more than 90% with concentrations of added Ca2+ greater than 30 muM. However, even in the presence of EGTA [ethanedioxybis(ethylamine)tetra-acetate](0.1--10 mM), ionophore A23187 caused an inhibition of the cyclic AMP response of at least 30%, which may have been due to a decrease in cell Mg2+ concentration. 5. The addition of EGTA after incubation of cells with ionophore A23187 resulted in a partial reversal of the inhibition of the effect of adrenaline. 6. Inclusion of Mg2+ (2 mM) in the incubation medium antagonized the inhibitory action of ionophore A23187. This effect was most marked when the ionophore A23187 was added to medium containing Mg2+ before the addition of the cells. 7. The cellular content of Mg2+ was decreased by approx. 50% after 20 min incubation with ionophore A23187 (1.9 muM) in the presence of Ca2+ (1 mM) but no Mg2+. When Mg2+ (2 mM) was also present in the medium, ionophore A23187 caused an increase of approx. 80% in cell Mg2+ content. Ionophore A23187 had no significant effect on cell K+ content. 8. Ionophore A23187 caused a decrease in cell ATP content under some conditions. Since effects on cyclic AMP content could also be shown when ATP was not significanlty lowered, it appeared that a decrease in ATP in the cells could not explain the effect of ionophore A23187 on cyclic AMP. 9. Ionophore A23187 (1.9 muM), with 1 mM-Ca2+, did not enhance cyclic AMP degradation in intact cells, suggesting that the effect of ionophore A23187 on cyclic AMP content was mediated through an inhibition of adenylate cyclase rather than a stimulation of cyclic AMP phosphodiesterase. 10. It was concluded that in intact pigeon erythrocytes adenylate cyclase may be inhibited by intracellular concentrations of Ca2+ in the range 1-10 muM.  相似文献   

5.
D H Pierce  A Scarpa  M R Topp  J K Blasie 《Biochemistry》1983,22(23):5254-5261
The kinetics of ATP-induced Ca2+ uptake by vesicular dispersions of sarcoplasmic reticulum were determined with a time resolution of about 10 ms, depending on the temperature. Ca2+ uptake was initiated by the addition of ATP through the flash photolysis of P3-1-(2-nitrophenyl)-ethyl adenosine 5'-triphosphate utilizing a frequency-doubled ruby laser and measured with two different detector systems that followed the absorbance changes of the metallochromic indicator arsenazo III sensitive to changes in the extravesicular [Ca2+]. The temperature range investigated was -2 to 26 degrees C. The Ca2+ ionophore A23187 was used to distinguish those features of the Ca2+ uptake kinetics associated with the formation of a transmembrane Ca2+ gradient. The acid-stable phosphorylated enzyme intermediate, E approximately P, was determined independently with a quenched-flow technique. Ca2+ uptake is characterized by at least two phases, a fast initial phase and a slow phase. The fast phase exhibits pseudo-first-order kinetics with a specific rate constant of 64 +/- 10 s-1 at 23-26 degrees C, an activation energy of 16 +/- 1 kcal mol-1, and a delta S* of approximately 5 cal deg-1 mol-1, is insensitive to the presence of a Ca2+ ionophore, and occurs simultaneously with the formation of the phosphorylated enzyme, E approximately P, with a stoichiometry of approximately 2 mol of Ca2+/mol of phosphorylated enzyme intermediate. The slow phase also exhibits pseudo-first-order kinetics with a specific rate constant of 0.60 +/- 0.09 s-1 at 25-26 degrees C, an activation energy of 22 +/- 1 kcal mol-1, and a delta S* of approximately 16 cal deg-1 mol-1, is inhibited by the presence of a Ca2+ ionophore, and has a stoichiometry of approximately 2 mol of Ca2+/mol of ATP hydrolyzed.  相似文献   

6.
The electrogenicity and some molecular properties of the sarcoplasmic reticulum Ca2+ pump protein were studied by measuring steady-state Ca2+ pump currents. Ca2(+)-ATPase protein was solubilized from rabbit skeletal muscle sarcoplasmic reticulum membrane preparations and purified by liquid chromatography. The purified Ca(+)-ATPase molecules were reconstituted into proteoliposomes and then incorporated by fusion into a planar bilayer lipid membrane. Short circuit currents across the planar membrane were detected when the ATPase molecules were activated by addition of ATP under optimal ionic conditions. Thus, the electrogenicity of the Ca2+ pump molecules was directly demonstrated. The amplitude of the pump current was dependent on the ATP concentration, and the relation was described by a Michaelis-Menten-type equation. The Michaelis constant was calculated to be 0.69 +/- 0.16 mM, which agrees well with the dissociation constant for a low affinity ATP-binding site deduced previously from the kinetics of ATP hydrolysis and from ATP binding.  相似文献   

7.
Intact human red blood cells incubated with ionophore A23187 and calcium develop a depletion of ATP that is dependent upon the concentrations of both A23187 and Ca. Incubations of fresh cells with 0.5 micrometer A23187 and concentrations of Ca at or below 70 micrometer produce a depletion of ATP without a net cellular uptake of Ca. In contrast, ATP-depleted cells display an ionophore-dependent cellular uptake of Ca, under identical conditions. A hypothesis is proposed that relates these ionophore-produced ATP depletions to active Ca extrusion by the Ca ATPase.  相似文献   

8.
Calcium transport was examined in microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue using chlorotetracycline as a fluorescent probe. This probe demonstrates an increase in fluorescence corresponding to calcium accumulation within the vesicles which can be collapsed by the addition of the calcium ionophore A23187. Calcium uptake in the microsomal vesicles was ATP dependent and completely inhibited by orthovanadate. Centrifugation of the microsomal membrane fraction on a linear 15 to 45% (w/w) sucrose density gradient revealed the presence of a single peak of calcium uptake which comigrated with the marker for endoplasmic reticulum. The calcium transport system associated with endoplasmic reticulum vesicles was then further characterized in fractions produced by centrifugation on discontinous sucrose density gradients. Calcium transport was insensitive to carbonylcyanide m-chlorophenylhydrazone indicating the presence of a primary transport system directly linked to ATP utilization. The endoplasmic reticulum vesicles contained an ATPase activity that was calcium dependent and further stimulated by A23187 (Ca(2+), A23187 stimulated-ATPase). Both calcium uptake and Ca(2+), A23187 stimulated ATPase demonstrated similar properties with respect to pH optimum, inhibitor sensitivity, substrate specificity, and substrate kinetics. Treatment of the red beet endoplasmic reticulum vesicles with [gamma-(32)P]-ATP over short time intervals revealed the presence of a rapidly turning over 96 kilodalton radioactive peptide possibly representing a phosphorylated intermediate of this endoplasmic reticulum associated ATPase. It is proposed that this ATPase activity may represent the enzymic machinery responsible for mediating primary calcium transport in the endoplasmic reticulum linked to ATP utilization.  相似文献   

9.
1. Amino acid incorporation in intact rabbit reticulocytes was unaffected by depletion of Ca2+ with EGTA. 2. The Ca2+ ionophore A23187 strongly inhibited incorporation in reticulocytes incubated in 1 mM Ca2+ but not in EGTA. Polysomal profiles and average ribosomal transit times of cells treated with Ca2+ ionophore at 1 mM Ca2+ were characteristic of translational elongation block. 3. The behavior of reticulocytes with respect to Ca2+ and A23187 contrasts with that of nucleated cells possessing endoplasmic reticulum in which protein synthesis is inhibited at translational initiation by either Ca2+ depletion or by exposure to Ca2+ ionophore.  相似文献   

10.
Elevated intracellular calcium generates rapid, profound, and irreversible changes in the nucleotide metabolism of human red blood cells (RBCs), triggered by the adenosine triphosphatase (ATPase) activity of the powerful plasma membrane calcium pump (PMCA). In the absence of glycolytic substrates, Ca(2+)-induced nucleotide changes are thought to be determined by the interaction between PMCA ATPase, adenylate kinase, and AMP-deaminase enzymes, but the extent to which this three-enzyme system can account for the Ca(2+)-induced effects has not been investigated in detail before. Such a study requires the formulation of a model incorporating the known kinetics of the three-enzyme system and a direct comparison between its predictions and precise measurements of the Ca(2+)-induced nucleotide changes, a precision not available from earlier studies. Using state-of-the-art high-performance liquid chromatography, we measured the changes in the RBC contents of ATP, ADP, AMP, and IMP during the first 35 min after ionophore-induced pump-saturating Ca(2+) loads in the absence of glycolytic substrates. Comparison between measured and model-predicted changes revealed that for good fits it was necessary to assume mean ATPase V(max) values much higher than those ever measured by PMCA-mediated Ca(2+) extrusion. These results suggest that the local nucleotide concentrations generated by ATPase activity at the inner membrane surface differed substantially from those measured in bulk cell extracts, supporting previous evidence for the existence of a submembrane microdomain with a distinct nucleotide metabolism.  相似文献   

11.
The (Ca2+ + Mg2+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) from human erythrocytes occurred in two different states, A-state and B-state, depending on the membrane preparation. The A-state showed low maximum activity (V) and the Ca2+ activation was characterized by a Hill coefficient, nH, of about 1 and a Michaelis constant, KCa, about 30 micron. The B-state showed high V, a nH above 1, which indicates positive cooperativity of Ca2+ activation, and KCa of about 1 micron. With varying ATP concentrations, both the A-state and B-state showed negative cooperativity and slightly different values of Km. The B-state was shifted to A-state when the membranes were exposed to low Ca2+ concentration. The shift reached 50% at approx. 0.5 micron Ca2+. At the low Ca2+ concentrations an activator was released from the membranes. The A-state was shifted to the B-state when the membranes were exposed to Ca2+ in the presence of the activator. The shift reached 50% at about 30 micron Ca2+. The recovery of high V was time dependent and lasted several minutes. Increasing concentrations of Ca2+ and activator accelerated the recovery. It is suggested that the A-state and the B-state correspond to enzyme free of activator and enzyme associated with activator, respectively. Furthermore, the two states may respresent a resting and an active state, respectively, of the calcium pump.  相似文献   

12.
In order to test the involvement of Ca2+ in maturation and activation of eggs, we have treated Chaetopterus eggs with ionophore A23187 and quercetin, an inhibitor of Ca2+-dependent ATPase. Ionophore A23187 induced rapid germinal vesicle breakdown (GVBD) and activated eggs as evidence by fertilization envelope elevation at a wide range of concentrations. Higher concentrations of A23187 induced GVBD in Ca2+-free artificial sea water, demonstrating the independence of GVBD in Chaetopterus from external Ca2+. At high concentrations of ionophore, eggs became ameboid and underwent the initial phases of differentiation without cleavage. Low concentrations of quercetin induced GVBD with or without external CA2+. This treatment did not activate eggs, but allowed them to be fertilized and undergo some development. The results of these experiments indicate 1) that Ca2+ fluxes regulate GVBD and activation in Chaetopterus, 2) that these fluxes can be internally generated, and 3) that Ca2+ sequestration by Ca2+-dependent ATPase may have a role in maintaining the intact germinal vesicle.  相似文献   

13.
Summary Intact human red blood cells incubated with ionophore A23187 and calcium develop a depletion of ATP that is dependent upon the concentrations of both A23187 and Ca. Incubations of fresh cells with 0.5 m A23187 and concentrations of Ca at or below 70 m produce a depletion of ATP without a net cellular uptake of Ca. In contrast, ATP-depleted cells display an ionophore-dependent cellular uptake of Ca, under identical conditions. A hypothesis is proposed that relates these ionophore-produced ATP depletions to active Ca extrusion by the Ca ATPase.  相似文献   

14.
The kinetics of polyphosphoinositide breakdown and inositol phosphate formation have been studied in rat cortical synaptosomes labelled in vitro with myo-[2-3H]inositol. Intrasynaptosomal Ca2+ concentrations have been varied by the use of Ca-EGTA buffers or by adding the ionophore A23187 in the presence and absence of 1 mM Ca2+. The former studies have revealed that, at very low (20 nM) intrasynaptosomal free Ca2+ levels, inositol bisphosphate, but not inositol monophosphate levels are reduced. Addition of A23187 in the absence of added Ca2+ gives rise to greatly enhanced inositol bisphosphate accumulation, which is further enhanced if 1 mM Ca2+ is present in the extrasynaptosomal medium. At all time points examined (down to 2 s after adding ionophore), the ratio of inositol trisphosphate/inositol bisphosphate accumulation does not exceed 0.2, and calculations based on inositol bis- and trisphosphate breakdown rates in synaptosomal lysates suggest that only a minority of the inositol bisphosphate arises from degradation of inositol trisphosphate. Addition of ionophore in the presence (but not in the absence) of 1 mM Ca2+ leads to rapid breakdown of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and ATP and slower breakdown of phosphatidylinositol 4-phosphate (PtdInsP). The rates of loss of PtdinsP2 and ATP are very highly correlated, suggesting that polyphosphoinositide resynthesis may be limited by ATP availability at high Ca2+ levels. Analysis of 32P-labelled synaptosomes also reveals that A23187 produces Ca2+-dependent losses of PtdInsP2, PtdInsP, ATP, and GTP radioactivity and a marked increase in the radioactivity of a compound distinct from nucleotides or any of the lipid breakdown products tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. Sealed pigeon erythrocyte 'ghosts' were prepared containing ATP and the Ca2+-activated photoprotein obelin to investigate the relationship cyclic AMP formation and internal free Ca2+. 2. The 'ghosts' were characterized by (a) morphology (optical and electron microscopy), (b) composition (haemoglobin, K+, Na+, Mg2+, ATP, obelin), (c) permeability to Ca2+, assessed by obelin luminescence and (d) hormone sensitivity (the effect of beta-adrenergic agonists and antagonists on cyclic AMP formation). 3. The effect of osmolarity at haemolysis and ATP at resealing on these parameters was investigated. 4. Sealed 'ghosts', containing approx. 2% of original haemoglobin, 150mM-K+, 0.5MM-ATP, 10(3)--10(4) obelin luminescence counts/10(6) 'ghosts', which were relatively impermeable to Ca2+ and in which cyclic AMP formation was stimulated by beta-adrenergic agonists over a concentration range similar to that for intact cells, could be prepared after haemolysis in 6mM-NaCl3mM-MgCl2/50mM-Tes, pH7, and resealing for 30min at 37 degrees C in the presence of ATP and 150mM-KCl. 5. The initial rate of adrenaline-stimulated cyclic AMP formation in these 'ghosts' was 30--50% of that in intact cells and was inhibited by the addition of extracellular Ca2+. Addition of Ca2+ to the 'ghosts' resulted in a stimulation of obelin luminescence, indicating an increase in internal free Ca2+ under these conditions. 6. The ionophore A23187 increased the rate of obelin luminescence in the 'ghosts' and also inhibited the adrenaline-stimulated increase in cyclic AMP. 7. The effect of ionophore A23187 on obelin luminescence and on cyclic AMP formation in the 'ghosts' was markedly decreased by sealing EGTA inside the 'ghosts'. 8. It was concluded that cyclic AMP formation inside sealed pigeon erythrocyte 'ghosts' could be inhibited by more than 50% by free Ca2+ concentrations in the range 1--10 micrometer.  相似文献   

16.
Biphasic responses of amino[14C]pyrine accumulation and oxygen consumption were registered by gastrin stimulation in dispersed parietal cells from guinea pig gastric mucosa, and this was mimicked with the calcium ionophore A23187. The characteristics of these phases (first phase and second phase) were distinguished by the differences in the requirements of extracellular Ca2+. The first phase evoked by gastrin or ionophore A23187 was independent of extracellular Ca2+, whereas the second phase was not. In the first phase, fluorescence of a cytosolic Ca2+ indicator (quin2-AM) increased with the stimulation of ionophore A23187 and carbamylcholine chloride in the presence of extracellular Ca2+. In addition, an increase in cytosolic Ca2+ induced by ionophore A23187, but not by carbamylcholine chloride was also observed in the absence of extracellular Ca2+, suggesting that Ca2+ pool(s) in parietal cells might be present in the intracellular organelle. Cytochalasin B and colchicine, but not oligomycin, could eliminate this cytosolic Ca2+ increase induced by A23187 in a Ca2+-free medium. On the other hand, in a Ca2+-free medium, addition of ATP after pretreatment with digitonin could diminish the cytosolic Ca2+ increase brought about by A23187. This was also observed with oligomycin-treated cells, but not with cytochalasin B-treated cells. Similarly, subcellular fractionation of a parietal cell which had been pretreated with cytochalasin B or colchicine in an intact cell system reduced the rate of ATP-dependent Ca2+ uptake. These observations indicate that intracellular Ca2+ transport in dispersed parietal cells may be regulated by the microtubular-microfilamentous system. In conclusion, this study demonstrates the possibility of the existence of intracellular Ca2+ transport mediated by gastrin or ionophore A23187 and regulated by the microtubular-microfilamentous system in parietal cells.  相似文献   

17.
Plasma-membrane vesicles from rat corpus luteum showed an ATP-dependent uptake of Ca2+. Ca2+ was accumulated with a K1/2 (concn. giving half-maximal activity) of 0.2 microM and was released by the bivalent-cation ionophore A23187. A Ca2+-dependent phosphorylated intermediate (Mr 100,000) was detected which showed a low decomposition rate, consistent with it being the phosphorylated intermediate of the transport ATPase responsible for Ca2+ uptake. The Ca2+ uptake and the phosphorylated intermediate (E approximately P) displayed several properties that were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes. Both Ca2+ uptake and E approximately P discriminated against ribonucleoside triphosphates other than ATP, whereas the ATPase split all the ribonucleoside triphosphates equally. Both Ca2+ uptake and E approximately P were sensitive to three different Hg-containing inhibitors, whereas the ATPase was inhibited much less. Ca2+ uptake required added Mg2+ (Km = 2.2 mM), whereas the ATPase required no added Mg2+. The maximum rate of Ca2+ uptake was about 400-fold less than that of ATP splitting; under different conditions, the decomposition rate of E approximately P was 1,000 times too slow to account for the ATPase activity observed. All of these features suggested that Ca2+ uptake was due to an enzyme of low activity, whose ATPase activity was not detected in the presence of the higher-specific-activity Ca2+-dependent ATPase.  相似文献   

18.
Chondrocytes isolated from the epiphysial cartilage of chickens were exposed to either the ionophore A23187 or KCN, in the presence of 0.4 mM-extracellular Ca2+. This treatment elicits a prompt release of cell Ca2+, which can be measured as net cation efflux by a highly sensitive Ca2+-selective electrode system. Pre-exposure of chondrocytes to the metabolic inhibitors 2-deoxy-D-glucose or oligomycin causes a parallel decrease in both cell ATP and ionophore-mediated Ca2+ extrusion. Conversely, substitution of extracellular Na+ with choline produces only a very small decrease in the rate of Ca2+ efflux. This indicates that the ionophore A23187 and cyanide induce the mobilization of intracellular Ca2+, which is then extruded from the cell mainly by an ATP-driven pump system. Chondrocytes isolated from the cartilage of rachitic chickens also exhibit the capacity for extruding Ca2+ by the same mechanism, with an efficiency comparable with that of their normal counterpart.  相似文献   

19.
The ATPase activity of the plasma membrane Ca2+ pump (PMCA) has been reported to be inhibited by exposure of red blood cell (RBC) PMCA preparations to high glucose concentrations. It has been claimed that this effect could have potential pathophysiological relevance in diabetes. To ascertain whether high glucose levels also affect PMCA transport function in intact RBCs, Ca2+ extrusion by the Ca2+-saturated pump [PMCA maximal velocity (V(max))] was measured in human and rat RBCs exposed to high glucose in vivo or in vitro. Preincubation of normal human RBCs in 30-100 mM glucose for up to 6 h had no effect on PMCA V(max). The mean V(max) of RBCs from 15 diabetic subjects of 12.9 +/- 0.7 mmol. 340 g Hb(-1). h(-1) was not significantly different from that of controls (14.3 +/- 0.5 mmol. 340 g Hb(-1). h(-1)). Similarly, the PMCA V(max) of RBCs from 11 streptozotocin-diabetic rats was not affected by plasma glucose levels more than three times normal for 6-8 wk. Thus exposure to high glucose concentrations does not affect the ability of intact RBCs to extrude Ca2+.  相似文献   

20.
Vesicular preparations of sarcolemma isolated from rat myocardium possessed high ATPase (4.32 +/0 0.57 micromole/min per mg), adenylate cyclase (121 +/- 11 pmole/min per mg) and creatine kinase (1.74 +/- 0.35 micromole/min per mg) activities and a Na-Ca exchange activity specific for sodium. The ATPase activity was inhibited by digitoxigenin by 50-70% and was not changed by ouabain, EGTA, ionophore A23187 and oligomycin, thus showing the absence of mitochondrial and sarcoplasmic reticulum contaminations in the sarcolemmal preparations. The preparations consisted mostly of closed inside-out vesicles. The preparation was used to study the mechanism of Ca2+ penetration across the sarcolemmal membrane. For this purpose the vesicles were load with 45Ca2+, which relatively slowly diffused from the medium into the vesicles, and which was bound to the binding sites inside the vesicles (n = 20.5 +/- 4.6 nmoles per mg of protein, Kd approximately equal to 1.8 +/- 0.21 mM). The transmembrane movement of Ca2+ was demonstrated by the following findings: 1) the ionophore A23187 only insignificantly increased the total vesicular Ca2+ content, but strongly accelerated Ca2+ efflux from the vesicles along its concentration gradient; 2) gramicidin and osmotic shock caused a similar acceleration of Ca2+ efflux. Ca2+ efflux from these vesicles along Ca2+ concentration gradient was studied under conditions, when the extravesicular Ca2+ content was lowered due to its binding to EGTA and by dilution. The gradient of Ca2+ concentration was from 2.0 mM inside to approximately 0.1 micro M outside. The rate of 45Ca2+ efflux depended hyperbolically on the intravesicular Ca2+ efflux from the vesicles was inhibited by Mn2+, Co2+ and verapamil when they acted from the inside of the vesicles. An increase in ionophore A23187 concentration increased the efflux of Ca2+ hyperbolically and enhanced only the maximal rate of the efflux. It is concluded that the passive permeability of Ca2+ across the sarcolemmal membrane along its concentration gradient is controlled by Ca2+ binding to the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号