首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present free energy perturbation calculations on the complexes of Glu46----Ala46 (E46A) and Glu46----Gln46 (E46Q) mutants of ribonuclease T1 (RNaseT1) with inhibitors 2'-guanosine monophosphate (GMP) and 2'-adenosine monophosphate (AMP) by a thermodynamic perturbation method implemented with molecular dynamics (MD). Using the available crystal structure of the RNaseT1-GMP complex, the structures of E46A-GMP and E46Q-GMP were model built and equilibrated with MD simulations. The structures of E46A-AMP and E46Q-AMP were obtained as a final structure of the GMP----AMP perturbation calculation respectively. The calculated difference in the free energy of binding (delta delta Gbind) was 0.31 kcal/mol for the E46A system and -1.04 kcal/mol for the E46Q system. The resultant free energies are much smaller than the experimental and calculated value of approximately 3 kcal/mol for the native RNaseT1, which suggests that both mutants have greater relative adenine affinities than native RNaseT1. Especially E46Q is calculated to have a larger affinity for adenine than guanine, as we suggested previously from the calculation on the native RNaseT1. Thus, the molecular dynamics/free energy perturbation method may be helpful in protein engineering, directed toward increasing or changing the substrate specificity of enzymes.  相似文献   

2.
W C Lam  A H Maki  T Itoh  T Hakoshima 《Biochemistry》1992,31(29):6756-6760
Phosphorescence and ODMR measurements have been made on ribonuclease T1 (RNase T1), the mutated enzyme RNase T1 (Y45W), and their complexes with 2'GMP and 2'AMP. It is not possible to observe the phosphorescence of Trp45 in RNase T1 (Y45W). Only that of the naturally occurring Trp59 is seen. The binding of 2'GMP to wild-type RNase T1 produces only a minor red shift in the phosphorescence and no change in the ODMR spectrum of Trp59. However, a new tryptophan 0,0-band is found 8.2 nm to the red of the Trp59 0,0-band in the 2'GMP complex of the mutated RNase T1 (Y45W). Wavelength-selected ODMR measurements reveal that the red-shifted emission induced by 2'GMP binding, assigned to Trp45, occurs from a residue with significantly different zero-field splittings than those of Trp59, a buried residue subject to local polar interactions. The phosphorescence red shift and the zero-field splitting parameters demonstrate that Trp45 is located in a polarizable environment in the 2'GMP complex. In contrast with 2'GMP, binding of 2'AMP to RNase T1 (Y45W) induces no observable phosphorescence emission from Trp45, but leads only to a minor red shift in the phosphorescence origin of Trp59 in both the mutated and wild-type enzyme. The lack of resolved phosphorescence emission from Trp45 in RNase T1 (Y45W) implies that the emission of this residue is quenched in the uncomplexed enzyme. We conclude that local conformational changes that occur upon binding 2'GMP remove quenching residues from the vicinity of Trp45, restoring its luminescence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
On the basis of molecular dynamics and free-energy perturbation approaches, the Glu46Gln (E46Q) mutation in the guanine-specific ribonuclease T1 (RNase T1) was predicted to render the enzyme specific for adenine. The E46Q mutant was genetically engineered and characterized biochemically and crystallographically by investigating the structures of its two complexes with 2'AMP and 2'GMP. The ribonuclease E46Q mutant is nearly inactive towards dinucleoside phosphate substrates but shows 17% residual activity towards RNA. It binds 2'AMP and 2'GMP equally well with dissociation constants of 49 microM and 37 microM, in contrast to the wild-type enzyme, which strongly discriminates between these two nucleotides, yielding dissociation constants of 36 microM and 0.6 microM. These data suggest that the E46Q mutant binds the nucleotides not to the specific recognition site but to the subsite at His92. This was confirmed by the crystal structures, which also showed that the Gln46 amide is hydrogen bonded to the Phe100 N and O atoms, and tightly anchored in this position. This interaction may either have locked the guanine recognition site so that 2'AMP and 2'GMP are unable to insert, or the contribution to guanine recognition of Glu46 is so important that the E46Q mutant is unable to function in recognition of either guanine and adenine.  相似文献   

4.
Molecular dynamics simulations were performed on free RNase T1 and the 2'GMP-RNase T1 complex in vacuum and with water in the active site along with crystallographically identified waters, allowing analysis of both active site and overall structural and dynamics changes due to the presence of 2'GMP. Differences in the active site include a closing in the presence of 2'GMP, which is accompanied by a decrease in mobility of active site residues. The functional relevance of the active site fluctuations is discussed. 2'GMP alters the motion of Tyr-45, suggesting a role for that residue in providing a hydrophobic environment for the protein-nucleic acid interactions responsible for the specificity of RNase T1. The presence of 2'GMP causes a structural change of the C-terminus of the alpha-helix, indicating the transmission of structural changes from the active site through the protein matrix. Overall fluctuations of both the free and 2'GMP enzyme forms are in good agreement with X-ray temperature factors. The motion of Trp-59 is influenced by 2'GMP, indicating differences in enzyme dynamics away from the active site, with the calculated changes following those previously seen in time-resolved fluorescence experiments.  相似文献   

5.
J K Hwang  A Warshel 《Biochemistry》1987,26(10):2669-2673
The catalytic free energy and binding free energies of the native and the Asn-155----Thr, Asn-155----Leu, and Asn-155----Ala mutants of subtilisin are calculated by the empirical valence bond method and a free energy perturbation method. Two simple procedures are used; one "mutates" the substrate, and the other "mutates" the enzyme. The calculated changes in free energies (delta delta G not equal to cat and delta delta Gbind) between the mutant and native enzymes are within 1 kcal/mol of the corresponding observed values. This indicates that we are approaching a quantitative structure-function correlation. The calculated changes in catalytic free energies are almost entirely due to the electrostatic interaction between the enzyme-water system and the charges of the reacting system. This supports the idea that the electrostatic free energy associated with the changes of charges of the reacting system is the key factor in enzyme catalysis.  相似文献   

6.
Saito M  Sarai A 《Proteins》2003,52(2):129-136
The change in the binding free energy between DNA and lambda-repressor resulting from a base substitution, thymine (T)-->deoxyuracil (abbreviated as U), was evaluated by the free energy perturbation method on the basis of molecular dynamics simulations for the DNA-lambda-repressor complex in water with all degrees of freedom and including long-range Coulomb interactions. The binding free energy change that we calculated (1.47 +/- 0.40 kcal/mol) was in good agreement with an experimental value (1.8 kcal/mol). We clarified why the small difference between T and U (CH(3) in T is replaced with H in U) caused such a significant change in the binding free energy: The substitution of CH(3) in T with H in U lowered the dissociated-state free energy level due to the gain of the hydration free energy. Furthermore, the T-->U substitution raised the free energy level in the associated state due to the loss of the favored van der Waals (vdW) interactions with the lambda-repressor amino acid residues. In other words, the amino acid residues of lambda-repressor can recognize the CH(3) in T through the vdW interactions with the CH(3). This recognition is enhanced in a water environment, because the hydrophobic CH(3) prefers the amino acid residues of lambda-repressor to water molecules.  相似文献   

7.
We have succeeded in crystallizing complexes of a mutant ribonuclease T1 (Y45W) with the non-cognizable ribonucleotides 2'AMP and 2'UMP by macroscopic seeding of microcrystals of the mutant enzyme complexed with 2'GMP, which is the cognizable nucleotide inhibitor. The mutant enzyme has a tryptophan residue instead of Tyr45 of the wild-type enzyme and thus this mutation enhances the binding of ribonucleotides to the enzyme. The space group is P212121 with unit cell dimensions a = 49.40 A, b = 46.71 A, c = 41.02 A for the complex with 2'AMP and a = 48.97, b = 46.58 A, c = 40.97 A for the complex with 2'UMP, both of which are poorly isomorphous to the mother crystals. Diffraction data for the complexes with 2'AMP and 2'UMP were collected on a diffractometer at 1.7 A and 2.4 A resolution, respectively. The present studies show that crystallization of non-specific complexes of other protein-ligand systems with the dissociation constants around 10(-3) M, or even larger, could be feasible by application of the seeding technique. A comparison of the crystal structures of the complexes with that with 2'GMP may serve as a structural basis for the determination of differences between the specific and non-specific interactions of the enzyme.  相似文献   

8.
The crystal structure of a mutant ribonuclease T1 (Y45W) complexed with a non-cognizable ribonucleotide, 2'AMP, has been determined and refined to an R-factor of 0.159 using X-ray diffraction data at 1.7 A resolution. A specific complex of the enzyme with 2'GMP was also determined and refined to an R-factor of 0.173 at 1.9 A resolution. The adenine base of 2'AMP was found at a base-binding site that is far apart from the guanine recognition site, where the guanine base of 2'GMP binds. The binding of the adenine base is mediated by a single hydrogen bond and stacking interaction of the base with the imidazole ring of His92. The mode of stacking of the adenine base with His92 is similar to the stacking of the guanine base observed in complexes of ribonuclease T1 with guanylyl-2',5'-guanosine, reported by Koepke et al., and two guanosine bases, reported by Lenz et al., and in the complex of barnase with d(GpC), reported by Baudet & Janin. These observations suggest that the site is non-specific for base binding. The phosphate group of 2'AMP is tightly locked at the catalytic site with seven hydrogen bonds to the enzyme in a similar manner to that of 2'GMP. In addition, two hydrogen bonds are formed between the sugar moiety of 2'AMP and the enzyme. The 2'AMP molecule adopts the anti conformation of the glycosidic bond and C-3'-exo sugar pucker, whereas 2'GMP is in the syn conformation with C-3'-endo-C'-2'-exo pucker. The mutation enhances the binding of 2'GMP with conformational changes of the sugar ring and displacement of the phosphate group towards the interior of the catalytic site from the corresponding position in the wild-type enzyme complex. Comparison of two crystal structures obtained provides a solution to the problem that non-cognizable nucleotides exhibit unexpectedly strong binding to the enzyme, compared with high specificity in nucleolytic activity. The results indicate that the discrimination of the guanine base from the other nucleotide bases at the guanine recognition site is more effective than that estimated from nucleotide-binding experiments so far.  相似文献   

9.
Absolute binding free energy calculations and free energy decompositions are presented for the protein-protein complexes H-Ras/C-Raf1 and H-Ras/RalGDS. Ras is a central switch in the regulation of cell proliferation and differentiation. In our study, we investigate the capability of the molecular mechanics (MM)-generalized Born surface area (GBSA) approach to estimate absolute binding free energies for the protein-protein complexes. Averaging gas-phase energies, solvation free energies, and entropic contributions over snapshots extracted from trajectories of the unbound proteins and the complexes, calculated binding free energies (Ras-Raf: -15.0(+/-6.3)kcal mol(-1); Ras-RalGDS: -19.5(+/-5.9)kcal mol(-1)) are in fair agreement with experimentally determined values (-9.6 kcal mol(-1); -8.4 kcal mol(-1)), if appropriate ionic strength is taken into account. Structural determinants of the binding affinity of Ras-Raf and Ras-RalGDS are identified by means of free energy decomposition. For the first time, computationally inexpensive generalized Born (GB) calculations are applied in this context to partition solvation free energies along with gas-phase energies between residues of both binding partners. For selected residues, in addition, entropic contributions are estimated by classical statistical mechanics. Comparison of the decomposition results with experimentally determined binding free energy differences for alanine mutants of interface residues yielded correlations with r(2)=0.55 and 0.46 for Ras-Raf and Ras-RalGDS, respectively. Extension of the decomposition reveals residues as far apart as 25A from the binding epitope that can contribute significantly to binding free energy. These "hotspots" are found to show large atomic fluctuations in the unbound proteins, indicating that they reside in structurally less stable regions. Furthermore, hotspot residues experience a significantly larger-than-average decrease in local fluctuations upon complex formation. Finally, by calculating a pair-wise decomposition of interactions, interaction pathways originating in the binding epitope of Raf are found that protrude through the protein structure towards the loop L1. This explains the finding of a conformational change in this region upon complex formation with Ras, and it may trigger a larger structural change in Raf, which is considered to be necessary for activation of the effector by Ras.  相似文献   

10.
Proteins interact with nucleotides to perform a multitude of functions within cells. These interactions are highly specific; however, the molecular basis for this specificity is not well understood. To identify factors critical for protein-guanine nucleotide recognition the binding of two closely related ligands, guanosine 3'-monophosphate (3'GMP) and inosine 3'-monophosphate (3'IMP), to Ribonuclease Sa (RNase Sa), a small, guanylyl-endoribonuclease from Streptomyces aureofaciens, was compared using isothermal titration calorimetry, NMR, X-ray crystallography and molecular dynamics simulations. This comparison has allowed for the determination of the contribution of the exocyclic amino group "N2" of the guanine base to nucleotide binding specificity. Calorimetric measurements indicate that RNase Sa has a higher affinity for 3'GMP (K=(1.5+/-0.2)x10(5)) over 3'IMP (K=(3.1+/-0.2)x10(4)) emphasizing the importance of N2 as a key determinant of RNase Sa guanine binding specificity. This result was unexpected as the published structural data for RNase Sa in complex with 3'GMP showed only a potential long-range interaction (>3.3A) between N2 and the side-chain of Glu41 of RNase Sa. The observed difference in affinity is largely due to a reduction in the favorable enthalpy change by 10 kJ/mol for 3'IMP binding as compared to 3'GMP that is accompanied by a significant difference in the heat capacity changes observed for binding the two ligands. To aid interpretation of the calorimetric data, the first crystal structure of a small, guanylyl ribonuclease bound to 3'IMP was determined to 2.0 A resolution. This structure has revealed small yet unexpected changes in the ligand conformation and differences in the conformations of the side-chains contacting the sugar and phosphate moieties as compared to the 3'GMP complex. The structural data suggest the less favorable enthalpy change is due to an overall lengthening of the contacts between RNase Sa and 3'IMP as compared to 3'GMP. The long-range interaction between N2 and Glu41 is critical for positioning of the nucleotide in the binding cleft for optimal contact formation. Thus, combined, the data demonstrate how a long-range interaction can have a significant impact on nucleotide binding affinity and energetics.  相似文献   

11.
Understanding the enzymatic mechanism that cellulases employ to degrade cellulose is critical to efforts to efficiently utilize plant biomass as a sustainable energy resource. A key component of cellulase action on cellulose is product inhibition from monosaccharide and disaccharides in the product site of cellulase tunnel. The absolute binding free energy of cellobiose and glucose to the product site of the catalytic tunnel of the Family 7 cellobiohydrolase (Cel7A) of Trichoderma reesei (Hypocrea jecorina) was calculated using two different approaches: steered molecular dynamics (SMD) simulations and alchemical free energy perturbation molecular dynamics (FEP/MD) simulations. For the SMD approach, three methods based on Jarzynski's equality were used to construct the potential of mean force from multiple pulling trajectories. The calculated binding free energies, -14.4 kcal/mol using SMD and -11.2 kcal/mol using FEP/MD, are in good qualitative agreement. Analysis of the SMD pulling trajectories suggests that several protein residues (Arg-251, Asp-259, Asp-262, Trp-376, and Tyr-381) play key roles in cellobiose and glucose binding to the catalytic tunnel. Five mutations (R251A, D259A, D262A, W376A, and Y381A) were made computationally to measure the changes in free energy during the product expulsion process. The absolute binding free energies of cellobiose to the catalytic tunnel of these five mutants are -13.1, -6.0, -11.5, -7.5, and -8.8 kcal/mol, respectively. The results demonstrated that all of the mutants tested can lower the binding free energy of cellobiose, which provides potential applications in engineering the enzyme to accelerate the product expulsion process and improve the efficiency of biomass conversion.  相似文献   

12.
Zoete V  Meuwly M  Karplus M 《Proteins》2005,61(1):79-93
A calculation of the binding free energy for the dimerization of insulin has been performed using the molecular mechanics-generalized Born surface area approach. The calculated absolute binding free energy is -11.9 kcal/mol, in approximate agreement with the experimental value of -7.2 kcal/mol. The results show that the dimerization is mainly due to nonpolar interactions. The role of the hydrogen bonds between the 2 monomers appears to give the direction of the interactions. A per-atom decomposition of the binding free energy has been performed to identify the residues contributing most to the self association free energy. Residues B24-B26 are found to make the largest favorable contributions to the dimerization. Other residues situated at the interface between the 2 monomers were found to make favorable but smaller contributions to the dimerization: Tyr B16, Val B12, and Pro B28, and to an even lesser extent, Gly B23. The energy decomposition on a per-residue basis is in agreement with experimental alanine scanning data. The results obtained from a single trajectory (i.e., the dimer trajectory is also used for the monomer analysis) and 2 trajectories (i.e., separate trajectories are used for the monomer and dimer) are similar.  相似文献   

13.
I Shimada  F Inagaki 《Biochemistry》1990,29(3):757-764
Aromatic proton and high field shifted methyl proton resonances of RNase T1 complexed with Guo, 2'GMP, 3'GMP, or 5'GMP were assigned to specific amino acid residues by analyses of the two-dimensional NMR spectra in comparison with the crystal structure of the RNase T1-2'GMP complex. These assignments were subsequently correlated to those of free RNase T1 [Hoffmann & Rüterjans (1988) Eur. J. Biochem. 177, 539-560]. The spatial proximities of amino acid residues as elucidated by NOESY spectra were found to be quite similar among free RNase T1 and the inhibitor complexes, showing that large conformational changes did not occur upon complex formation. However, small but appreciable conformational changes were induced, which were reflected by the systematic chemical shift changes of some amino acid residues in the active site. Furthermore, we confirmed that RNase T1 contains two specific binding sites, one for the guanine base and the other for the phosphate moiety. The inhibitors are forced to adapt their conformations to fit the guanine base and the phosphate moiety to each binding site on the enzyme. This is consistent with our previous studies that 2'GMP and 3'GMP take the syn form as a bound conformation, while 5'GMP takes the anti conformation around glycosidic bonds [Inagaki et al. (1985) Biochemistry 24, 1013-1020]. The slow-exchange process between free and bound forms involving Tyr42 and Tyr45 was found to be specific to the recognition of the guanine base.  相似文献   

14.
Aromatic proton and high field shifted methyl proton resonances of RNase T1 complexed with Guo, 2'GMP, 3'GMP or 5'GMP were assigned to specific amino acid residues by 2D-NMR spectra in comparison with the crystal structure of RNase T1-2'GMP complex. The spatial proximities of amino acid residues as elucidated by NOESY spectra were found to be quite similar among free RNase T1 and the inhibitor complexes, showing that large conformational changes did not occur upon complex formation. However, small but appreciable conformational changes were induced which were reflected by the systematic chemical shift changes of some amino acid residues in the active site. Furthermore, we confirmed that RNase T1 contains two specific binding sites, one for the guanine base and the other for the phosphate moiety. The inhibitors are forced to adapt their conformations to fit the guanine base and the phosphate moiety to each binding site on the enzyme. This is consistent with our previous studies that 2'GMP and 3'GMP take syn form as a bound conformation, while 5'GMP takes anti conformation around glycosidic bonds.  相似文献   

15.
T Simonson  A T Brünger 《Biochemistry》1992,31(36):8661-8674
Hydrophobic interactions between the S-peptide and S-protein in the ribonuclease-S complex are probed using molecular dynamics simulations and free energy calculations. Three successive mutations at the buried position Met13 are simulated: Met----Leu, Leu----Ile, and Ile----Val, for which X-ray structures and experimental thermodynamic data are available. The calculations give theoretical estimates of the changes in binding free energies associated with these mutations. The calculated free energy differences are small (0-1.6 kcal/mol), in agreement with experiment. However the simulated structures deviate significantly from the experimental ones (mean deviation approximately 1.5-2 A), and a large uncertainty in the calculated free energies (1-2 kcal/mol) arises from the multiple minimum problem. Indeed, multiple conformations are available to the side chains around the mutation site, and the sampling of dihedral rotamer transitions is limited, despite long simulations. Fluctuations within each local minimum give rise to a small statistical error. However the uncertainty due to multiple conformations is much greater than the uncertainty due to random statistical errors. In our work, an artificial cancellation of errors arose because we studied conformations of the RNase complex and of the S-peptide that were very similar. In general, the criterion for a precise simulation is not merely to reduce the random statistical error, as has been suggested, but rather to sample all the important local minima along the mutation pathway, and to reduce the statistical error for each one. Our calculations suggest that the packing changes associated with the mutations are energetically small and localized, and largely cancel when the complex and the S-peptide are compared. Solvation of the methionine side chain partial charges in the S-peptide and the complex appear to be energetically equivalent, so that removing them (as in Met13----Leu, Ile, Val) does not affect binding. Enthalpy and entropy changes could not be estimated reliably.  相似文献   

16.
The eukaryotic replication protein A (RPA) has several pivotal functions in the cell metabolism, such as chromosomal replication, prevention of hairpin formation, DNA repair and recombination, and signaling after DNA damage. Moreover, RPA seems to have a crucial role in organizing the sequential assembly of DNA processing proteins along single stranded DNA (ssDNA). The strong RPA affinity for ssDNA, K(A) between 10(-9)-10(-10) M, is characterized by a low cooperativity with minor variation for changes on the nucleotide sequence. Recently, new data on RPA interactions was reported, including the binding free energy of the complex RPA70AB with dC(8) and dC(5), which has been estimated to be -10 ± 0.4 kcal mol(-1) and -7 ± 1 kcal mol(-1), respectively. In view of these results we performed a study based on molecular dynamics aimed to reproduce the absolute binding free energy of RPA70AB with the dC(5) and dC(8) oligonucleotides. We used several tools to analyze the binding free energy, rigidity, and time evolution of the complex. The results obtained by MM-PBSA method, with the use of ligand free geometry as a reference for the receptor in the separate trajectory approach, are in excellent agreement with the experimental data, with ±4 kcal mol(-1) error. This result shows that the MM-PB(GB)SA methods can provide accurate quantitative estimates of the binding free energy for interacting complexes when appropriate geometries are used for the receptor, ligand and complex. The decomposition of the MM-GBSA energy for each residue in the receptor allowed us to correlate the change of the affinity of the mutated protein with the ΔG(gas+sol) contribution of the residue considered in the mutation. The agreement with experiment is optimal and a strong change in the binding free energy can be considered as the dominant factor in the loss for the binding affinity resulting from mutation.  相似文献   

17.
Wang J  Deng Y  Roux B 《Biophysical journal》2006,91(8):2798-2814
The absolute (standard) binding free energy of eight FK506-related ligands to FKBP12 is calculated using free energy perturbation molecular dynamics (FEP/MD) simulations with explicit solvent. A number of features are implemented to improve the accuracy and enhance the convergence of the calculations. First, the absolute binding free energy is decomposed into sequential steps during which the ligand-surrounding interactions as well as various biasing potentials restraining the translation, orientation, and conformation of the ligand are turned "on" and "off." Second, sampling of the ligand conformation is enforced by a restraining potential based on the root mean-square deviation relative to the bound state conformation. The effect of all the restraining potentials is rigorously unbiased, and it is shown explicitly that the final results are independent of all artificial restraints. Third, the repulsive and dispersive free energy contribution arising from the Lennard-Jones interactions of the ligand with its surrounding (protein and solvent) is calculated using the Weeks-Chandler-Andersen separation. This separation also improves convergence of the FEP/MD calculations. Fourth, to decrease the computational cost, only a small number of atoms in the vicinity of the binding site are simulated explicitly, while all the influence of the remaining atoms is incorporated implicitly using the generalized solvent boundary potential (GSBP) method. With GSBP, the size of the simulated FKBP12/ligand systems is significantly reduced, from approximately 25,000 to 2500. The computations are very efficient and the statistical error is small ( approximately 1 kcal/mol). The calculated binding free energies are generally in good agreement with available experimental data and previous calculations (within approximately 2 kcal/mol). The present results indicate that a strategy based on FEP/MD simulations of a reduced GSBP atomic model sampled with conformational, translational, and orientational restraining potentials can be computationally inexpensive and accurate.  相似文献   

18.
Harris DL  Park JY  Gruenke L  Waskell L 《Proteins》2004,55(4):895-914
The molecular origins of temperature-dependent ligand-binding affinities and ligand-induced heme spin state conversion have been investigated using free energy analysis and DFT calculations for substrates and inhibitors of cytochrome P450 2B4 (CYP2B4), employing models of CYP2B4 based on CYP2C5(3LVdH)/CYP2C9 crystal structures, and the results compared with experiment. DFT calculations indicate that large heme-ligand interactions (ca. -15 kcal/mol) are required for inducing a high to low spin heme transition, which is correlated with large molecular electrostatic potentials (approximately -45 kcal/mol) at the ligand heteroatom. While type II ligands often contain oxygen and nitrogen heteroatoms that ligate heme iron, DFT results indicate that BP and MF heme complexes, with weak substrate-heme interactions (ca. -2 kcal/mol), and modest MEPS minima (>-35 kcal/mol) are high spin. In contrast, heme complexes of the CYP2B4 inhibitor, 4PI, the product of benzphetamine metabolism, DMBP, and water are low spin, have substantial heme-ligand interaction energies (<-15 kcal/mol) and deep MEPS minima (<-45 kcal/mol) near their heteroatoms. MMPBSA analysis of MD trajectories were made to estimate binding free energies of these ligands at the heme binding site of CYP2B4. In order to initially assess the realism of this approach, the binding free energy of 4PI inhibitor was computed and found to be a reasonable agreement with experiment: -7.7 kcal/mol [-7.2 kcal/mol (experiment)]. BP was determined to be a good substrate [-6.3 kcal/mol (with heme-ligand water), -7.3 kcal/mol (without ligand water)/-5.8 kcal/mol (experiment)], whereas the binding of MF was negligible, with only marginal binding binding free energy of -1.7 kcal/mol with 2-MF bound [-3.8 kcal/mol (experiment)], both with and without retained heme-ligand water. Analysis of the free energy components reveal that hydrophobic/nonpolar contributions account for approximately 90% of the total binding free energy of these substrates and are the source of their differential and temperature-dependent CYP2B4 binding. The results indicate the underlying origins of the experimentally observed differential binding affinities of BP and MF, and indicate the plausibility of the use of models derived from moderate sequence identity templates in conjunction with approximate free energy methods in the estimation of ligand-P450 binding affinities.  相似文献   

19.
The Ser88-->Cys mutant of the trp-repressor showed a lower affinity for the corepressor than the wild-type repressor [delta delta G = 1.7 +/- 0.3 kcal/mol, Chou and Matthews (1989) J. Biol. Chem., 264, 18314-18319]. A molecular dynamics/free energy cycle perturbation study was performed to understand the origin of the decreased affinity. A value (delta delta G = 1.58 +/- 0.28 kcal/mol) comparable with the experimental value was obtained by the simulation. Free energy component analysis revealed that destabilization of the van der Waals interaction between Ser88 and Trp109 (corepressor) mainly contributed to the decreased affinity of the mutant. The rotational transition of the hydroxyl (sulfhydryl) group of Ser88 (Cys88) during the simulations affected the contributions of Arg84 and water to the free energy change in the aporepressor and those of Arg84 and Trp109 to that in the holorepressor. However, the contributions from different residues compensated each other, and the total free energy changes were almost invariable in the various simulations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号