首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian‐mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35°) than daily heterotherms (~25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30‐fold longer, and mean torpor bout duration >25‐fold longer in hibernators. Mean minimum body temperature differed by ~13°C, and the mean minimum torpor metabolic rate was ~35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators.  相似文献   

2.
Summary The present study addresses the controversy of whether the reduction in energy metabolism during torpor in endotherms is strictly a physical effect of temperature (Q10) or whether it involves an additional metabolic inhibition. Basal metabolic rates (BMR; measured as oxygen consumption, ), metabolic rates during torpor, and the corresponding body temperatures (T b) in 68 mammalian and avian species were assembled from the literature (n=58) or determined in the present study (n=10). The Q10 for change in between normothermia and torpor decreased from a mean of 4.1 to 2.8 with decreasingT b from 30 to <10°C in hibernators (species that show prolonged torpor). In daily heterotherms (species that show shallow, daily torpor) the Q10 remained at a constant value of 2.2 asT b decreased. In hibernators with aT b<10°C, the Q10 was inversely related to body mass. The increase of mass-specific metabolic rate with decreasing body mass, observed during normothermia (BMR), was not observed during torpor in hibernators and the slope relating metabolic rate and mass was almost zero. In daily heterotherms, which had a smaller Q10 than the hibernators, no inverse relationship between the Q10 and body mass was observed, and consequently the metabolic rate during torpor at the sameT b was greater than that of hibernators. These findings show that the reduction in metabolism during torpor of daily heterotherms and large hibernators can be explained largely by temperature effects, whereas a metabolic inhibition in addition to temperature effects may be used by small hibernators to reduce energy expenditure during torpor.Abbreviation BMR basal metabolic rate  相似文献   

3.
Heterothermic mammals increase the proportion of polyunsaturated fatty acids (PUFA) in their body fats prior to entering torpor. Because PUFA have low melting points, it is thought that they play an important role in maintaining the fluidity of depot fats and membrane phospholipids at low body temperatures. However, PUFA are more prone to autoxidation when exposed to reactive oxygen species (ROS) during torpor and during the periodic arousals that characterize hibernation. A lack of PUFA or an excess of PUFA may constrain the use of torpor by heterothermic mammals. We performed a mixed model meta-analysis of 17 controlled-feeding studies to test the effect of dietary PUFA on the depth and expression of torpor by daily heterotherms and hibernators. We also reviewed the literature on the PUFA content of the diet and depot fats of heterothermic mammals to address two principal topics: (1) Do low dietary levels of PUFA reduce the expression of torpor under laboratory conditions and, if so, are free-ranging animals constrained by a lack of PUFA? (2) Do high dietary levels of PUFA result in a reduction in the use, depth, and duration of torpor and, if so, do free-ranging animals seek to optimize rather than maximize PUFA intake? Low-PUFA diets consistently increase the lower setpoint for body temperature and minimum metabolic rate for both hibernators and daily heterotherms. Above the lower setpoint, low-PUFA diets usually increase body temperature and metabolic rate and decrease the duration of torpor bouts and this effect is similar for hibernators and daily heterotherms. Free-ranging rodent hibernators have dietary PUFA intakes that are far higher than those of the low-PUFA diets offered in controlled-feeding experiments, so these hibernators may never experience the constraints associated with a lack of PUFA. Diets of free-ranging insectivorous bats and echidnas have PUFA levels that are less than half as high as those offered in experimental low-PUFA diets, yet they exhibit deep and extended bouts of torpor. We argue that alternate mechanisms exist for maintaining the fluidity of body fats and that high-PUFA intake may not be a prerequisite for deep and extended bouts of torpor. Four studies indicate that animals that were fed high-PUFA diets are reluctant to enter torpor and show shallower and shorter torpor bouts. Although authors attribute this response to autoxidation, these animals did not have a higher PUFA content in their depot fats than animals where PUFA was shown to enhance torpor. We suggest that these contradictory results indicate inter-specific or inter-individual variation in the ability to control ROS and limit autoxidation of PUFA. High dietary levels of PUFA will constrain the expression of torpor only when the oxidative challenge exceeds the capacity of the antioxidant defence system. Studies of diet selection indicate that insectivorous species with low dietary PUFA levels seek to maximize PUFA intake. However, herbivorous species that have access to plants and plant parts of high-PUFA content do not appear to maximize PUFA intake. These data suggest that animals attempt to optimize rather than maximize PUFA intake. The effect of PUFA should be viewed in the light of a cost-benefit trade-off, where the benefit of high-PUFA intake is an easier access to low body temperatures and the cost is increased risk of autoxidation.  相似文献   

4.
Previous studies have shown that whole-animal thermal responses of ectotherms and heterotherms (e.g., hibernators), both of which experience a wide range of body temperatures, are related to the saturation level of somatic lipids, which in turn can be influenced by the ratio of saturated and unsaturated fatty acids in the diet. This study demonstrates that Djungarian hamsters held in long days display ambient temperature-dependent choice of dietary fats, increasing their preference for saturated fats when ambient temperature increases (to 27 degrees C) and later reversing this preference when ambient temperature is returned to its original value (8 degrees C). Changes in percent contribution of the unsaturated and saturated diets in response to temperature were accomplished almost solely by changes in the amount of unsaturated diet consumed. Temperature-dependent fatty acid choice occurs at a stage in the annual cycle when Djungarian hamsters do not enter spontaneous daily torpor and therefore experience only small changes in core body temperature. These results suggest that temperature-dependent fatty acid choice may occur in a wide range of animals, including nonheterothermic endotherms.  相似文献   

5.
Regional blood flow and hemodynamic variables during induced hypothermia were compared in six guinea pigs and four hedgehogs. Tracer microspheres were used for blood flow measurements, since this technique is more accurate than the earlier method (86Rb+ distribution) used for cardiac output distribution measurements in hibernators. Heart rate and blood pressure decreased with reduced temperature in a comparable fashion in the two species, while cardiac output was less affected in the hedgehogs than in the guinea pigs. Total peripheral resistance increased in both species. At 34 degrees C the hedgehogs had a higher myocardial blood flow per gram tissue than the guinea pigs and it was not reduced in the hedgehogs when the body temperature was lowered to 22 degrees C, whereas in the guinea pigs it was markedly reduced. The brown adipose tissue of the hedgehogs showed a fourfold increase in blood perfusion at 22 degrees C when compared with 34 degrees C. In the hedgehogs the fractional distribution of cardiac output to the myocardium increased with decreasing body temperature, while the renal fraction decreased. In the guinea pigs, on the other hand, the fractional distribution of cardiac output to the myocardium remained unchanged but increased to the kidneys.  相似文献   

6.
This study investigated the effect of parasympathetic inhibition on the cardio-ventilatory interaction during torpor in the fat-tailed dunnart (Sminthopsis crassicaudata). Studies on the influence of the autonomic nervous system on cardiac function during torpor have focused on deep hibernation in eutherians. S. crassicaudata was used as a representative of the Metatheria that exhibits shallow, daily torpor as a comparison for the patterns of cardiac function found in other mammalian heterotherms. During torpor, parasympathetic inhibition removed the cardio-ventilatory interaction, eliminated heart rate variability and increased the overall heart rate; these are responses that have been shown to be typical of eutherian hibernators under the same conditions. Similarly, there was evidence to suggest that as the bout of torpor progressed, the variation in instantaneous heart rate decreased as a result of the progressive removal of parasympathetic tone. It has been suggested that the ability to enter a "steady state" during torpor, which is characterised by a regular heart rate, is limited to deep hibernators. On the basis of this, and the results of previous physiological studies, it was proposed that there is little evidence to suggest that there is any physiological difference between shallow, daily torpor and deep hibernation.  相似文献   

7.
8.
Polyunsaturated fatty acids (PUFAs) can have strong effects on hibernation and daily torpor in mammals. High dietary PUFA contents were found to increase proneness for torpor, decrease body temperatures, prolong torpor bout duration, and attenuate hibernation mass loss. The mechanism by which PUFAs enhance torpor and hibernation is unknown, however. On the basis of a review of the literature, and on reexamining our own data on alpine marmots, we propose that effects on hibernation are not due to PUFAs in general, but to shifts in the ratio of n-6 PUFAs to n-3 PUFAs in membrane phospholipids. Specifically, high ratios of n-6 to n-3 PUFAs increase the activity of the Ca2+-Mg2+ pump in the sarcoplasmic reticulum of the heart (SERCA) and counteract Q10 effects on SERCA activity at low tissue temperatures. Therefore, high n-6 to n-3 PUFA ratios in cardiac myocyte membranes appear to protect the hibernating heart from arrhythmia, which in hypothermic nonhibernators is caused by massive increases in cytosolic Ca2+. The resulting reduced risk of cardiac arrest during hypothermia may explain why increased dietary uptake of n-6 PUFAs, but not of n-3 PUFAs, can strongly enhance the propensity for hibernation, and allows heterotherms to reach lower body temperatures, with associated increased energy savings. Therefore, at least for herbivorous hibernators, such as marmots, linoleic acid (C18:2 n-6)--the dietary source of all n-6 PUFAs--appears to represent a crucial and limited resource in natural environments.  相似文献   

9.
10.
Cardiac transmembrane potentials and Na and Ca currents were recorded at different temperatures in rat and hedgehog ventricular muscle. At 35 degrees C in both species resting potential was about -80 mV and upstroke velocity (Vmax) of the action potential above 100 V/s. The shape of the action potential in hedgehog ventricular cells at 35 degrees C was similar to that in the rat showing a fast repolarization phase. When temperature was decreased, the membrane resting potential depolarized and action potential amplitude and Vmax declined. In rat ventricular cells at 10 degrees C, the resting potential was about -40 to -50 mV and Vmax was reduced to about 5 V/s. In hedgehog ventricular cells, however, the transmembrane potentials and Vmax were better maintained at low temperature. Phase 3 of the action potential was markedly prolonged below 20 degrees C in hedgehog but not in rat ventricular cells. When temperature was decreased to 10 degrees C the availability curve of the Na current shifted toward more negative potentials and ICa.peak declined in rat ventricular cells. In hedgehog cardiac preparations, the Na current was less influenced by the cooling and ICa.peak did not change very much at low temperatures. A transient inward current usually considered to induce cardiac arrhythmias could be recorded in rat ventricular cells below 20 degrees C but not in hedgehog preparations. These features of hedgehog cardiac membranes may contribute to the cold tolerance and the resistance to ventricular fibrillation during the hypothermia in mammalian hibernators.  相似文献   

11.
Torpor-arousal cycles, one of the inherent features in hibernators, are associated with a rapid increase in body temperature and respiration, and it would lead to elevation of reactive oxygen species (ROS) generation. However, hibernators apparently tolerate this oxidative stress. We have observed in Syrian hamsters (Mesocricetus auratus) a maximal temperature shift and respiratory rate in mid- to late arousal (16-33 degrees C rectal temperature) from torpor. To examine plasma antioxidant status during arousal, we studied total superoxide radical-scavenging activity in plasma by electron spin resonance. The superoxide radical-scavenging activity reached a maximum at 32 degrees C, coincident with a peak in plasma uric acid levels, a ROS generation indicator. The up-regulated activity at 32 degrees C was attributable to the peak of the activity eluted at 260-kDa on gel-filtration chromatography, but was not to small antioxidant molecules such as ascorbate and alpha-tocopherol. The activity eluted at 260-kDa increased 3-fold at 32 degrees C compared with that of the torpid state, and was not detected either at 6 h after the onset of arousal or in the euthermic state. Moreover, the activity exhibited extracellular SOD-like properties: its induction in plasma by heparin injection and its affinity for heparin. Our results suggest that the 260-kDa extracellular SOD-like activity plays a role in the tolerance for the oxidative stress during arousal from torpor.  相似文献   

12.
According to the concept of the “minimal boundary curve for endothermy”, mammals and birds with a basal metabolic rate (BMR) that falls below the curve are obligate heterotherms and must enter torpor. We examined the reliability of the boundary curve (on a double log plot transformed to a line) for predicting torpor as a function of body mass and BMR for birds and several groups of mammals. The boundary line correctly predicted heterothermy in 87.5% of marsupials (n = 64), 94% of bats (n = 85) and 82.3% of rodents (n = 157). Our analysis shows that the boundary line is not a reliable predictor for use of torpor. A discriminate analysis using body mass and BMR had a similar predictive power as the boundary line. However, there are sufficient exceptions to both methods of analysis to suggest that the relationship between body mass, BMR and heterothermy is not a causal one. Some homeothermic birds (e.g. silvereyes) and rodents (e.g. hopping mice) fall below the boundary line, and there are many examples of heterothermic species that fall above the boundary line. For marsupials and bats, but not for rodents, there was a highly significant phylogenetic pattern for heterothermy, suggesting that taxonomic affiliation is the biggest determinant of heterothermy for these mammalian groups. For rodents, heterothermic species had lower BMRs than homeothermic species. Low BMR and use of torpor both contribute to reducing energy expenditure and both physiological traits appear to be a response to the same selective pressure of fluctuating food supply, increasing fitness in endothermic species that are constrained by limited energy availability. Both the minimal boundary line and discriminate analysis were of little value for predicting the use of daily torpor or hibernation in heterotherms, presumably as both daily torpor and hibernation are precisely controlled processes, not an inability to thermoregulate.  相似文献   

13.
Herbivores of temperate and arctic zones are confronted during winter with harsh climatic conditions and nutritional shortness. It is still not fully understood how large ungulates cope with this twofold challenge. We found that red deer, similar to many other northern ungulates, show large seasonal fluctuations of metabolic rate, as indicated by heart rate, with a 60% reduction at the winter nadir compared with the summer peak. A previously unknown mechanism of energy conservation, i.e., nocturnal hypometabolism associated with peripheral cooling, contributed significantly to lower energy expenditure during winter. Predominantly during late winter night and early morning hours, subcutaneous temperature could decrease substantially. Importantly, during these episodes of peripheral cooling, heart rate was not maintained at a constant level, as to be expected from classical models of thermoregulation in the thermoneutral zone, but continuously decreased with subcutaneous temperature, both during locomotor activity and at rest. This indicates that the circadian minimum of basal metabolic rate and of the set-point of body temperature regulation varied and dropped to particularly low levels during late winter. Our results suggest, together with accumulating evidence from other species, that reducing endogenous heat production is not restricted to hibernators and daily heterotherms but is a common and well-regulated physiological response of endothermic organisms to energetically challenging situations. Whether the temperature of all tissues is affected, or the body shell only, may simply be a result of the duration and degree of hypometabolism and its interaction with body size-dependent heat loss.  相似文献   

14.
Under laboratory conditions, rock elephant shrews, Elephantulus myurus, use daily torpor under both short and long photoperiod acclimation. However, use of heterothermy often differs under field and laboratory conditions. We investigated the use of torpor in free-ranging elephant shrews from May 2001 to May 2002. The elephant shrews were capable of daily torpor throughout the year, with torpor most prevalent during winter. We recorded two torpor bouts during early summer (November). We recorded a total of 467 torpor bouts during the year. The mean torpor minimum body temperature (Tbmin) for the whole year was 15.3 degrees +/-4.4 degrees C, and the mean bout length was 8.6+/-3.5 h. These values were in the range expected for daily heterotherms. However, there was some marginal overlap with hibernation characteristics; a few torpor bouts were longer than 24 h in duration, and Tbmin decreased below 10 degrees C. Torpor was highly correlated with low ambient temperature and photoperiod. Torpor was also correlated with invertebrate abundance after controlling for photoperiod effects. During the year in which this study was conducted, the rainfall was 14% below long-term average. Historical rainfall records show that summer rainfall during strong El Nino years is up to 40% below the long-term average. During these drought years, the frequency of summer torpor may be higher, highlighting the need for long-term physiological data in free-ranging animals.  相似文献   

15.
1. Mitochondrial alpha-glycerophosphate dehydrogenase (GPD) activity was assayed in liver homogenates from active and torpid ground squirrels. 2. Arrhenius plots of GPD activity were linear in non-hibernating animals and discontinuous in hibernators. Compared with non-hibernators, the energy of activation in hibernators was reduced between 37 and 25 degrees C, but increased between 25 and 6 degrees C. 3. A dose-response relation between GPD activity and injected thyroxine was determined in active animals. No correlation was found between enzyme activity at 37 or 6 degrees C and circulating titres of thyroid hormones, in ground squirrels sampled during the preparative and hibernating phases.  相似文献   

16.
BACKGROUND: Deep accidental hypothermia (core temperature <28 degrees C) is an uncommon medical emergency requiring rapid active core rewarming. Extracorporeal circulation has become the treatment of choice for deep hypothermic patients with cardiac arrest. CASE REPORT: We report on a 30-year-old patient who suffered from deep accidental hypothermia (core temperature 24.8 degrees C) and cardiac arrest by prolonged exposure to a cold urban environment as a consequence of severe ethylalcohol intoxication. The rewarming with the aid of extracorporeal circulation was initiated shortly after his arrival at the hospital. External cardiac massage was maintained until full ECC fl ow was established. The patient was weaned from extracorporeal circulation after 157 min, awaked 4 hours later and consequently extubated within 16 hours after rewarming with no neurological impairment. At 3-week follow-up, the patient was fully re-integrated in his work and personal life. CONCLUSION: This case demonstrates the excellent prognosis of a young victim in the case of deep accidental hypothermia with cardiac arrest, provided that deep hypothermia precedes the cardiac arrest and rewarming by extracorporeal circulation is immediately applied. Simultaneous ethyl alcohol intoxication can be considered a protective factor improving the patient's outcome. Complete recovery was achieved within 24 hours after the accident.  相似文献   

17.
The numbat (Myrmecobius fasciatus) is unique amongst marsupials as it is exclusively diurnal, feeds only on termites and is semi-fossorial. This study examines the thermal and metabolic physiology of the numbat to determine if its physiology reflects its phylogeny, diet and semi-fossorial habit. Numbats (mean adult body mass 552 g) were able to regulate body temperature at ambient temperatures of 15-30 degrees C, with a body temperature at thermoneutrality (30 degrees C) of 34.1 degrees C. The thermoneutral body temperature was not significantly different from that predicted for an equivalent-sized marsupial. Basal metabolic rate, measured at 30 degrees C, was 0.389 +/- 0.025 ml O(2) g(-1) h(-1), and was slightly but not significantly lower at 82.5% of that predicted for a typical marsupial of equivalent body mass. Metabolic rate increased with decreasing ambient temperatures below 30 degrees C. Patterns of metabolic cycling observed for completely inactive numbats at ambient temperatures below 30 degrees C are likely to be related to sleep phase. Wet thermal conductance of 1.94 J g(-1) h(-1) degrees C(-1) (at 30 degrees C) was 131% of that predicted for a marsupial. Evaporative water loss of the numbat remained constant below the thermoneutral zone (<30 degrees C) at approximately 0.6 ml g(-1) h(-1), only 47.4% of that predicted for a marsupial. It increased to 1.01 +/- 0.16 ml g(-1) h(-1) at an ambient temperature of 32.5 degrees C. The thermal and metabolic physiology of the numbat is generally similar to that expected for other marsupials, and is also comparable to that of termitivorous placental mammals. Thus the reduction in body temperature and basal metabolic rate of placental termitivores is a "marsupial-like" low energy turnover physiology, and the numbat being a marsupial already has an appropriate physiology to survive exclusively on a low energy diet of termites.  相似文献   

18.
G. Bristow  R. Smith  J. Lee  A. Auty  W. A. Tweed 《CMAJ》1977,117(3):247-249
A 16-year-old boy with accidental hypothermia and cardiopulmonary arrest due to exhaustion and exposure was resuscitated after warming measures -- hot wet towels, hot water bottles, and hot water enemas and gastric lavage -- had increased his rectal temperature from 25.2 to 28.0 degrees C. Despite prolonged cardiopulmonary arrest, recovery was almost complete, with no evident cerebral damage. Cardiopulmonary resuscitation procedures should not be abandoned until the body temperature is more than 30 degrees C, because the prognosis in cases of accidental hypothermia without associated disease is excellent if cardiac function can be re-established.  相似文献   

19.
In contrast to other mammals, muscarinic receptors in the bat ventricle can mediate significant decrease in basal contractile force (greater than 50%), not only at 37 degrees C but also at hibernation temperature (12 degrees C). At frequencies of contraction that approximate in vivo values for 37-12 degrees C, no significant shift in receptor affinity or maximum response to applied acetylcholine was found for either ventricular or atrial muscle. Low temperature does not appear to compromise receptor function in hibernators. The atypical cholinergic innervation of the ventricle may maintain a regulative role during hibernation.  相似文献   

20.
Ten-day-old embryos were exposed to 28, 18 and 8 degrees C environments and their electrocardiograms (ECG) monitored. Embryos in 28 and 18 degrees C environments maintained a constant heart rate averaging 97 and 25 beats/min, respectively, followed by arrhythmias and cardiac arrest at 101 and 59 hr. Embryos in an 8 degrees C environment went into cardiac arrest after 2-4 hr, but recovered 20 hr later upon rewarming to 38 degrees C. Six to 20-day-old embryos exposed to 8 degrees C were examined for tolerance time after cardiac arrest. The younger the embryo the longer its tolerance to prolonged cardiac arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号