首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiotensin II activates the Jak-STAT pathway via the AT(1) receptor. We studied two mutant AT(1) receptors, termed M5 and M6, that contain Y to F substitutions for the tyrosine residues naturally found in the third intracellular loop and the carboxyl terminus. After binding ligand, both the M5 and M6 AT(1) receptors trigger STAT1 tyrosine phosphorylation equivalent to that observed with the wild type receptor, indicating that angiotensin II-mediated phosphorylation of STAT1 is independent of these receptor tyrosine residues. In response to angiotensin II, Jak2 autophosphorylates on tyrosine, and Jak2 and STAT1 physically associate, a process that depends on the SH2 domain of STAT1 in vitro. Evaluation of the wild type, M5, and M6 AT(1) receptors showed that angiotensin II-dependent AT(1) receptor-Jak2-STAT1 complex formation is dependent on catalytically active Jak2, not on the receptor tyrosine residues in the third intracellular loop and carboxyl tail. Immunodepletion of Jak2 virtually eliminated the ligand-dependent binding of STAT1 to the AT(1) receptor. These data indicate that the association of STAT1 with the AT(1) receptor is not strictly bimolecular; it requires Jak2 as both a STAT1 kinase and as a molecular bridge linking STAT1 to the AT(1) receptor.  相似文献   

2.
Angiotensin II (Ang II) receptor subtypes AT1 and AT2 share 34% overall homology, but the least homology is in their third intracellular loop (3rd ICL). In an attempt to elucidate the role of the 3rd ICL in determining the similarities and differences in the functions of the AT1 and the AT2 receptors, we generated a chimeric receptor in which the 3rd ICL of the AT2 receptor was replaced with that of the AT1 receptor. Ligand-binding properties and signaling properties of this receptor were assayed by expressing this receptor in Xenopus oocytes. Ligand-binding studies using [125I-Sar1-Ile8] Ang II, a peptidic ligand that binds both the AT1 and the AT2 receptor subtypes, and 125I-CGP42112A, a peptidic ligand that is specific for the AT2 receptor, showed that the chimeric receptor has lost affinity to both ligands. However, IP3 levels of the oocytes expressing the chimeric receptor were comparable to the IP3 levels of the oocytes expressing the AT1 receptor, suggesting that the chimeric receptors could couple to phospholipase C pathway in response to Ang II. We have shown previously that the nature of the amino acid present in the position 215 located in the fifth transmembrane domain (TMD) of the AT2 receptor plays an important role in determining its affinity to different ligands. Our results from the ligand-binding studies of the chimeric receptor further support the idea that the structural organization of the region spanning the 5th TMD and the 3rd ICL of the AT2 receptor has an important role in determining the ligand-binding properties of this receptor.  相似文献   

3.
Kumar V  Knowle D  Gavini N  Pulakat L 《FEBS letters》2002,532(3):379-386
Increase in the intracellular inositol triphosphate (IP3) levels in Xenopus oocytes in response to expression and activation of rat angiotensin II (Ang II) receptor AT1 was inhibited by co-expression of rat AT2 receptor. To identify which region of the AT2 was involved in this inhibition, ability of three AT2 mutants to abolish this inhibition was analyzed. Deletion of the C-terminus of the AT2 did not abolish this inhibition. Replacing Ile249 in the third intracellular loop (3rd ICL) of the AT2 with proline, corresponding amino acid in the AT1, in the mutant M6, resulted in slightly reduced affinity to [125I]Ang II (K(d)=0.259 nM), however, did not abolish the inhibition. In contrast, replacing eight more amino acids in the 3rd ICL of the AT2 (at positions 241-244, 250-251 and 255-256) with that of the AT1 in the mutant M8, not only increased the affinity of the AT2 receptor to [125I]Ang II (K(d)=0.038 nM) but also abolished AT2-mediated inhibition. Interestingly, activation of the M8 by Ang II binding also resulted in increase in the intracellular IP(3) levels in oocytes. These results imply that the region of the 3rd ICL of AT2 spanning amino acids 241-256 is sufficient for the AT2-mediated inhibition of AT1-stimulated IP3 generation. Moreover, these nine mutations are also sufficient to render the AT2 with the ability to activate phospholipase C.  相似文献   

4.
To identify the proteins that interact and mediate angiotensin II receptor AT2-specific signaling, a random peptide library was screened by yeast-based Two-Hybrid protein-protein interaction assay technique. A peptide that shared significant homology with the amino acids located between the residues Gly-Xaa-Gly-Xaa-Xaa-Gly721 and Lys742, the residues predicted to be important for ATP binding of the ErbB3 and ErbB2 receptors, was identified to be interacting with the AT2 receptor. The interaction between the human ErbB3 receptor and the AT2 receptor was further confirmed using the cytoplasmic domain (amino acids 671-782) of the human ErbB3 receptor. Moreover, an AT2 receptor peptide that spans the amino acids 226-363, (spans the third ICL and carboxy terminal domain) could also interact with the AT2 receptor in a yeast Two-Hybrid protein-protein interaction assay. Studies using mutated and chimeric AT2 receptors showed that replacing the third intracellular loop (ICL) of the AT2 receptor with that of the AT1 abolishes the interaction between the ErbB3 and the AT2 in yeast Two-Hybrid protein-protein interaction assay. Thus the interaction between the AT2 receptor and the ErbB3 receptor seems to require the region spanning the third ICL and carboxy terminus of the AT2 receptor. Since the third ICL of the AT2 receptor is essential for exerting its inhibitory effects on cell growth, possible involvement of this region in the interaction with the cytoplasmic domain of the ErbB3 receptor suggests a novel signaling mechanism for the AT2 receptor mediated inhibition of cell growth. Furthermore, since both the AT2 and the ErbB3 receptors are expressed during fetal development, we propose that the existence of direct interaction between these two receptors may play a role in the regulation of growth during the initial stages of development.  相似文献   

5.
An analysis of the functional role of a diacidic motif (Asp236-Asp237) in the third intracellular loop of the AT1A angiotensin II (Ang II) receptor (AT1-R) revealed that substitution of both amino acids with alanine (DD-AA) or asparagine (DD-NN) residues diminished Ang II-induced receptor phosphorylation in COS-7 cells. However, Ang II-stimulated inositol phosphate production, mitogen-activated protein kinase, and AT1 receptor desensitization and internalization were not significantly impaired. Overexpression of dominant negative G protein-coupled receptor kinase 2 (GRK2)K220M decreased agonist-induced receptor phosphorylation by approximately 40%, but did not further reduce the impaired phosphorylation of DD-AA and DD-NN receptors. Inhibition of protein kinase C by bisindolylmaleimide reduced the phosphorylation of both the wild-type and the DD mutant receptors by approximately 30%. The inhibitory effects of GRK2K220M expression and protein kinase C inhibition by bisindolylmaleimide on agonist-induced phosphorylation were additive for the wild-type AT1-R, but not for the DD mutant receptor. Agonist-induced internalization of the wild-type and DD mutant receptors was similar and was unaltered by coexpression of GRK2K220M. These findings demonstrate that an acidic motif at position 236/237 in the third intracellular loop of the AT1-R is required for optimal Ang II-induced phosphorylation of its carboxyl-terminal tail by GRKs. Furthermore, the properties of the DD mutant receptor suggest that not only Ang II-induced signaling, but also receptor desensitization and internalization, are independent of agonist-induced GRK-mediated phosphorylation of the AT1 receptor.  相似文献   

6.
We previously demonstrated that the intracellular third loop (i3 loop) of angiotensin II type 2 receptor (AT2) plays a key role in mediating the biological functions of this receptor. To determine which residues are important for AT2 signaling, mutated receptors with serial deletions within the i3 loop were stably expressed in PC12 cells. Deletion of residues 240-244 within the intermediate portion of the i3 loop resulted in a complete loss of AT2-mediated apoptosis, inhibition of extracellular signal-regulated kinases (ERK), and SHP-1 activation. In contrast to well characterized heptahelical receptors, the AT2 functions were not affected by deletions of the amino- or carboxyl-terminal portions of the i3 loop. Alanine substitutions further demonstrated that lysine 240, asparagine 242, and serine 243 are key residues for AT2-induced apoptosis, ERK inhibition, and SHP-1 activation. To examine whether a functional link exists between activation of SHP-1 and apoptosis, we used a catalytically inactive SHP-1 mutant and demonstrated that preventing SHP-1 activation strongly attenuates AT2-induced ERK inhibition and apoptosis. Our data demonstrate that the intermediate portion of the i3 loop is important for AT2 function and that SHP-1 is a proximal effector of the AT2 receptor that is implicated in the inhibition of ERKs and in the apoptotic effect of this receptor.  相似文献   

7.
The angiotensin II (AngII) receptor family is comprised of two subtypes, type 1 (AT(1)) and type 2 (AT(2)). Although sharing low homology (only 34%), mutagenesis has identified some key residues that are conserved between both subtypes, including four extracellular cysteines. Previous AT(1) mutagenesis demonstrated that the cysteines form two disulfide bonds, one linking the first and second extracellular loops and another connecting the amino terminus to the third extracellular loop. The importance of these AT(1) disulfides in ligand binding is supported by the effect of dithiothreitol (DTT). DTT breaks disulfide bonds, thereby strongly inhibiting ligand binding in AT(1) receptors. Despite retaining the same cysteines, AT(2) receptor ligand binding is paradoxically enhanced by DTT. Thus, we constructed a series of AT(2) cysteine mutations, either individually or paired, to establish the role of the cysteines and the source of DTT's effects. The AT(2) cysteine mutants surprisingly confirmed that the cysteines form disulfide bonds in the same manner as in the AT(1) subtype. However, breaking the AT(2) disulfide bridges yielded two responses. As in AT(1) receptors, mutations disrupting the disulfide bond between the first and second extracellular loops reduced AT(2) binding by 4-fold. In contrast, mutations breaking the disulfide bridge between the amino terminus and the third extracellular loop increased AT(2) binding, mimicking DTT's effect on this subtype. Further analysis of AT(1)/AT(2) chimeric exchange mutants of these domains suggested that the AT(2) amino terminus and third extracellular loop may possess latent binding epitopes that are only uncovered after DTT exposure.  相似文献   

8.
The angiotensin II AT2 receptor is an AT1 receptor antagonist   总被引:9,自引:0,他引:9  
The vasopressor angiotensin II activates AT(1) and AT(2) receptors. Most of the known in vivo effects of angiotensin II are mediated by AT(1) receptors while the biological functions of AT(2) receptors are less clear. We report here that the AT(2) receptor binds directly to the AT(1) receptor and thereby antagonizes the function of the AT(1) receptor. The AT(1)-specific antagonism of the AT(2) receptor was independent of AT(2) receptor activation and signaling, and it was effective on different cells and on human myometrial biopsies with AT(1)/AT(2) receptor expression. Thus, the AT(2) receptor is the first identified example of a G-protein-coupled receptor which acts as a receptor-specific antagonist.  相似文献   

9.
To delineate domains essential for G-protein coupling in angiotensin II type 1 receptor (AT1), we mutated the receptor cDNA in the putative cytosolic regions and determined consequent changes in the effect of GTP analogs on angiotensin II (Ang II) binding and in inositol trisphosphate production in response to Ang II. Polar residues in targeted areas were replaced by small neutral residues. Mutations in the second cytosolic loop, carboxy terminal region of the third cytosolic loop or deletional mutation in the carboxyl terminal tail simultaneously abolished both the GTP-induced shift to the low affinity form and Ang II-induced stimulation of inositol trisphosphate production. These results suggest that polar residues in the second cytosolic loop, the carboxy terminal region of the third cytosolic loop, and the carboxy terminal cytosolic tail are important for G-protein coupling of AT1 receptor.  相似文献   

10.
The YIPP (tyrosine-isoleucine-proline-proline, amino acids 319-322) motif within the C-terminal part of the human AT(1) receptor is associated with angiotensin II (AII)-induced activation of the Jak-STAT pathway and phospholipase Cgamma1 phosphorylation. We report here that mutations of the YIPP motif strongly affect ligand-binding to the receptor. We analysed AT(1) receptors of the wild type (WT) and 11 mutants with a FLAG-epitope-tag within their C-terminal portion. Mutations of the "P-P" amino acid sequence of this motif decreased both AII binding and the AII-induced intracellular Ca(2+) transients. Mutant and WT receptors were expressed equally in the cell membrane and were localized within the plasma membrane. These results suggest that the "P-P" amino acid sequence within the YIPP motif is important for AII binding to the AT(1) receptor.  相似文献   

11.
An insertion of residues in the third extracellular loop and a disulfide bond linking this loop to the N-terminal domain were identified in a structural model of a G-protein coupled receptor specific to angiotensin II (AT1 receptor), built in homology to the seven-transmembrane-helix bundle of rhodopsin. Both the insertion and the disulfide bond were located close to an extracellular locus, flanked by the second extracellular loop (EC-2), the third extracellular loop (EC-3) and the N-terminal domain of the receptor; they contained residues identified by mutagenesis studies to bind the angiotensin II N-terminal segment (residues D1 and R2). It was postulated that the insertion and the disulfide bond, also found in other receptors such as those for bradykinin, endothelin, purine and other ligands, might play a role in regulating the function of the AT1 receptor. This possibility was investigated by assaying AT1 forms devoid of the insertion and with mutations to Ser on both positions of Cys residues forming the disulfide bond. Binding and activation experiments showed that abolition of this bond led to constitutive activation, decay of agonist binding and receptor activation levels. Furthermore, the receptors thus mutated were translocated to cytosolic environments including those in the nucleus. The receptor form with full deletion of the EC-3 loop residue insertion, displayed a wild type receptor behavior.  相似文献   

12.
Agonist-induced internalisation of the rat type 1A (AT(1A)) angiotensin II receptor is associated with phosphorylation of a serine/threonine-rich region in its cytoplasmic tail. In yeast, hyperphosphorylation of the alpha-factor pheromone receptor regulates endocytosis of the receptor by facilitating the monoubiquitylation of its cytoplasmic tail on lysine residues. The role of receptor ubiquitylation in AT(1A) receptor internalisation was evaluated by deletion or replacement of lysine residues in its agonist-sensitive serine/threonine-rich region. Expression of such receptor mutants in CHO cells showed that these modifications had no detectable effect on the angiotensin II-induced endocytosis of the AT(1A) receptor. Furthermore, fusion of ubiquitin in-frame to an internalisation-deficient AT(1A) receptor mutant with a truncated carboxyl-terminal tail did not restore the endocytosis of the resulting chimeric receptor. No impairment of receptor internalisation was observed after substitution of all lysine residues in the serine/threonine-rich region at saturating angiotensin II concentrations, where endocytosis occurs by a beta-arrestin and dynamin independent mechanism. Taken together, these data demonstrate that ubiquitylation of the cytoplasmic serine/threonine-rich region of the AT(1A) receptor on lysine residues is not required for its agonist-induced internalisation, and suggest that endocytosis of mammalian G protein-coupled receptors (GPCRs) occurs by a different mechanism than that of yeast GPCRs.  相似文献   

13.
Bradykinin (BK) and angiotensin II (AngII) often have opposite roles in cardiovascular diseases. Our aim here was to construct hybrid receptors which bind AngII but signal as BK. Various sequences of the intracellular face of the AngII type I receptor, AT1R, were replaced with corresponding sequences from the bradykinin B2 receptor (BKB2R). The hybrids demonstrated a number of signaling characteristics of the BKB2R. For example, the hybrids demonstrated BK as opposed to AngII like phosphorylation of Akt and JNK. The hybrids containing the BKB2R intracellular loop 2 (IC2) displayed minimal G-protein, Galphai/Galphaq, linked signaling. Computer based molecular models suggested that Ser-Met-Gly from the IC2 of the BKB2R is detrimental for the Galphai/Galphaq coupled functions of this hybrid. The return of Lys-Ser-Arg of the AT1R to this hybrid led to almost full recovery of Galphai and Galphaq activation. The design and production of AT1/BKB2 hybrid receptors is a potential approach in the treatment of hypertension related diseases where the presence of AngII, its AT1 receptor and the consequent signal transduction has proven detrimental.  相似文献   

14.
During their development from progenitor cells, adipocytes not only express enzymatic activities necessary for the storage of triglycerides, but also achieve the capability to produce a number of endocrine factors such as leptin, tumor necrosis factor alpha (TNFalpha), complement factors, adiponectin/adipoQ, plasminogen activator inhibitor-1 (PAI-1), angiotensin II and others. Angiotensin II is produced from angiotensinogen by the proteolytic action of renin and angiotensin-converting enzyme; and several data point to the existence of a complete local renin-angiotensin system in adipose tissue, including angiotensin II receptors. In this study, we directly monitored the production of angiotensin II type one receptor (AT1) and angiotensin II type two receptor (AT2) proteins during the adipose conversion of murine 3T3-L1 preadipocytes by immunodetection with specific antibodies. AT1 receptors could be detected throughout the whole differentiation period. The strong AT2 signal in preadipocytes however was completely lost during the course of differentiation, which suggests that expression of AT2 receptors is inversely correlated to the adipose conversion program.  相似文献   

15.
The C-terminal region of the third intracellular loop of the AT(1) angiotensin receptor (AT(1)-R) is an important determinant of G protein coupling. The roles of individual residues in agonist-induced activation of G(q/11)-dependent phosphoinositide hydrolysis were determined by mutational analysis of the amino acids in this region. Functional studies on mutant receptors transiently expressed in COS-7 cells showed that alanine substitutions of the amino acids in positions 232-240 of the third loop had no major effect on signal generation. However, deletion mutations that removed Ile(238) or affected its position relative to transmembrane helix VI significantly impaired angiotensin II-induced inositol phosphate responses. Substitution of Ile(238) with an acidic residue abolished the ability of the receptor to mediate inositol phosphate production, whereas its replacement with basic or polar residues reduced the amplitude of inositol phosphate responses. Substitutions of Phe(239) with polar residues had relatively minor effects on inositol phosphate signal generation, but its replacement by aspartic acid reduced, and by positively charged residues (Lys, Arg) significantly increased, angiotensin II-induced inositol phosphate responses. The internalization kinetics of the Ile(238) and Phe(239) mutant receptors were impaired in parallel with the reduction in their signaling responses. These findings have identified Ile(238) and Phe(239) as the critical residues in the C-terminal region of the third intracellular loop of the AT(1)-R for receptor activation. They also suggest that an apolar amino acid corresponding to Ile(238) of the AT(1)-R is a general requirement for activation of other G protein-coupled receptors by their agonist ligands.  相似文献   

16.
The conformation of three synthetic peptides encompassing the proximal and distal half of the third intracellular loop (Ni3 and Ci3) and a portion of the cytoplasmic tail (fCT) of the angiotensin II AT1A receptor has been studied using circular dischroism and fluorescence spectroscopies. The results show that the conformation of the peptides is modulated in various ways by the environmental conditions (pH, ionic strength and dielectric constant). Indeed, Ni3 and fCT fold into helical structures that possess distinct stability and polarity due to the diverse forces involved: mainly polar interactions in the first case and a combination of polar and hydrophobic interactions in the second. The presence of these various features also produce distinct intermolecular interactions. Ci3, instead, exists as an ensemble of partially folded states in equilibrium. Since the corresponding regions of the angiotensin II AT1A receptor are known to play an important role in the receptor function, due to their ability to undergo conformational changes, these data provide some new clues about their different conformational plasticity.  相似文献   

17.
We tested whether the respective angiotensin type 1 (AT(1)) and 2 (AT(2)) receptor subtype antagonists losartan and PD-123319 could block the descending vasa recta (DVR) endothelial intracellular calcium concentration ([Ca(2+)](i)) suppression induced by ANG II. ANG II partially reversed the increase in [Ca(2+)](i) generated by cyclopiazonic acid (CPA; 10(-5) M), acetylcholine (ACh; 10(-5) M), or bradykinin (BK; 10(-7) M). Losartan (10(-5) M) blocked that effect. When vessels were treated with ANG II before stimulation with BK and ACh, concomitant AT(2) receptor blockade with PD-123319 (10(-8) M) augmented the suppression of endothelial [Ca(2+)](i) responses. Similarly, preactivation with the AT(2) receptor agonist CGP-42112A (10(-8) M) prevented AT(1) receptor stimulation with ANG II + PD-123319 from suppressing endothelial [Ca(2+)](i). In contrast to endothelial [Ca(2+)](i) suppression by ANG II, pericyte [Ca(2+)](i) exhibited typical peak and plateau [Ca(2+)](i) responses that were blocked by losartan but not PD-123319. DVR vasoconstriction by ANG II was augmented when AT(2) receptors were blocked with PD-123319. Similarly, AT(2) receptor stimulation with CGP-42112A delayed the onset of ANG II-induced constriction. PD-123319 alone (10(-5) M) showed no AT(1)-like action to constrict microperfused DVR or increase pericyte [Ca(2+)](i). We conclude that ANG II suppression of endothelial [Ca(2+)](i) and stimulation of pericyte [Ca(2+)](i) is mediated by AT(1) or AT(1)-like receptors. Furthermore, AT(2) receptor activation opposes ANG II-induced endothelial [Ca(2+)](i) suppression and abrogates ANG II-induced DVR vasoconstriction.  相似文献   

18.
Many G protein-coupled receptors form dimers in cells. However, underlying mechanisms are barely understood. We report here that intracellular factor XIIIA transglutaminase crosslinks agonist-induced AT1 receptor homodimers via glutamine315 in the carboxyl-terminal tail of the AT1 receptor. The crosslinked dimers displayed enhanced signaling and desensitization in vitro and in vivo. Inhibition of angiotensin II release or of factor XIIIA activity prevented formation of crosslinked AT1 receptor dimers. In agreement with this finding, factor XIIIA-deficient individuals lacked crosslinked AT1 dimers. Elevated levels of crosslinked AT1 dimers were present on monocytes of patients with the common atherogenic risk factor hypertension and correlated with an enhanced angiotensin II-dependent monocyte adhesion to endothelial cells. Elevated levels of crosslinked AT1 receptor dimers on monocytes could sustain the process of atherogenesis, because inhibition of angiotensin II generation or of intracellular factor XIIIA activity suppressed the appearance of crosslinked AT1 receptors and symptoms of atherosclerosis in ApoE-deficient mice.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号