首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recombinant barley high pI alpha-glucosidase was produced by high cell-density fermentation of Pichia pastoris expressing the cloned full-length gene. The gene was amplified from a genomic clone and exons (coding regions) were assembled by overlap PCR. The resulting cDNA was expressed under control of the alcohol oxidase 1 promoter using methanol induction of P. pastoris fermentation in a Biostat B 5 L reactor. Forty-two milligrams alpha-glucosidase was purified from 3.5 L culture in four steps applying an N-terminal hexa-histidine tag. The apparent molecular mass of the recombinant alpha-glucosidase was 100 kDa compared to 92 kDa of the native barley enzyme. The secreted recombinant enzyme was highly stabile during the 5-day fermentation and had significantly superior specific activity of the enzyme purified previously from barley malt. The kinetic parameters Km, Vmax, and kcat were determined to 1.7 mM, 139 nM x s(-1), and 85 s(-1) using maltose as substrate. This work presents the first production of fully active recombinant alpha-glucosidase of glycoside hydrolase family 31 from higher plants.  相似文献   

3.
The hydrolysis of sucrose, the principal dietary source of carbon for aphids, is catalysed by a gut alpha-glucosidase/transglucosidase activity. An alpha-glucosidase, referred to as APS1, was identified in both a gut-specific cDNA library and a sucrase-enriched membrane preparation from guts of the pea aphid Acyrthosiphon pisum by a combination of genomic and proteomic techniques. APS1 contains a predicted signal peptide, and has a predicted molecular mass of 68 kDa (unprocessed) or 66.4 kDa (mature protein). It has amino acid sequence similarity to alpha-glucosidases (EC 3.2.1.20) of glycoside hydrolase family 13 in other insects. The predicted APS1 protein contains two domains: an N-terminal catalytic domain, and a C-terminal hydrophobic domain. In situ localisation and RT-PCR studies revealed that APS1 mRNA was expressed in the gut distal to the stomach, the same localisation as sucrase activity. When expressed heterologously in Xenopus embryos, APS1 was membrane-bound and had sucrase activity. It is concluded that APS1 is a dominant, and possibly sole, protein mediating sucrase activity in the aphid gut.  相似文献   

4.
5.
Aspergillus nidulans possessed an alpha-glucosidase with strong transglycosylation activity. The enzyme, designated alpha-glucosidase B (AgdB), was purified and characterized. AgdB was a heterodimeric protein comprising 74- and 55-kDa subunits and catalyzed hydrolysis of maltose along with formation of isomaltose and panose. Approximately 50% of maltose was converted to isomaltose, panose, and other minor transglycosylation products by AgdB, even at low maltose concentrations. The agdB gene was cloned and sequenced. The gene comprised 3,055 bp, interrupted by three short introns, and encoded a polypeptide of 955 amino acids. The deduced amino acid sequence contained the chemically determined N-terminal and internal amino acid sequences of the 74- and 55-kDa subunits. This implies that AgdB is synthesized as a single polypeptide precursor. AgdB showed low but overall sequence homology to alpha-glucosidases of glycosyl hydrolase family 31. However, AgdB was phylogenetically distinct from any other alpha-glucosidases. We propose here that AgdB is a novel alpha-glucosidase with unusually strong transglycosylation activity.  相似文献   

6.
Okuyama M  Kaneko A  Mori H  Chiba S  Kimura A 《FEBS letters》2006,580(11):2707-2711
Escherichia coli YicI, a member of glycoside hydrolase family (GH) 31, is an alpha-xylosidase, although its amino-acid sequence displays approximately 30% identity with alpha-glucosidases. By comparing the amino-acid sequence of GH 31 enzymes and through structural comparison of the (beta/alpha)(8) barrels of GH 27 and GH 31 enzymes, the amino acids Phe277, Cys307, Phe308, Trp345, Lys414, and beta-->alpha loop 1 of (beta/alpha)(8) barrel of YicI have been identified as elements that might be important for YicI substrate specificity. In attempt to convert YicI into an alpha-glucosidase these elements have been targeted by site-directed mutagenesis. Two mutated YicI, short loop1-enzyme and C307I/F308D, showed higher alpha-glucosidase activity than wild-type YicI. C307I/F308D, which lost alpha-xylosidase activity, was converted into alpha-glucosidase.  相似文献   

7.
R Gossrau 《Histochemistry》1977,52(2):187-197
In crude homogenates prepared from freeze-dried cryostate sections of various rat organs the Km and Vmax of acid and neutral alpha-glucosidase as well as the effect of the pH, substrate and enzyme concentration and the incubation time on the activity were determined fluorometrically with 4-methylumbelliferyl- and 2-naphthyl alpha-d-glucoside as substrates. On the basis of the biochemical data 2 assays were developed for the microchemical measurement of both alpha-glucosidases in groups of epithelial cells isolated from freeze dried cryostate sections of the epididymis, jejunum, ilium, liver and kidney of suckling and adult rats. The rate of hydrolysis of 2-naphthyl and 4-methylumbelliferyl alpha-d-glucoside differs moderately. However, due to the higher sensitivity of 4-methylumbelliferone the methylumbelliferyl derivative is preferable especially for the evaluation of alpha-d-glucosidases in cells with low enzyme activity.  相似文献   

8.
The effects of pH and temperature on Michaelis constant (Km) and maximum velocity (Vmax.) and of NaCl on the activity of the high-molecular-weight beta-glucosidase (beta-D-glucoside glucohydrolase EC 3.2.1.21) from cultures of Botryodiplodia theobromae Pat. have been studied. 2. Donor binding and inhibition of activity by glucose were dependent on the ionization of a group (pK 6.0) that appeared to be an imidazole group. 3. Catalytic activity and the stimulation of activity by glycerol were dependent on the ionization of two groups, which appeared to be a carboxy group and an imidazole group. 4. The Arrhenius activation energy (Ea) calculated from results obtained at pH 4.0 and 5.0 was about 45--46kJ.mol-1. 5. The enthalpies (delta H0) calculated from results obtained at pH 4.0 and 5.0 were similar (about -4kJ.mol-1), whereas at pH 6.5 the value was about -33kJ.mol-1. 6. The entropies (delta S0) calculated from these results at 37 degrees C were -21, -22 and -118J.K-1.mol-1 at pH 4.0, 5.0 and 6.5 respectively. A low concentration of NaCl (16.6 mM) stimulated enzymic activity and decreased the Km for the donor, whereas high concentrations (up to 500 mM) inhibited enzymic activity, increased the Km and had no effect on Vmax. 8. Plots of initial velocity data obtained in the presence of dioxan as 1/v against the ratio of the molar concentration of dioxan to that of water were linear. 9. The results are discussed in terms of the enzyme mechanism.  相似文献   

9.
The aminopeptidase from Aeromonas proteolytica (AAP) can catalyze the hydrolysis of L-leucine ethyl ester ( L-Leu-OEt) with a rate of 96 +/- 5 s-1 and a Km of 700 microM. The observed turnover number for L-Leu-OEt hydrolysis by AAP is similar to that observed for peptide hydrolysis, which is 67 +/- 5 s-1. The k(cat) values for the hydrolysis of L-Leu-OEt and L-leucine- p-nitroanilide ( L- pNA) catalyzed by AAP were determined at different pH values under saturating substrate concentrations. Construction of an Arrhenius plot from the temperature dependence of AAP-catalyzed ester hydrolysis indicates that the rate-limiting step does not change as a function of temperature and is product formation. The activation energy ( Ea) for the activated ES ester complex is 13.7 kJ mol-1, while the enthalpy and entropy of activation at 25 degrees C calculated over the temperature range 298-338 K are 11.2 kJ mol-1 and -175 J K-1 mol-1, respectively. The free energy of activation at 25 degrees C was found to be 63.4 kJ mol-1. The enthalpy of ionization was also measured and was found to be very similar for both peptide and ester substrates, yielding values of 20 kJ mol-1 for L-Leu-OEt and 25 kJ mol-1 for L- pNA. For peptide and L-amino acid ester cleavage reactions catalyzed by AAP, and 6.07, respectively. Proton inventory data suggest that two protons are transferred in the rate-limiting step of ester hydrolysis while only one is transferred in peptide hydrolysis. The combination of these data with the available X-ray crystallographic, kinetic, spectroscopic, and thermodynamic data for AAP provides new insight into the catalytic mechanism of AAP.  相似文献   

10.
We determined if any naturally occurring peptides could act as substrates or inhibitors of the bifunctional, Zn2+ metalloenzyme LTA4 hydrolase/aminopeptidase (E.C.3.3.2.6). Several opioid peptides including met5-enkephalin, leu5-enkephalin, dynorphin1-6, dynorphin1-7, and dynorphin1-8 competitively inhibited the hydrolysis of L-proline-p-nitroanilide by leukotriene A4 hydrolase/aminopeptidase, consistent with an interaction at its active site. The enzyme catalyzed the N-terminal hydrolysis of tyrosine from met5-enkephalin with Km = 450 +/- 58 microM and Vmax = 4.9 +/- 0.6 nmol-hr-1-ug-1 and from leu5-enkephalin with Km = 387 +/- 90 microM and Vmax = 6.2 +/- 2.5 nmol-hr-1-ug-1. Bestatin, captopril and carnosine inhibited the hydrolysis of the enkephalins. It is noteworthy that the bifunctional catalytic traits of this enzyme include generation of an hyperalgesic substance, LTB4, and inactivation of analgesic opioid peptides.  相似文献   

11.
A starch-hydrolyzing enzyme from Schwanniomyces occidentalis has been reported to be a novel glucoamylase, but there is no conclusive proof that it is glucoamylase. An enzyme having the hydrolytic activity toward soluble starch was purified from a strain of S. occidentalis. The enzyme showed high catalytic efficiency (k(cat)/K(m)) for maltooligosaccharides, compared with that for soluble starch. The product anomer was alpha-glucose, differing from glucoamylase as a beta-glucose producing enzyme. These findings are striking characteristics of alpha-glucosidase. The DNA encoding the enzyme was cloned and sequenced. The primary structure deduced from the nucleotide sequence was highly similar to mold, plant, and mammalian alpha-glucosidases of alpha-glucosidase family II and other glucoside hydrolase family 31 enzymes, and the two regions involved in the catalytic reaction of alpha-glucosidases were conserved. These were no similarities to the so-called glucoamylases. It was concluded that the enzyme and also S. occidentalis glucoamylase, had been already reported, were typical alpha-glucosidases, and not glucoamylase.  相似文献   

12.
Hydrolysis of the following four cap analogs: m7G(5')ppp(5')A, m7G(5')ppp(5')m6A, m7G(5')ppp(5')m2'OG and m7G(5')ppp(5')2'dG catalyzed by homogeneous human Fhit protein and yellow lupin Ap3A hydrolase has been investigated. The hydrolysis products were identified by HPLC analysis and the K(m) and Vmax values calculated based on the data obtained by the fluorimetric method.  相似文献   

13.
Three forms of alpha-glucosidase, I, II, and III, have been purified from the whole body extract of adult flies of Drosophila melanogaster in yields of 2.1, 5.3, and 6.7%, respectively. The purification procedures involved ammonium sulfate fractionation, Con A-Sepharose 4B affinity chromatography, DEAE-Sepharose CL-6B ion exchange chromatography, Sephacryl S-200 gel filtration, and preparative gel electrophoresis. Each purified enzyme showed a single band on polyacrylamide gel on both protein and enzyme activity staining. The molecular weights of alpha-glucosidases I, II, and III were estimated to be 200,000, 56,000, and 76,000, respectively, by gel filtration. SDS gels indicated that alpha-glucosidases II and III were each composed of a single polypeptide chain, whereas alpha-glucosidase I was composed of two identical subunits. Both alpha-glucosidases II and III hydrolyzed sucrose and p-nitrophenyl-alpha-D-glucoside (PNPG), but alpha-glucosidase I hydrolyzed PNPG to a much lesser extent than sucrose. For sucrose the pH optima of alpha-glucosidases I, II, and III were pH 6.0, 5.0, and 6.0 and the Km values were 13.1, 8.9, and 10 mM, respectively. For PNPG the pH optima of alpha-glucosidases II and III were pH 5.5 and 6.5 and the Km values were 0.77 and 0.21 mM, respectively.  相似文献   

14.
To minutely understand the effect of foreign N-terminal residues on the conformational stability of human lysozyme, five mutant proteins were constructed: two had Met or Ala in place of the N-terminal Lys residue (K1M and K1A, respectively), and others had one additional residue, Met, Gly or Pro, to the N-terminal Lys residue (Met(-1), Gly(-1) and Pro(-1), respectively). The thermodynamic parameters for denaturation of these mutant proteins were examined by differential scanning calorimetry and were compared with that of the wild-type protein. Three mutants with the extra residue were significantly destabilized: the changes in unfolding Gibbs energy (DeltaDeltaG) were -9.1 to -12.2 kJ.mol-1. However, the stability of two single substitutions at the N-terminal slightly decreased; the DeltaDeltaG values were only -0.5 to -2.5 kJ.mol-1. The results indicate that human lysozyme is destabilized by an expanded N-terminal residue. The crystal structural analyses of K1M, K1A and Gly(-1) revealed that the introduction of a residue at the N-terminal of human lysozyme caused the destruction of hydrogen bond networks with ordered water molecules, resulting in the destabilization of the protein.  相似文献   

15.
We designed and synthesized hydrogen bond based probes 1-8 with the exception of known glycosidase inhibition mechanisms, and aglycon specificity of 11 different sources of alpha-glucosidases were investigated using their probes. Probe 4 (2,6-anhydro-1-deoxy-1-[(1-oxopentyl-5-hydroxy)amino]-D-glycero-D-ido-heptitol) showed a potent inhibition of S. cerevisiae alpha-glucosidase among all alpha-glucosidases. Probe 4 was found to be a competitive inhibitor for S. cerevisiae alpha-glucosidase with Ki 0.13 mM.  相似文献   

16.
The crystal structure of alpha-glucosidase MalA from Sulfolobus solfataricus has been determined at 2.5Angstrom resolution. It provides a structural model for enzymes representing the major specificity in glycoside hydrolase family 31 (GH31), including alpha-glucosidases from higher organisms, involved in glycogen degradation and glycoprotein processing. The structure of MalA shows clear differences from the only other structure known from GH31, alpha-xylosidase YicI. MalA and YicI share only 23% sequence identity. Although the two enzymes display a similar domain structure and both form hexamers, their structures differ significantly in quaternary organization: MalA is a dimer of trimers, YicI a trimer of dimers. MalA and YicI also differ in their substrate specificities, as shown by kinetic measurements on model chromogenic substrates. In addition, MalA has a clear preference for maltose (Glc-alpha1,4-Glc), whereas YicI prefers isoprimeverose (Xyl-alpha1,6-Glc). The structural origin of this difference occurs in the -1 subsite where MalA residues Asp251 and Trp284 could interact with OH6 of the substrate. The structure of MalA in complex with beta-octyl-glucopyranoside has been determined. It reveals Arg400, Asp87, Trp284, Met321 and Phe327 as invariant residues forming the +1 subsite in the GH31 alpha-glucosidases. Structural comparisons with other GH families suggest that the GH31 enzymes belong to clan GH-D.  相似文献   

17.
Inhibitors targeting pancreatic alpha-amylase and intestinal alpha-glucosidases delay glucose production following digestion and are currently used in the treatment of Type II diabetes. Maltase-glucoamylase (MGA), a family 31 glycoside hydrolase, is an alpha-glucosidase anchored in the membrane of small intestinal epithelial cells responsible for the final step of mammalian starch digestion leading to the release of glucose. This paper reports the production and purification of active human recombinant MGA amino terminal catalytic domain (MGAnt) from two different eukaryotic cell culture systems. MGAnt overexpressed in Drosophila cells was of quality and quantity suitable for kinetic and inhibition studies as well as future structural studies. Inhibition of MGAnt was tested with a group of prospective alpha-glucosidase inhibitors modeled after salacinol, a naturally occurring alpha-glucosidase inhibitor, and acarbose, a currently prescribed antidiabetic agent. Four synthetic inhibitors that bind and inhibit MGAnt activity better than acarbose, and at comparable levels to salacinol, were found. The inhibitors are derivatives of salacinol that contain either a selenium atom in place of sulfur in the five-membered ring, or a longer polyhydroxylated, sulfated chain than salacinol. Six-membered ring derivatives of salacinol and compounds modeled after miglitol were much less effective as MGAnt inhibitors. These results provide information on the inhibitory profile of MGAnt that will guide the development of new compounds having antidiabetic activity.  相似文献   

18.
We have previously found that some mammalian tissue homogenates can catalyze a unique transglucosylation from maltose to L-ascorbic acid (AA), resulting in a chemically stable AA derivative, L-ascorbic acid alpha-glucoside (AAG). In the present study, the enzyme responsible for this transglucosylation was isolated from rat intestinal membrane. The formation of AAG was determined by HPLC with an ODS column. The specific activity of AAG-forming enzyme was increased in parallel with that of alpha-glucosidase (maltose hydrolase) during the purification, and two neutral alpha-glucosidases, termed alpha-glucosidases I and II, were purified to apparent homogeneity. Their enzymological properties showed that they corresponded to maltase [EC 3.2.1.20] and sucrase-isomaltase complex [EC 3.2.1.48/10], respectively. Both enzymes could form AAG by splitting only maltose among the disaccharides examined, although alpha-glucosidase I possessed a considerably higher activity than the other enzyme. Both AAG formation and maltose hydrolysis were dependent on incubation temperature with the maximal activity at 60 degrees C, but there was an apparent difference between their pH optima. AAG thus formed could also be hydrolyzed by the purified enzymes. From these results, it is concluded that membrane-bound neutral alpha-glucosidases from rat intestine have site-specific transglucosylase activity to form nonreducing AAG which is distinct from L-ascorbic acid-6-O-alpha-D-glucoside.  相似文献   

19.
Isomalto-dextranase, from Arthrobacter globiformis T6, is a member of the glycoside hydrolase family 27. However, the alignments of the whole amino acid sequence are distinct from other members of this family. The enzymes cleave the glycosidic bond of the substrate in two different manners: either retaining or inverting the anomeric configuration. We believe that a retaining enzyme is involved in a two-step, double-displacement mechanism utilizing active site carboxylic acids as the nucleophile and general acid/base catalysts in the hydrolytic reaction. The critical amino acid residues at the isomalto-dextranase active site that catalyzes the hydrolysis reaction of dextran have been identified and the roles of nine amino acid residues (D107, D163, D227, D295, D340, D342, D373, D396, and E420) in the isomalto-dextranase from A. globiformis analyzed by site-directed mutagenesis. Of 15 mutant enzymes that were prepared, eight had reduced activities for dextran hydrolysis. Aspartic acids-227 and -342, which are part of the apparent catalytic dyad, were essential for hydrolase activity toward dextran.  相似文献   

20.
rihC is one of a group of three ribonucleoside hydrolases found in Escherichia coli (E. coli). The enzyme catalyzes the hydrolysis of selected nucleosides to ribose and the corresponding base. A family of Vmax/Km kinetic isotope effects using uridine labeled with stable isotopes, such as 2H, 13C, and 15N, were determined by liquid chromatography/mass spectrometry (LC/MS). The kinetic isotope effects were 1.012+/-0.006, 1.027+/-0.005, 1.134+/-0.007, 1.122+/-0.008, and 1.002+/-0.004 for [1'-13C], [1-15N], [1'-2H], [2'-2H], and [5'-2H2] uridine, respectively. A transition state based upon a bond-energy bond-order vibrational analysis (BEBOVIB) of the observed kinetic isotope effects is proposed. The main features of this transition state are activation of the heterocyclic base by protonation of/or hydrogen bonding to O2, an extensively broken C-N glycosidic bond, formation of an oxocarbenium ion in the ribose ring, C3'-exo ribose ring conformation, and almost no bond formation to the attacking nucleophile. The proposed transition state for the prokaryotic E. coli nucleoside hydrolase is compared to that of a similar enzyme isolated from Crithidia fasciculata (C. fasciculata).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号