首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The SRPDB (signal recognition particle database) provides aligned SRP RNA and protein sequences, annotated and phylogenetically ordered. This release includes 82 SRP RNAs (including 22 bacterial and 9 archaeal homologs) and a total of 20 protein sequences representing SRP9, SRP14, SRP19, SRP54, SRP68, and SRP72. The offerings also include representative RNA secondary structure diagrams.  相似文献   

2.
The signal recognition particle database (SRPDB).   总被引:5,自引:3,他引:2       下载免费PDF全文
The SRPDB (signal recognition particle database) provides annotated SRP RNA sequences from Eucaryotes and Archaea, phylogenetically ordered and aligned with their bacterial equivalents. We also make available representative RNA secondary structure diagrams, where each base pair is proven by comparative sequence analysis. New to this release are 17 SRP RNA sequences (a total of 64 sequences) and alignments of proteins SRP19 and SRP54 with their RNA binding sites.  相似文献   

3.
4.
5.
Translocation of proteins across the endoplasmic reticulum membrane is a GTP-dependent process. The signal recognition particle (SRP) and the SRP receptor both contain subunits with GTP binding domains. One GTP- dependent reaction during protein translocation is the SRP receptor- mediated dissociation of SRP from the signal sequence of a nascent polypeptide. Here, we have assayed the SRP and the SRP receptor for GTP binding and hydrolysis activities. GTP hydrolysis by SRP was not detected, so the maximal GTP hydrolysis rate for SRP was estimated to be < 0.002 mol GTP hydrolyzed x mol of SRP-1 x min-1. The intrinsic GTP hydrolysis activity of the SRP receptor ranged between 0.02 and 0.04 mol GTP hydrolyzed x mol of SRP receptor-1 x min-1. A 40-fold enhancement of GTP hydrolysis activity relative to that observed for the SRP receptor alone was obtained when complexes were formed between SRP and the SRP receptor. GTP hydrolysis activity was inhibited by GDP, but not by ATP. Extended incubation of the SRP or the SRP receptor with GTP resulted in substoichiometric quantities of protein-bound ribonucleotide. SRP-SRP receptor complexes engaged in GTP hydrolysis were found to contain a minimum of one bound guanine ribonucleotide per SRP-SRP receptor complex. We conclude that the GTP hydrolysis activity described here is indicative of one of the GTPase cycles that occur during protein translocation across the endoplasmic reticulum.  相似文献   

6.
It is becoming increasingly clear that similarities exist in the manner in which extracytoplasmic proteins are targeted to complexes responsible for translocating these proteins across membranes in each of the three domains of life. In Eukarya and Bacteria, the signal recognition particle (SRP) directs nascent polypeptides to membrane-embedded translocation sites. In Archaea, the SRP protein targeting pathway apparently represents an intermediate between the bacterial and eukaryal systems. Understanding the archaeal SRP pathway could therefore reveal universal aspects of targeting not detected in current comparisons of the eukaryal and bacterial systems while possibly identifying aspects of the process either not previously reported or unique to Archaea.  相似文献   

7.
8.
Signal recognition particle (SRP) is a stable cytoplasmic ribonucleoprotein complex that serves to translocate secretory proteins across membranes during translation. The SRP Database (SRPDB) provides compilations of SRP components, ordered alphabetically and phylogenetically. Alignments emphasize phylogenetically-supported base pairs in SRP RNA and conserved residues in the proteins. Data are provided in various formats including a column arrangement for improved access and simplified computational usability. Included are motifs for identification of new sequences, SRP RNA secondary structure diagrams, 3-D models and links to high-resolution structures. This release includes 11 new SRP RNA sequences (total of 129), two protein SRP9 sequences (total of seven), two protein SRP14 sequences (total of 10), two protein SRP19 sequences (total of 16), 10 new SRP54 (ffh) sequences (total of 66), two protein SRP68 sequences (total of seven) and two protein SRP72 sequences (total of nine). Seven sequences of the SRP receptor alpha-subunit and its FtsY homolog (total of 51) are new. Also considered are ss-subunit of SRP receptor, Flhf, Hbsu, CaM kinase II and cpSRP43. Access to SRPDB is at http://psyche.uthct. edu/dbs/SRPDB/SRPDB.html and the European mirror http://www.medkem. gu.se/dbs/SRPDB/SRPDB.html  相似文献   

9.
Prediction of signal recognition particle RNA genes   总被引:3,自引:1,他引:3  
We describe a method for prediction of genes that encode the RNA component of the signal recognition particle (SRP). A heuristic search for the strongly conserved helix 8 motif of SRP RNA is combined with covariance models that are based on previously known SRP RNA sequences. By screening available genomic sequences we have identified a large number of novel SRP RNA genes and we can account for at least one gene in every genome that has been completely sequenced. Novel bacterial RNAs include that of Thermotoga maritima, which, unlike all other non-gram-positive eubacteria, is predicted to have an Alu domain. We have also found the RNAs of Lactococcus lactis and Staphylococcus to have an unusual UGAC tetraloop in helix 8 instead of the normal GNRA sequence. An investigation of yeast RNAs reveals conserved sequence elements of the Alu domain that aid in the analysis of these RNAs. Analysis of the human genome reveals only two likely genes, both on chromosome 14. Our method for SRP RNA gene prediction is the first convenient tool for this task and should be useful in genome annotation.  相似文献   

10.
Functional dissection of the signal recognition particle   总被引:10,自引:0,他引:10  
  相似文献   

11.
Disassembly and reconstitution of signal recognition particle   总被引:40,自引:0,他引:40  
P Walter  G Blobel 《Cell》1983,34(2):525-533
Signal recognition particle (SRP) is a ribonucleoprotein consisting of six distinct polypeptides and one molecule of small cytoplasmic 7SL-RNA. The particle was previously shown to function in protein translocation across, and protein integration into, the endoplasmic reticulum membrane. A rapid procedure was developed to disassemble SRP into native protein and RNA components. The method utilizes unfolding of SRP with EDTA and dissociation on polycationic matrixes. SRP proteins prepared this way sediment below 7S and are inactive in activity assays. When recombined with 7SL-RNA in the presence of magnesium, the proteins are shown to reassociate stoichiometrically with 7SL-RNA to form fully active 11S SRP.  相似文献   

12.
The signal recognition particle (SRP) is a phylogenetically conserved ribonucleoprotein that associates with ribosomes to mediate the targeting of membrane and secretory proteins to biological membranes. In higher eukaryotes, SRP biogenesis involves the sequential binding of SRP19 and SRP54 proteins to the S domain of 7S RNA. The recently determined crystal structures of SRP19 in complex with the S domain, and that of the ternary complex of SRP19, the S domain and the M domain of SRP54, provide insight into the molecular basis of S-domain assembly and SRP function.  相似文献   

13.
14.
Bui N  Strub K 《Biological chemistry》1999,380(2):135-145
The signal recognition particle (SRP), a ubiquitous cytoplasmic ribonucleoprotein particle, plays an essential role in promoting co-translational translocation of proteins into the endoplasmic reticulum. Here, we summarise recent progress made in the understanding of two essential SRP functions: the signal recognition function, which ensures the specificity, and the elongation arrest function, which increases the efficiency of translocation. Our discussion is based on functional data as well as on atomic structure information, both of which also support the notion that SRP is a very ancient particle closely related to ribosomes. Based on the significant increase of knowledge that has been accumulating on the structure of elongation factors and on their interactions with the ribosome, we speculate about a possible mechanism of the elongation arrest function.  相似文献   

15.
Shan SO  Walter P 《FEBS letters》2005,579(4):921-926
The signal recognition particle (SRP) mediates the co-translational targeting of nascent proteins to the eukaryotic endoplasmic reticulum membrane, or the bacterial plasma membrane. During this process, two GTPases, one in the SRP and one in the SRP receptor (SR), form a complex in which both proteins reciprocally activate the GTPase reaction of one another. The recent crystal structures of the T. aquaticus SRP.SR complex show that the two GTPases associate via an unusually extensive and highly cooperative interaction surface, and form a composite active site at the interface. GTPase activation proceeds through a unique mechanism, stimulated by both interactions between the twinned GTP molecules across the dimer interface and by conformational rearrangements that position catalytic residues in each active site with respect to the bound substrates. Distinct classes of mutations have been isolated that inhibit specific stages during SRP-SR complex formation and activation, suggesting discrete conformational stages during formation of the active SRP.SR complex. Each stage provides a potential control point in the targeting reaction at which regulation by additional components can be exerted, thus ensuring the binding and release of cargo at the appropriate time.  相似文献   

16.
17.
The signal recognition particle (SRP) is a ribonucleoprotein complex responsible for targeting proteins to the ER membrane in eukaryotes, the plasma membrane in bacteria and the thylakoid membrane in chloroplasts. In higher plants two different SRP-dependent mechanisms have been identified: one post-translational for proteins imported to the chloroplast and one co-translational for proteins encoded by the plastid genome. The post-translational chloroplast SRP (cpSRP) consists of the protein subunits cpSRP54 and cpSRP43. An RNA component has not been identified and does not seem to be required for the post-translational cpSRP. The co-translational mechanism is known to involve cpSRP54, but an RNA component has not yet been identified. Several chloroplast genomes have been sequenced recently, making a phylogenetically broad computational search for cpSRP RNA possible. We have analysed chloroplast genomes from 27 organisms. In higher plant chloroplasts, no SRP RNA genes were identified. However, eight plastids from red algae and Chlorophyta were found to contain an SRP RNA gene. These results suggest that SRP RNA forms a complex in these plastids with cpSRP54, reminiscent of the eubacterial SRP.  相似文献   

18.
Maity TS  Leonard CW  Rose MA  Fried HM  Weeks KM 《Biochemistry》2006,45(50):14955-14964
Many ribonucleoprotein complexes assemble stepwise in distinct cellular compartments, a process that usually involves bidirectional transport of both RNA and proteins between the nucleus and cytoplasm. The biological rationale for such complex transport steps in RNP assembly is obscure. One important example is the eukaryotic signal recognition particle (SRP), a cytoplasmic RNP consisting of one RNA and six proteins. Prior in vivo studies support an "SRP54-late" assembly model in which all SRP proteins, except SRP54, are imported from the cytoplasm to the nucleus to bind SRP RNA. This partially assembled complex is then exported to the cytoplasm where SRP54 binds and forms the SRP holocomplex. Here we show that native SRP assembly requires segregated and ordered binding by its protein components. A native ternary complex forms in vitro when SRP19 binds the SRP RNA prior to binding by SRP54, which approximates the eukaryotic cellular pathway. In contrast, the presence of SRP54 disrupts native assembly of SRP19, such that two RNA-binding loops in SRP19 misfold. These results imply that SRP54 must be sequestered during early SRP assembly steps, as apparently occurs in vivo, for proper assembly of the SRP to occur. Our findings emphasize that spatial compartmentalization provides an additional level of regulation that prevents competition among components and can function to promote native assembly of the eukaryotic SRP.  相似文献   

19.
The signal recognition particle (SRP) is a ubiquitous system for the targeting of membrane and secreted proteins. The chloroplast SRP (cpSRP) is unique among SRPs in that it possesses no RNA and is functional in post-translational as well as co-translational targeting. We have expressed and purified the two components of the Arabidopsis thaliana chloroplast signal recognition particle (cpSRP) involved in post-translational transport: cpSRP54 and the chloroplast-specific protein, cpSRP43. Recombinant cpSRP supports the efficient in vitro insertion of pea preLhcb1 into isolated thylakoid membranes. Recombinant cpSRP is a stable heterodimer with a molecular mass of approximately 100 kDa as determined by analytical ultracentrifugation, gel filtration analysis, and dynamic light scattering. The interactions of the components of the recombinant heterodimer and pea preLhcb1 were probed using an immobilized peptide library (pepscan) approach. These data confirm two previously reported interactions with the L18 region and the third transmembrane helix of Lhcb1 and suggest that the interface of the cpSRP43 and cpSRP54 proteins is involved in substrate binding. Additionally, cpSRP components are shown to recognize peptides from the cleavable, N-terminal chloroplast transit peptide of preLhcb1. The interaction of cpSRP43 with cpSRP54 was probed in a similar experiment with a peptide library representing cpSPR54. The C terminus of cpSRP54 is essential for the formation of the stable cpSRP complex and cpSPR43 interacts with distinct regions of the M domain of cpSRP54.  相似文献   

20.
The signal recognition particle (SRP) is a cytosolic ribonucleoprotein complex that guides secretory proteins to biological membranes in all organisms. The SRP RNA is at the center of the structure and function of the SRP. The comparison of the growing number of SRP RNA sequences provides a rich source for gaining valuable insight into the composition, assembly, and phylogeny of the SRP. In order to assist in the continuation of these studies, we propose an SRP RNA nomenclature applicable to the three divisions of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号