首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As assessed by initial rates of cell aggregation, adhesivity of EDTA-suspended cells is increased by SV 40 transformation of mouse 3T3 and human WI 38 fibroblasts. Preparation of cell suspensions by trypsin treatment decreases the aggregation rate and abolishes the difference between transformed and untransformed cells. These findings suggest that increased cellular adhesivity accompanies the surface alterations induced by viral transformation and that trypsinization masks these changes. Thus, use of freshly trypsinized cells in quantitative assessments of cellular adhesivity may yield results which do not reflect the actual cell properties.  相似文献   

2.
The binding of aggregates formed from various 7-day chick embryo tissues to cultured cell layers was analyzed 24 hr following trypsin dissociation of the tissues. The proprotion of aggregates binding is independent of the number of aggregates added, and changes with time over 60 min in a manner consistent with a first-order process. The adhesive parameter measured, the percentage of aggregates binding to cell layers per unit time, varies slightly with aggregate size but is not dependent upon the probability of collision of the aggregate with the layer. The rate of binding and the effect of modifiers of binding (temperature, inhibitors of oxidative metabolism and glutaraldehyde) are substantially different for neural retina interactions than for liver or heart interactions, suggesting that retina cells may form intercellular bonds via a mechanism distinct from that of liver or heart cells. The rate of binding between like tissue types is, with one exception, greater than between unlike types. Glutaraldehyde treatment of only one of the reactants abolishes this adhesive specificity. Aggregate binding provides a means of quantitatively assessing intercellular adhesion which has the advantage of reducing the effects of trypsinization on measurements of adhesion, and therefore lends itself to the investigation of cellular consequences of adhesion.  相似文献   

3.
Binding of plasma fibronectin to cell layers of human skin fibroblasts   总被引:37,自引:20,他引:17       下载免费PDF全文
Human plasma fibronectin bound to confluent cell layers of cultured human-skin fibroblasts in two distinct pools. Initial binding of fibronectin occurred in a deoxycholate-soluble pool (Pool I). Binding in Pool I was reversible and reached a steady state after 3 h. After longer periods of incubation, fibronectin became bound in a deoxycholate-insoluble pool (Pool II). Binding in Pool II was irreversible and proceeded at a linear rate for 30 h. After 30 h of incubation, a significant proportion of fibronectin bound in Pool II was present as disulfide-bonded multimers. HT1080 cells, a human sarcoma cell line, did not bind fibronectin in either pool. Also, isolated cell matrices prepared by deoxycholate extraction did not bind fibronection. Binding of fibronectin in Pool I of normal fibroblasts occurred via specific, saturable receptors. There were 128,000 binding sites per cell, and KDiss was 3.6 X 10(-8) M. Fluorescence microscopic localization of fibronectin bound in Pool I and Pool II was performed using fluorescein-conjugated fibronectin. Fluorescent staining in Pool I was present in a punctate pattern and in short, fine fibrils. Pool II fluorescence was exclusively in coarse, dense fibrils. These data indicate that plasma fibronectin may become incorporated into the tissue extracellular matrix via specific cell-surface receptors.  相似文献   

4.
Synchronous beating between chick embryonic heart cell aggregates and heart cell layers was used to study the relationship between intercellular adhesion and ionic coupling. Adhesion was measured by counting the proportion of aggregates which were not to be removed from cell layers by gentle washing after a 30 min incubation. Synchrony between bound aggregates and contiguous layers was assessed by phase microscopy. The first evidence of synchrony was seen 1.5 h after addition of aggregates to layers, following which there was an increase in the percentage of aggregates beating synchronously, reaching over 50% at 7 h and slowly increasing to a maximum of 65% by 24 h. Scanning electron microscopy and autoradiography of thymidine-labeled cells suggest that synchrony does not depend on cell movement at the interface between aggregate and layer. Acquisition of synchrony can be prevented completely by inhibiting protein synthesis, although pulsation of aggregates and layers continues in proportions unchanged from controls. After reversal of protein synthesis inhibition, synchrony is acquired at a rate and to an extent closely resembling that of newly adherent controls. These data indicate that ionic coupling is neither an inevitable nor an immediate consequence of adhesion. Since ionic coupling has been shown to correlate with the presence of gap junctions, the findings suggest that gap junctions are not involved in the initial events responsible for intercellular adhesion in vitro and that their formation following adhesion in this system may depend upon protein synthesis.  相似文献   

5.
The temporal dependence of cytoskeletal remodelling on cell-cell contact in HepG2 cells has been established here. Cell-cell contact occurred in an ultrasound standing wave trap designed to form and levitate a 2-D cell aggregate, allowing intercellular adhesive interactions to proceed, free from the influences of solid substrata. Membrane spreading at the point of contact and change in cell circularity reached 50% of their final values within 2.2 min of contact. Junctional F-actin increased at the interface but lagged behind membrane spreading, reaching 50% of its final value in 4.4 min. Aggregates had good mechanical stability after 15 min in the trap. The implication of this temporal dependence on the sequential progress of adhesion processes is discussed. These results provide insight into how biomimetic cell aggregates with some liver cell functions might be assembled in a systematic, controlled manner in a 3-D ultrasound trap.  相似文献   

6.
Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.  相似文献   

7.
Trifluoperazine (TFP) at 5μM completely blocks the formation of adhesion plaque complexes (adhaerens junctions) between aggregating fibroblasts; the drug at this same concentration did not prevent the cells from producing aggregates of normal size and appearance. Implicit in this finding is that aggregation does not rely on adhesion plaque complex formation. When thymidine-3 H labelled 16C and unlabelled BHK fibroblast cells were experimentally combined to form aggregates in which the cells were initially uniformly distributed, the 16C cells, which produced adhesion plaque complexes within minutes and in greater numbers than did BHK cells, congregated in an internal position after the aggregates had been cultured for 12h. This redistribution of the cells, indicated by the positioning of the labelled 16C nuclei, did not occur when the aggregates were exposed to TFP. Thus cell sorting, unlike aggregation, seems to be reliant on the formation of adhesion plaque complexes.  相似文献   

8.
Immobilization of plasminogen via its lysine-binding sites is regarded as a prerequisite for its activation and function in fibrinolysis and pericellular proteolysis. In the present study, the interaction of plasminogen with fimbriae found on Escherichia coli strains causing invasive human infections was studied. Plasminogen displayed concentration-dependent and saturable binding to immobilized type 1 fimbriae and, several fold lower binding to P and S fimbriae. The binding to fimbriae was effectively inhibited by -aminocaproic acid indicating that it was mediated by the lysine-binding sites of plasminogen. Binding studies with mutated fimbriae and inhibition tests indicated that the interaction was not dependent on the lectin subunit of the fimbriae. These results indicate the existence of a novel type of host-microbe interaction which may be important in the invasion by bacteria of host tissues.  相似文献   

9.
Embryonic heart cell aggregates were irradiated with ultraviolet light at wavelengths between 260 and 310 nm. Spontaneous beat rate was monitored with the aid of a closed-circuit TV camera and, in separate experiments, electrophysiological changes were assayed by intracellular recording. The characteristic response of 7-day aggregates was an increase in spontaneous beat rate to a maximum plateau level, followed by a rather abrupt cessation of beating. Intracellular recordings during irradiation showed a marked decline in the maximum rate of rise, overshoot, and repolarization phase of the action potential, and a significant change in threshold toward zero. The action spectrum for the termination of beating peaked between 290 and 295 nm; it fell off sharply at longer wavelengths and more slowly at shorter wavelengths. The maximum increase in beat rate was increasingly greater for shorter wavelengths and exhibited no peak in the wavelength range investigated. The sensitivity of aggregates to 295-nm light, as measured by the inverse of irradiation time required to terminate beating, decreased with increasing aggregate size and external potassium concentration, was relatively independent of temperature, and increased with embryonic age. The ultraviolet-induced increase in beat rate and termination of beating are attributed to separate complementary processes, a depolarization of the membrane, and a decline in "fast" sodium conductance.  相似文献   

10.
To identify molecular interaction partners of the cellular prion protein (PrP(C)), we sought to apply an in situ crosslinking method that maintains the microenvironment of PrP(C). Mild formaldehyde crosslinking of mouse neuroblastoma cells (N2a) that are susceptible to prion infection revealed the presence of PrP(C) in high molecular mass (HMM) protein complexes of 200 to 225 kDa. LC/MS/MS analysis identified three murine splice-variants of the neural cell adhesion molecule (N-CAM) in the complexes, which isolate with caveolae-like domains (CLDs). Enzymatic removal of N-linked sugar moieties did not disrupt the complexes, arguing that the interaction of PrP with N-CAM occurs through amino acid side-chains. Additionally, similar levels of PrP/N-CAM complexes were found in N2a and prion-infected N2a (ScN2a) cells. With the use of an N-CAM-specific peptide library, the PrP-binding site was determined to comprise beta-strands C and C' within the two consecutive fibronectin type III (FNIII) modules found in proximity of the membrane-attachment site of N-CAM. As revealed by in situ crosslinking of PrP deletion mutants, the PrP face of the binding site is formed by the N terminus, helix A (residues 144-154) and the adjacent loop region of PrP. N-CAM-deficient (N-CAM(-/-)) mice that were intracerebrally challenged with scrapie prions succumbed to disease with a mean incubation period of 122 (+/-4.1, SEM) days, arguing that N-CAM is not involved in PrP(Sc) replication. Our findings raise the possibility that N-CAM may join with PrP(C) in carrying out some as yet unidentified physiologic cellular function.  相似文献   

11.
Mesothelin is a glycosylphosphatidylinositol-linked cell surface molecule expressed in the mesothelial lining of the body cavities and in many tumor cells. Based on the finding that a soluble form of mesothelin specifically binds to ovarian carcinoma cell line OVCAR-3, we isolated cDNAs encoding a mesothelin-binding protein by expression cloning. The polypeptides encoded by the two cloned cDNA fragments matched to portions of CA125, an ovarian cancer antigen and a giant mucin-like glycoprotein present at the surface of tumor cells. By flow cytometric analysis and immunoprecipitation, we demonstrate that CA125 binds to mesothelin in a specific manner. Binding of CA125 to membrane-bound mesothelin mediates heterotypic cell adhesion as anti-mesothelin antibody blocks binding of OVCAR-3 cells expressing CA125 to an endothelial-like cell line expressing mesothelin. Finally, we show that CA125 and mesothelin are co-expressed in advanced grade ovarian adenocarcinoma. Taken together, our data indicate that mesothelin is a novel CA125-binding protein and that CA125 might contribute to the metastasis of ovarian cancer to the peritoneum by initiating cell attachment to the mesothelial epithelium via binding to mesothelin.  相似文献   

12.
We have examined correlations between morphological and functional evidence of cell coupling between aggregates of beating embryonic heart cells and underlying layers. Synchronously beating aggregate-layer pairs were compared with asynchronous pairs. Intracellular microelectrode studies demonstrated that asynchronously beating aggregate-layers could not be induced to beat synchronously by electrical stimulation of the aggregate, whereas 86% of synchronous instances showed propagation of stimulating current pulses from aggregate to layer. By freeze fracture we have found significant differences both in the number and in the total area of gap junctions between the aggregate-layer interfaces of synchronous and asynchronous preparations. The data suggest that synchronous beating is a reliable functional indication of effective ionic coupling, and requires a certain area and number of gap junction/cell.  相似文献   

13.
14.
All-atom MD simulations of pre-formed aggregates of GNNQQNY with variable size (5 to 16 peptides), orientation (parallel or anti-parallel), organization (single or double sheet, with or without twist), charge status of termini and temperature (300 and 330K) have been performed for 50ns each (68 simulations; total time=3.4μs). Double-layer systems are stable irrespective of whether the peptides within the sheet are oriented parallel or anti-parallel. The lifetime of single sheet systems is determined by the protonation status, nature of association of peptides and the size of the aggregates. For example, single sheet 8-mers are stable with parallel arrangement and neutral termini, or with anti-parallel arrangement and charged termini. This suggests that the residues flanking the amyloidogenic sequence also play an important role in determining the organization of peptides in an aggregate. Twist of the cross-beta sheets is found to be intrinsic to the aggregates. Main chain H-bonds are key determinants of stability and loss of these H-bonds is followed by disorder and/or dissociation of the peptide despite the presence of side chain hydrogen bonds. Aggregates are inherently asymmetric along the fiber axis and dissociation from the C-edge is observed more often. An aggregate can disintegrate into smaller-sized oligomers or the edge peptides can dissociate sequentially. A variety of dissociation and disintegration events are observed pointing to the existence of multiple pathways for association during nucleation. It appears that a heterogeneous mixture of oligomers of different sizes exist prior to the formation of the critical nucleus.  相似文献   

15.
16.
At the 16-18th stages of development of the chicken embryos adhesion of cell layers of the adenohypophysis and diencephalon anlages is provided with a submicroscopically regulated complex of neutral and acid polysaccharides, bivalent kations and probably proteins. The mechanisms of cells contact in each of the layers with this complex are different.  相似文献   

17.
Linking Rap to cell adhesion   总被引:22,自引:0,他引:22  
The small GTPase Rap1 is involved in several aspects of cell adhesion, including integrin-mediated cell adhesion and cadherin-mediated cell junction formation. Recently, several effector proteins for Rap1 have been identified providing a clear link between Rap1 and actin dynamics. Furthermore, evidence is accumulating that Rap1 functions in the spatial and temporal control of cell polarity.  相似文献   

18.
Subterranean termites move from place to place while foraging by tunneling through soil. During a period of foraging, they are likely to encounter a number of pre-formed tunnels created by, for example, tree roots or the breaking up of a zone of hard or compacted soil. We systematically observed the behavioral response of tunneling termites to such pre-formed, artificially constructed tunnels at widths, W, of 0.5, 1.0, 1.5, and 2.0mm, which mimicked pre-formed tunnels in the field. The two tunnels intersected at an angle, theta (=0 degrees , 10 degrees , 20 degrees , 30 degrees , 40 degrees , 50 degrees , and 60 degrees ) formed between the advance direction of a termite tunnel and the perpendicular direction of a pre-formed tunnel. For W=Wc (=0.5mm) and theta相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号