首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vibrational signalling is a widespread form of animal communication and, in the form of sexual communication, has been generally regarded as inherently short‐range and a private communication channel, free from eavesdropping by generalist predators. A combination of fieldwork and laboratory experiments was used to test the hypothesis that predators can intercept and exploit such signals. First, we developed and characterized PCR primers specific for leafhoppers of the genus Aphrodes and specifically for the species Aphrodes makarovi. Spiders were collected from sites where leafhoppers were present and screened with these primers to establish which spider species were significant predators of this species during the mating period of these leafhoppers. Analysis using PCR of the gut contents of tangle‐web spiders, Enoplognatha ovata (Theridiidae), showed that they consume leafhoppers in the field at a greater rate when signalling adults were present than when nymphs were dominant, suggesting that the spiders were using these vibrations signals to find their prey. Playback and microcosm experiments then showed that E. ovata can use the vibrational signals of male leafhoppers as a cue during foraging and, as a result, killed significantly more male than female A. makarovi. Our results show, for the first time, that arthropod predators can exploit prey vibrational communication to obtain information about prey availability and use this information to locate and capture prey. This may be a widespread mechanism for prey location, one that is likely to be a major unrecognized driver of evolution in both predators and prey.  相似文献   

2.
A simulation model of the green rice leafhopper-spiders system was presented. The validity of this model for simulation purpose was tested by comparing the calculated values with observed ones (Fig. 4). The effectiveness of various control measures against leafhoppers was evaluated by computer simulations. The computer simulation demonstrated that the wrong use of selective insecticide, contrary to expectation, brought an increase in the pest density, i. e., that the egg densities of leafhoppers in the 2nd and 3rd generations are increased by the insecticidal application in February, while they are decreased by the July application (Table 2). To obtain satisfactory control by sterile-male release, 320,000 sterile-male per square kilometer should be released even in the combined use with insecticides (Fig. 5). The escape of leafhoppers from predation by spiders was demonstrated by the simulation. It is suggested that spiders are able to suppress the leafhopper populations at a low density when there is a very favorable balance between spiders and leafhoppers, and this condition may be realized by sophisticated use of selective insecticides (Fig. 6). Factors and/or processes which have to be involved in a more improved systems model are discussed.  相似文献   

3.
A sight-count method for evaluation of predation by spiders on the green rice leafhopper, Nephotettix cincticeps was proposed and its applicability was tested under natural conditions. The number (n) of leafhoppers preyed on by spiders per rice hill per day was estimated by the formula: (1) where F is the frequency of predation observed per hill:P is given by dividing the time spent feeding on prey by 24 hours; and C refers to the total amount of feeding activity expressed in terms of the activity during the standard time interval. The total number (N) of prey attacked during the specified period can be given as follows: (2) With this method, the role of paddy-inhabiting spiders, Lycosa pseudoannulata, Oedothorax insecticeps, Tetragnatha spp, and Enoplognatha japonica, as predator of N. cincticeps was evaluated with reference to life tables of the prey. The advantages and limitation of the sight-count method were discussed as compared with other methods so far proposed.  相似文献   

4.
5.
Aphidophagous coccinellid larvae have a wide range of potential prey in alfalfa and during times of low aphid abundance, larvae may supplement their diet with alternative prey. To understand the effects of the seasonal aphid availability on alternative prey use, an order-specific monoclonal antibody, DrosW-VI-B8, was used to examine the frequency of dipteran predation by these important natural enemies. Over 400 larvae were hand-collected from alfalfa and, in parallel, arthropod abundance was recorded. Harmonia axyridis and Coccinella septempunctata larvae were abundant early in the season when aphid populations were at their peak and Coleomegilla maculata larvae were collected later in the season when potato leafhoppers were abundant in the alfalfa. A relatively low proportion of field-collected H. axyridis, C. septempunctata, and C. maculata tested positive for dipteran proteins throughout the season. Similar to prior studies examining stage differences in coccinellid food breadth, older instars tested positive for dipteran proteins (3rd instar, 6% positive; 4th instar, 7% positive) but no early instars screened positive. This study provides a valuable insight into the trophic linkages that exist between coccinellid larvae and Diptera.  相似文献   

6.
The tea leafhopper, Empoasca vitis (Göthe) (Hemiptera: Cicadellidae), is a major pest of the tea plant, Camellia sinensis (L.) O. Kuntze (Theaceae). In this study, the RGB color model was used to describe the colors of sticky traps. The most effective color for attraction of E. vitis was investigated by orthogonal optimization. The selected color was verified in tea gardens and the most effective height for positioning of color sticky traps for capturing tea leafhoppers was investigated. After the determination of the effect of the three color parameters and their interactions by orthogonal optimization, the color gold (RGB: 255, 215, 0) was selected as the most effective color to trap tea leafhoppers. In tea gardens, more leafhoppers were captured using gold sticky traps (RGB: 226, 204, 4) than using commercially available yellow sticky traps. The most effective height of gold sticky traps for trapping leafhoppers was 40–60 cm above the tea canopy. Few lady beetles were captured at this height. We conclude that the orthogonal optimization method is a convenient and efficient method to screen digitally generated colors for attracting and trapping of pests.  相似文献   

7.
The behavioural responses previously reported from Coccinella septempunctata to the organophosphate, dimethoate, have implications for the effective development of integrated pest management (IPM) strategies. Through a series of simple tests, coccinellids’ consumption rates were measured from live pesticide-resistant aphids, treated with five insecticides from three chemical classes: carbamates, organophosphates and pyrethroids. This study quantifies for the first time the doses of ingested insecticide to which C. septempunctata responds, and demonstrates that a number of insecticides can cause C. septempunctata to change its feeding behaviour. Females were confirmed to eat more than males, and responses to insecticides were observed more frequently in females. Aphid consumption was reduced most in the pyrethroid treatment groups, but choice tests found no preference for either treated or untreated prey in any group. The results are discussed in terms of the mechanism by which coccinellids detect insecticides, and the consequences for IPM.  相似文献   

8.
Deployment of genetically modified (GM), herbicide-tolerant corn may alter weed flora abundance and composition and may affect pests and their natural enemies. Among on-plant predators, Orius spp. are the prevalent group in Spain and were selected to study the impact of glyphosate use on predators. We also studied Nabis sp. which is commonly recorded on corn in the study area. For this, a 4-year study was conducted in NE Spain. Three different herbicide regimes were compared: two glyphosate (a broad-spectrum herbicide) treatments per season, no herbicide treatment, and one pre-emergence conventional treatment with selective herbicides against broadleaf and grassy weeds. Density of main arthropod herbivores and the above two predatory groups was recorded on plants. Differences between herbicide regimes were observed in the two functional groups studied, herbivores and heteropteran predators. The comparison of glyphosate-treated and untreated plots showed significant differences for both functional groups, but the differences between glyphosate-treated and conventionally treated plots for the two functional groups were lower. For Orius spp., annual density per plot was significantly correlated with annual density of leafhoppers and to a lesser extent, with aphids. Nabis sp. densities were never different between glyphosate-treated and conventionally treated plots, and Nabis sp. density showed no relation to any of the herbivores tested. We concluded that no significant changes in heteropteran predator densities may be expected from moderate alterations in weeds arising from the deployment of herbicide-tolerant corn varieties and that leafhoppers are probably the herbivore prey that most influences Orius spp. densities in corn in our study area.  相似文献   

9.
Spiders are common generalist predators, and understanding their potential in biological control is important for the development of integrated pest management programs. In this study, predation by three groups of spiders on the mirid bug Stenotus rubrovittatus (Hemiptera: Miridae) in rice paddies was investigated using DNA-based gut-content analysis. A laboratory feeding study revealed that the detection half-lives of bug DNA in the spider gut at 25 °C was 3.4 days for Lycosidae and 1.5 days for Tetragnathidae. Individual spider predation on the mirid bug was investigated by detecting DNA of prey in field-collected spiders. In total, 1199 spiders were assayed from three spider groups: Pirata subpiraticus (Lycosidae), Tetragnatha spp. (Tetra-gnathidae), and Pachygnatha clercki (Tetra-gnathidae), which each differ in their preferred microhabitat as well as their predatory habits. Detection rates of prey DNA in spiders increased significantly with the density of prey across all spider groups. P. subpiraticus and Tetragnatha spp. predation showed a better fit to a saturated response curve to increasing prey density, while P. clercki showed a simple linear relationship with prey density. Densities of alternative prey species did not affect the detection rates of mirids. These results suggest that predation on pests by generalist predators in an agroecosystem is affected not only by prey abundance but also by predator preference for specific prey. Predator preference is therefore an important factor to consider when estimating the role of natural enemies as biological control agents.  相似文献   

10.
Differences in structural complexity of habitats have been suggested to modify the extent of top–down forces in terrestrial food webs. In order to test this hypothesis, we manipulated densities of generalist invertebrate predators and the complexity of habitat structure in a two-factorial design. We conducted two field experiments in order to study predation effects of ants and spiders and, in particular, of the wasp spider Argiope bruennichi on herbivorous arthropods such as grasshoppers, plant- and leafhoppers in a grassland. Predator densities were manipulated by removal in habitats of higher and lower structural diversity, and the effects on herbivore densities were assessed by suction sampling. Habitat structure was changed by cutting the vegetation to half its height and removing leaf litter.We found a significant negative effect of this assemblage of generalist predators on plant- and leafhoppers, which were 1.6 times more abundant in predator removal plots. This effect was stronger in low-structured (cut) than in uncut vegetation. Densities of the most abundant planthopper Ribautodelphax pungens (Delphacidae) were 2.2 times higher in predator removal plots. Furthermore, adult plant- and leafhoppers responded more strongly than juveniles and epigeic species more strongly than hypergeic species. The presence of predators had a positive effect on plant- and leafhopper species diversity. In a second field experiment, we tested the exclusive impact of Argiope bruennichi on its prey, and found that its effect was also significant, although weaker than the effect of the predator assemblage. This effect was stronger in grass-dominated vegetation compared to structurally more complex mixed vegetation of grasses and herbs. We conclude that habitat structure and in particular vegetation height and architectural complexity strongly modify the strength of top–down forces and indirectly affect the diversity of herbivorous arthropods.  相似文献   

11.
The diamondback moth (DBM), Plutella xylostella (L.), is a major pest of brassica crops worldwide. Control of this pest is difficult because it rapidly develops resistance to synthetic and biological insecticides and because of the effects of insecticides on its natural enemies. Podisus nigrispinus (Dallas) is a predator that feeds on its prey, as well as on the host plants of its prey, and is an important biological control agent of DBMs. The aim of this study was to determine the susceptibility of P. xylostella larvae to two bioinsecticides: the HD1 strain of Bacillus thuringiensis (B. thuringiensis var. kurstaki) and the commercial product Agree® (B. thuringiensis var. aizawai CG 91). In addition, the impact of these bioinsecticides on the P. nigrispinus consumption of DBM larvae and phytophagy was evaluated. Both the HD1 strain and Agree® caused 100% mortality in P. xylostella larvae. P. nigrispinus nymphs fed only with kale leaves (Brassica oleracea var. acephala) sprayed with water, the HD1 strain, or Agree® did not complete their nymphal development. When prey was also available, P. nigiripinus fed on kale leaves to obtain water. Both nymphs and adults of P. nigrispinus consumed greater numbers of DBM larvae, and fed less on kale leaves, when sprayed with the HD1 strain or Agree®. These results suggest a positive interaction of B. thuringiensis‐based products and the predator P. nigrispinus in the control of P. xylostella larvae.  相似文献   

12.
1 A recent study revealed the capacity of the Orius insidiosus to suppress populations of Frankliniella spp. in field pepper during the spring when thrips are rapidly colonizing and reproducing. In this study, population abundance in pepper during spring, summer, and autumn was determined to understand better predator/prey dynamics under local conditions. Local movement between pepper flowers also was quantified to examine how population attributes of the predator allow suppression of rapidly moving populations of prey. 2 Randomized complete block experiments established in the autumn of 1998 and the spring of 1999 included treatments of biological and synthetic insecticides, which altered the population densities of predator and prey. Numbers of O. insidiosus in relation to prey were sufficient in 1998 to prevent build‐up of thrips populations. In 1999, populations of thrips were unable to recover from near extinction owing to persistence of the predator. The predator rapidly recolonized plots treated with insecticide. 3 Greenhouse plants of the same age as field plants were used to monitor movement by predators and prey. Movement by F. occidentalis was limited, whereas F. tritici and F. bispinosa moved rapidly to the greenhouse plants. The males of each thrips species moved more rapidly than the females. There was evidence that rapid movement assisted F. tritici and F. bispinosa in avoiding predation, but O. insidiosus also moved very rapidly to the greenhouse plants. This attribute explains the predator's ability to suppress thrips rapidly even when populations are rapidly colonizing and reproducing in the flowers.  相似文献   

13.
The biology of the veliid bug M. d. atrolineata, its predatory behavior, and the effects of plural hunting were studied to evaluate its role as a predator of the brown planthopper Nilaparvata lugens in the Philippines. The probability of planthoppers falling onto the water surface and provision of habitat continuity was measured by a sticky trap placed at the base of rice hills in a greenhouse and in paddy fields. The developmental period of immature stages combined was 21 days. If given prey, females laid 25 eggs on the average during an adult life span of 18 days. Starved adults could survive for only 3–5 days. The functional response to prey density was sigmoid, and the maximum number of prey killed was 7 per day. Prey feeding was completed in 12–36 min. The percentage of successful prey attacks averaged 5–8%, decreasing with higher (and larger) developmental. stages of prey, but adult prey were found the soonest. Plural hunting increased the probability of capturing prey by as much as 2.5 times that by individual hunting. Late-instar nymphs, which may be more active, fell from rice hills in a greenhouse more than early-instar nymphs, and the number falling increased with density. In the field the percentage of planthoppers falling to the water in 1 day varied considerably, from 1% for nymphs in one field to 67% for adults in another field. On the basis of work described above and given the high density of veliid predators in flooded paddy fields of tropical Asia, M. d. atrolineata is considered one of the most important natural enemies of the brown planthopper.  相似文献   

14.
Colonization of tomato greenhouses by native predatory mirid bugs at the end of the spring cycle is common in the western Mediterranean area when no broad-spectrum insecticides are applied. Due to their polyphagy, these predators interact with pest populations and also with other natural enemies present in the crop. In this work we evaluate the abundance and timing of greenhouse colonization by these predators and their interaction with the greenhouse whitefly Trialeurodes vaporariorum, a key crop pest, and its introduced parasitoid Encarsia formosa. Although quite unpredictable, natural colonization of greenhouses by Macrolophus caliginosus and Dicyphus tamaninii, the two predominant species in our location, usually leads to the establishment of predator populations in the crop that subsequently prey on greenhouse whitefly. No preference for parasitized pupae was observed in greenhouse samples, while laboratory experiments revealed a marked tendency to avoid parasitoid pupae. In our area, IPM programs for greenhouse tomatoes and other vegetables should take advantage of the presence of this predator complex by allowing the immigration and establishment of its populations without disturbing them with highly toxic and non-selective insecticides.  相似文献   

15.
Several leafhopper variants of the Circulifer tenellus complex were collected in “citrus stubborn” affected areas in Israel. Two of these variants transmitted the Spiroplasma citri to Matthiola incana after being injected with the disease agent. The variant from Atriplex halimus was designated Circulifer tenellus-A (CTA) and the variant from Portulaca oleracea was designated Circulifer tenellus-? (CTP). Transmission characteristics were determined for both leafhoppers. A high rate of transmission (43.3%) was obtained by single CTA leafhoppers that were injected with the Amiad S. citri isolate from the Upper Galilee, compared with 7% transmission obtained with the CTP leafhoppers. The Gilgal S. citri isolate from the Jordan Valley, was not transmitted by either. Injection was more effective than acquisition access feeding to render the leafhopper infective for both CTA and CTP. The minimum acquisition access period needed for the CTA variant to transmit the Amiad isolate was 1 h. Longer AAPs did not necessarily result in a higher rate of transmission. The minimum incubation period was 6 days and the maximum was 32 days. The LP50 calculated from the logarithmic curve y = 45.74Ln(x)–53.68 was 9.64 days. The minimum inoculation access period (IAP) was lh. The same transmission parameters for the CTP variant could not be determined, as no transmission was obtained even when groups of five-six insects were placed on a single plant.  相似文献   

16.
Field studies were conducted in 1992 and 1993 in Hermiston, Oregon, to evaluate the efficacy of transgenic Bt potato (Newleaf®, which expresses the insecticidal protein Cry3Aa) and conventional insecticide spray programs against the important potato pest, Leptinotarsa decemlineata (Say), Colorado potato beetle (CPB), and their relative impact on non-target arthropods in potato ecosystems. Results from the two years of field trials demonstrated that Newleaf potato plants were highly effective in suppressing populations of CPB, and provided better CPB control than weekly sprays of a microbial Bt-based formulation containing Cry3Aa, bi-weekly applications of permethrin, or early- and mid-season applications of systemic insecticides (phorate and disulfoton). When compared with conventional potato plants not treated with any insecticides, the effective control of CPB by Newleaf potato plants or weekly sprays of a Bt-based formulation did not significantly impact the abundance of beneficial predators or secondary potato pests. In contrast to Newleaf potato plants or microbial Bt formulations, however, bi-weekly applications of permethrin significantly reduced the abundance of several major generalist predators such as spiders (Araneae), big-eyed bugs (Geocorus sp.), damsel bugs (Nabid sp.), and minute pirate bugs (Orius sp.), and resulted in significant increases in the abundance of green peach aphid (GPA), Myzus persicae (Sulzer) – vector of viral diseases, on the treated potato plots. While systemic insecticides appeared to have reduced the abundance of some plant sap-feeding insects such as GPA, lygus bugs, and leafhoppers, early and mid-season applications of these insecticides had no significant impact on populations of the major beneficial predators. Thus, transgenic Bt potato, Bt-based microbial formulations and systemic insecticides appeared to be compatible with the development of integrated pest management (IPM) against other potato pests such as GPA because these CPB control measures have little impact on major natural enemies. In contrast, the broad-spectrum pyrethroid insecticide (permethrin) is less compatible with IPM programs against GPA and the potato leafroll viral disease.  相似文献   

17.
Chrysanthemum yellows (CY) phytoplasma is a plant-pathogenic mollicutes belonging to the 16Sr-IB genetic group which infects a variety of dicotyledonous plants and is transmitted in nature by some species of Cicadellidae Deltocephalinae. The transmission characteristics of CY and the factors influencing the vector efficiencies of the leafhoppers Macrosteles quadripunctulatus Kirschbaum and Euscelidius variegatus Kirschbaum are described in the present study using transmission experiments and phytoplasma-specific polymerase chain reaction (PCR) assays. Vector insects were allowed to acquire CY under different experimental conditions and then transferred to healthy test plants for inoculation and/or sampled for DNA extraction and amplification. The transmission efficiency of CY was very high and almost all the leafhoppers became infective following acquisition on CY-infected daisies. The latent period in the vector ranged from 16 to 20 days after the start of the acquisition and infectivity lasted, in general, for life. The PCR assay was successful in detecting CY phytoplasmas in the insects well before they became infective (5 versus 16–18 days) and was used to estimate the proportion of infective insects. When analysed for CY presence by PCR, all the leafhoppers fed for 7–18 days on source daisy reacted positively while, following one day of acquisition, some insects failed to provide amplification. Host-plant species influenced CY acquisition, and daisy appeared a more efficient source for both leafhoppers compared to periwinkle. Life stage did not appear to be critical for CY acquisition, although newly-hatched nymphs of E. variegatus acquired CY less efficiently than fifth instar nymphs.  相似文献   

18.
A mechanistic, prey surface‐dependent model was expanded to describe the course and rate of gastric evacuation in predatory fishes feeding on crustacean prey with robust exoskeletons. This was accomplished by adding a layer of higher resistance to the digestive processes outside the inner softer parts of a prey cylinder abstraction and splitting up the prey evacuation into two stages: an initial stage where the exoskeleton is cracked and a second where the prey remains are digested and evacuated. The model was parameterized for crustaceans with different levels of armour fed to Atlantic cod Gadus morhua or whiting Merlangius merlangus and recovered from the stomachs at different post‐prandial times. The prey species were krill Meganyctiphanes norvegica; shrimps and prawns Crangon crangon, Pandalus borealis, Pandalus montagui and Eualus macilentus; crabs Liocarcinus depurator and Chionoecetes opilio. In accordance with the apparent intraspecific isometric relationship between exoskeleton mass and total body mass, the model described stage duration and rate of evacuation of the crustacean prey independently of meal and prey sizes. The duration of the first stage increased (0–33 h) and the evacuation rate of both stages decreased (by a half) with increasing level of the crustacean armament in terms of chitin and ash. A common, interspecific parameterization of the model within each of the categories krill, shrimp and crab can probably be used if the contents of chitin and ash are similar among prey species per prey category. The model offers a simple way for estimating evacuation rates from stomach content data in order to obtain food consumption rates of wild fishes, provided that information about digestion stage of crustacean prey is available.  相似文献   

19.
  • 1 The Anagrusatomus’ parasitoid group (Hymenoptera: Mymaridae), associated with Empoasca vitis (Göthe) (Homoptera: Cicadellidae), overwinters on vegetation surrounding vineyards. The emergence of parasitoid adults from grapevine leaves in autumn was studied in north‐eastern Italy, both in relation to the E. vitis egg‐laying period and to the presence of leafhoppers overwintering as eggs on Rubus bushes.
  • 2 Autumnal peaks of Anagrus captured using yellow sticky traps were observed first on grapevines and then on brambles. Parasitoid captures in vineyards were observed for more than 1 month after the last first‐instar nymphs of the grape leafhoppers were noticed. Two species belonging to the A. ‘atomus’ group, Anagrus atomus and Anagrus ustulatus, were captured both on grapevines and brambles.
  • 3 Parasitoids of the A.atomus’ group can emerge from third‐generation grape leafhopper eggs in accordance with two different development time patterns (i.e. normal or delayed). Individuals with delayed emergence required up to 2.2‐fold more time to develop from an egg to adult than individuals with normal emergence. This meant that some parasitoid adults emerged in autumn from eggs of grape leafhopper laid in August.
  • 4 A delayed emergence as a result of a slower development ensures that the A.atomus’ parasitoid group is synchronized with the egg‐laying of leafhoppers that overwinter as eggs on Rubus spp.
  • 5 Consequently, leafhoppers overwintering as eggs on brambles play a key role in the ecology of the relationship between grape leafhoppers and the A.atomus’ parasitoid group.
  相似文献   

20.
Non-consumptive effects (NCEs) of predators are part of the complex interactions among insect natural enemies and prey. NCEs have been shown to significantly affect prey foraging and feeding. Leafhopper''s (Auchenorrhyncha) lengthy phloem feeding bouts may play a role in pathogen transmission in vector species and also exposes them to predation risk. However, NCEs on leafhoppers have been scarcely studied, and we lack basic information about how anti-predator behaviour influences foraging and feeding in these species. Here we report a study on non-consumptive and consumptive predator-prey interactions in a naturally co-occurring spider–leafhopper system. In mesocosm arenas we studied movement patterns during foraging and feeding of the leafhopper Psammotettix alienus in the presence of the spider predator Tibellus oblongus. Leafhoppers delayed feeding and fed much less often when the spider was present. Foraging movement pattern changed under predation risk: movements became more frequent and brief. There was considerable individual variation in foraging movement activity. Those individuals that increased movement activity in the presence of predators exposed themselves to higher predation risk. However, surviving individuals exhibited a ‘cool headed’ reaction to spider presence by moving less than leafhoppers in control trials. No leafhoppers were preyed upon while feeding. We consider delayed feeding as a “paradoxical” antipredator tactic, since it is not necessarily an optimal strategy against a sit-and-wait generalist predator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号