首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of glycolate to glyoxylate is an important reaction step in photorespiration. Land plants and charophycean green algae oxidize glycolate in the peroxisome using oxygen as a co-factor, whereas chlorophycean green algae use a mitochondrial glycolate dehydrogenase (GDH) with organic co-factors. Previous analyses revealed the existence of a GDH in the mitochondria of Arabidopsis thaliana (AtGDH). In this study, the contribution of AtGDH to photorespiration was characterized. Both RNA abundance and mitochondrial GDH activity were up-regulated under photorespiratory growth conditions. Labelling experiments indicated that glycolate oxidation in mitochondrial extracts is coupled to CO(2) release. This effect could be enhanced by adding co-factors for aminotransferases, but is inhibited by the addition of glycine. T-DNA insertion lines for AtGDH show a drastic reduction in mitochondrial GDH activity and CO(2) release from glycolate. Furthermore, photorespiration is reduced in these mutant lines compared with the wild type, as revealed by determination of the post-illumination CO(2) burst and the glycine/serine ratio under photorespiratory growth conditions. The data show that mitochondrial glycolate oxidation contributes to photorespiration in higher plants. This indicates the conservation of chlorophycean photorespiration in streptophytes despite the evolution of leaf-type peroxisomes.  相似文献   

2.
The major photorespiratory pathway in higher plants is distributed over chloroplasts, mitochondria, and peroxisomes. In this pathway, glycolate oxidation takes place in peroxisomes. It was previously suggested that a mitochondrial glycolate dehydrogenase (GlcDH) that was conserved from green algae lacking leaf-type peroxisomes contributes to photorespiration in Arabidopsis thaliana. Here, the identification of two Arabidopsis mitochondrial alanine:glyoxylate aminotransferases (ALAATs) that link glycolate oxidation to glycine formation are described. By this reaction, the mitochondrial side pathway produces glycine from glyoxylate that can be used in the glycine decarboxylase (GCD) reaction of the major pathway. RNA interference (RNAi) suppression of mitochondrial ALAAT did not result in major changes in metabolite pools under standard conditions or enhanced photorespiratroy flux, respectively. However, RNAi lines showed reduced photorespiratory CO(2) release and a lower CO(2) compensation point. Mitochondria isolated from RNAi lines are incapable of converting glycolate to CO(2), whereas simultaneous overexpression of GlcDH and ALAATs in transiently transformed tobacco leaves enhances glycolate conversion. Furthermore, analyses of rice mitochondria suggest that the side pathway for glycolate oxidation and glycine formation is conserved in monocotyledoneous plants. It is concluded that the photorespiratory pathway from green algae has been functionally conserved in higher plants.  相似文献   

3.
Unicellular green algae such as Chlamydomonas and Dunaliella excrete small amounts of glycolate during active photosynthesis. This phenomenon has been explained by the fact that these algae do not have leaf-type peroxisomes and glycolate oxidase; instead, they have a limited capacity to metabolise glycolate in their mitochondria by a membrane-associated glycolate dehydrogenase. Salicylhydroxamic acid (SHAM), an inhibitor of alternative oxidase in plant and algal mitochondria, stimulates glycolate excretion by the algae or their isolated chloroplasts 5-fold. In the presence of SHAM, cells of Chlamydomonas or Dunaliella grown with high-CO2 (5% CO2 in air, v/v) or adapted with air levels of CO2 excreted glycolate at a rate of about 14 µmol glycolate mg−1 Chl h−1. Aminooxyacetate (AOA), an inhibitor of aminotransferases, also increases glycolate excretion by the algal cells or chloroplasts but at a lower rate (about 50%) than SHAM. The algal, light dependent, SHAM-sensitive glycolate oxidizing system in the chloroplasts appears to be the primary site for glycolate oxidation, and it is different and more active then the minor mitochondrial glycolate dehydrogenase.  相似文献   

4.
Glycolate dehydrogenase activity has been localized in the mitochondria of two marine diatoms. Polarographic data and difference spectra show that the enzyme is linked indirectly to oxygen via the electron transport system. The results presented indicate that the system responsible for the oxidation of glycolic acid in the diatom has evolved along lines distinctly different from glycolate oxidation in higher plants.  相似文献   

5.
There are many kinds of dicotyledonous C(3) plants, which often release CO(2) fixed by photosynthesis and consume energy in photorespiration. In Escherichia coli, glycolate can be metabolized by an oxidation pathway that has some of the same compounds as dicotyledonous photorespiration. With the bacterial glycolate metabolism pathway, photorespiration of dicotyledonous plants is genetically modified for less CO(2) release and more biomass. In this study, two plasmids involved in this modification were constructed for targeting two enzymes of the glycolate oxidizing pathway, glyoxylate carboligase and tartronic semialdehyde reductase, and glycolate dehydrogenase in Arabidopsis thaliana mitochondria in this pathway. All three enzymes are located in chloroplast by transit peptide derived from Pisum sativum small unit of Rubisco. So far, some crops have been transformed by the two plasmids. Through transformation of the two plasmids, photosynthesis of dicotyledonous plants may be promoted more easily and release less CO(2) into the atmosphere.  相似文献   

6.
Cell-free extracts of Chlorella pyrenoidosa contained two enzymes capable of oxidizing d-lactate; these were glycolate dehydrogenase and NAD(+)-dependent d-lactate dehydrogenase. The two enzymes could be distinguished by differential centrifugation, glycolate dehydrogenase being largely particulate and NAD(+)-d-lactate dehydrogenase being soluble. The reduction of pyruvate by NADH proceeded more rapidly than the reverse reaction, and the apparent Michaelis constants for pyruvate and NADH were lower than for d-lactate and NAD(+). These data indicated that under physiological conditions, the NAD(+)-linked d-lactate dehydrogenase probably functions to produce d-lactate from pyruvate.Lactate dehydrogenase activity dependent on NAD(+) was found in a number of other green algae and in the green tissues of a few lower land plants. When present in species which contain glycolate oxidase rather than glycolate dehydrogenase, the enzyme was specific for l-lactate rather than d-lactate. A cyclic system revolving around the production and utilization of d-lactate in some species and l-lactate in certain others is proposed.  相似文献   

7.
Homogenates of various lower land plants, aquatic angiosperms, and green algae were assayed for glycolate oxidase, a peroxisomal enzyme present in green leaves of higher plants, and for glycolate dehydrogenase, a functionally analogous enzyme characteristic of certain green algae. Green tissues of all lower land plants examined (including mosses, liverworts, ferns, and fern allies), as well as three freshwater aquatic angiosperms, contained an enzyme resembling glycolate oxidase, in that it oxidized l- but not d-lactate in addition to glycolate, and was insensitive to 2 mm cyanide. Many of the green algae (including Chlorella vulgaris, previously claimed to have glycolate oxidase) contained an enzyme resembling glycolate dehydrogenase, in that it oxidized d- but not l-lactate, and was inhibited by 2 mm cyanide. Other green algae had activity characteristic of glycolate oxidase and, accordingly, showed a substantial glycolate-dependent O2 uptake. It is pointed out that this distribution pattern of glycolate oxidase and glycolate dehydrogenase among the green plants may have phylogenetic significance.  相似文献   

8.
We introduced the Escherichia coli glycolate catabolic pathway into Arabidopsis thaliana chloroplasts to reduce the loss of fixed carbon and nitrogen that occurs in C(3) plants when phosphoglycolate, an inevitable by-product of photosynthesis, is recycled by photorespiration. Using step-wise nuclear transformation with five chloroplast-targeted bacterial genes encoding glycolate dehydrogenase, glyoxylate carboligase and tartronic semialdehyde reductase, we generated plants in which chloroplastic glycolate is converted directly to glycerate. This reduces, but does not eliminate, flux of photorespiratory metabolites through peroxisomes and mitochondria. Transgenic plants grew faster, produced more shoot and root biomass, and contained more soluble sugars, reflecting reduced photorespiration and enhanced photosynthesis that correlated with an increased chloroplastic CO(2) concentration in the vicinity of ribulose-1,5-bisphosphate carboxylase/oxygenase. These effects are evident after overexpression of the three subunits of glycolate dehydrogenase, but enhanced by introducing the complete bacterial glycolate catabolic pathway. Diverting chloroplastic glycolate from photorespiration may improve the productivity of crops with C(3) photosynthesis.  相似文献   

9.
Glycolate Pathway in Algae   总被引:18,自引:14,他引:4       下载免费PDF全文
No glycolate oxidase activity could be detected by manometric, isotopic, or spectrophotometric techniques in cell extracts from 5 strains of algae grown in the light with CO(2). However, NADH:glyoxylate reductase, phosphoglycolate phosphatase and isocitrate dehydrogenase were detected in the cell extracts. The serine formed by Chlorella or Chlamydomonas after 12 seconds of photosynthetic (14)CO(2) fixation contained 70 to 80% of its (14)C in the carboxyl carbon. This distribution of label in serine was similar to that in phosphoglycerate from the same experiment. Thus, in algae serine is probably formed directly from phosphoglycerate. These results differ from those of higher plants which form uniformly labeled serine from glycolate in short time periods when phosphoglycerate is still carboxyl labeled.In glycolate formed by algae in 5 and 10 seconds of (14)CO(2) fixation, C(2) was at least twice as radioactive as C(1). A similar skewed labeling in C(2) and C(3) of 3-phosphoglycerate and serine suggests a common precursor for glycolate and 3-phosphoglycerate. Glycine formed by the algae, however, from the same experiments was uniformly labeled.Manganese deficient Chlorella incorporated only 2% of the total (14)CO(2) fixed in 10 minutes into glycolate, while in normal Chlorella 30% of the total (14)C was found in glycolate. Manganese deficient Chlorella also accumulated more (14)C in glycine and serine.Glycolate excretion by Chlorella was maximal in 10 mm bicarbonate and occurred only in the light, and was not influenced by the addition of glycolate. No time dependent uptake of significant amounts of either glycolate or phosphoglycolate was observed. When small amounts of glycolate-2-(14)C were fed to Chlorella or Scenedesmus, only 2 to 3% was metabolized after 30 to 60 minutes. The algae were not capable of significant glycolate metabolism as is the higher plant.The failure to detect glycolate oxidase, the low level glycolate-(14)C metabolism, and the formation of serine from phosphoglycerate rather than from glycolate are consistent with the concept of an incomplete glycolate pathway in algae.  相似文献   

10.
Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N(2)-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to harbor genes for both GlcD and GOX proteins. The GOX-like proteins from Nostoc (No-LOX) and from Chlamydomonas reinhardtii showed high L-lactate oxidase (LOX) and low GOX activities, whereas glycolate was the preferred substrate of the phylogenetically related At-GOX2 from Arabidopsis thaliana. Changing the active site of No-LOX to that of At-GOX2 by site-specific mutagenesis reversed the LOX/GOX activity ratio of No-LOX. Despite its low GOX activity, No-LOX overexpression decreased the accumulation of toxic glycolate in a cyanobacterial photorespiratory mutant and restored its ability to grow in air. A LOX-deficient Nostoc mutant grew normally in nitrate-containing medium but died under N(2)-fixing conditions. Cultivation under low oxygen rescued this lethal phenotype, indicating that N(2) fixation was more sensitive to O(2) in the Δlox Nostoc mutant than in the wild type. We propose that LOX primarily serves as an O(2)-scavenging enzyme to protect nitrogenase in extant N(2)-fixing cyanobacteria, whereas in plants it has evolved into GOX, responsible for glycolate oxidation during photorespiration.  相似文献   

11.
H. Stabenau  U. Winkler  W. Säftel 《Planta》1993,191(3):362-364
The occurrence of glycolate oxidase in addition to glycolate dehydrogenase in Dunaliella salina and D. primolecta, as reported in the literature, could not be confirmed. Both species were demonstrated to possess only glycolate dehydrogenase. After separation of organelles by gradient centrifugation, glycolate dehydrogenase along with hydroxypyruvate reductase was found exclusively in the mitochondria. Thus the peroxisomes from Dunaliella are not of the leaf-type: because of their content of catalase, uricase and hydroxyacyl-CoA dehydrogenase they appear to be of the same type as in Eremosphaera and other chlorophycean algae. No activity of glycolate dehydrogenase was found in the chloroplast fraction when the 2,6-dichlorophenol-indophenol test was used.This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

12.
Two species of blue-green algae Anabaena flosaquae and Oscillatoria sp. were shown to assimilate glycolic acid. In the presence of DCMU in light, approximately 50% of it wax oxidized to carbon dioxide; 90% was oxidized in the dark. Glycolate assimilation was increased fivefold by lowering the pH of the medium from 9.0 to 5.0, and the rate of uptake increased with increasing concentration of exogenous glycolate up to a saturation concentration of 12–14 mM. α-Hydroxysulfonates markedly inhibited glycolate uptake and oxidation but iso-nicotinyl hydrazide had little effect. These results indicate that glycolate oxidation occurs in vivo, but that the glycolate pathway in these algae differs some-what from that of higher plants.  相似文献   

13.
The localization of glycollate-pathway enzymes in Euglena.   总被引:9,自引:0,他引:9       下载免费PDF全文
Isolation of organelles from broken-cell suspensions of phototrophically grown Euglena gracilis Klebs was achieved by isopycnic centrifugation on sucrose gradients. 2. Equilibrium densities of 1.23g/cm3 for peroxisome-like particles, 1.22g/cm3 for mitochondria and 1.17g/cm3 for chloroplasts were recorded. 3. The enzymes glycollate dehydrogenase, glutamate-glyoxylate aminotransferase, serineglyoxylate aminotransferase, aspartate-alpha-oxoglutarate aminotransferase, hydroxy pyruvate reductase and malate dehydrogenase were present in peroxisome-like particles. 4. Unlike higher plants glycollate dehydrogenase and glutamate-glyoxylate aminotransferase were present in the mitochondria of Euglena. 5. Rates of glycollate and D-lactate oxidation were additive in the mitochondria, and, although glycollate dehydrogenase was inhibited by cyanide, D-lactate dehydrogenase activity was unaffected. 6. Glycollate oxidation was linked to O2 uptake in mitochondria but not in peroxisome-like particles. This glycollate-dependent O2 uptake was inhibited by antimycin A or cyanide. 7. The physiological significance of glycollate metabolism in Euglena mitochondria is discussed, with special reference to its role in photorespiration in algae.  相似文献   

14.
Glycolate metabolism in green algae   总被引:3,自引:0,他引:3  
Using 14C-labelled substrates, the succession of the single steps in the glycolate metabolism was investigated in Mougeotia scalaris and Eremosphaera viridis , which, within the group of green algae, are representatives of the evolutionary lines of Charophyta and Chlorophyta , respectively. In both algae the same metabolites are formed as in higher plants, although in Eremosphaera , which in contrast to Mougeotia does not possess leaf peroxisomes, all reactions are exclusively mitochondrial. Concomitant with the oxidation of glycolate, the synthesis of ATP was demonstrated in Eremosphaera . Formation of tartronic semi-aldehyde or other products different from those in land plants could not be demonstrated in either of these algae. Excretion of glycolate by Mougeotia and Eremosphaera is enhanced by decreasing the CO2 concentration as well as by increasing the light intensity, but is completely stopped about 14 h later. Whereas increasing enzyme activities of the glycolate pathway apparently reduces glycolate excretion in Mougeotia , activation of CO2 pumps seems to be the dominant reaction to prevent glycolate excretion in Eremosphaera . Mesostigma viride is one of the phylogenetically oldest algae in the group of Charophyceae . As this alga has already been demonstrated to contain microbodies with enzymes of leaf peroxisomes, the peroxisomal glycolate pathway must have originated at a very early stage. Surprisingly, the organelles from Mesostigma contain also the glyoxysomal marker enzyme isocitrate lyase suggesting these microbodies to be prototypes from which both glyoxysomes and leaf peroxisomes evolved.  相似文献   

15.
Leaf-type peroxisomes are not present in the primitive unicellular Prasinophycean line of algae but are present in the multicellular algae Mougeotia, Chara, and Nitella, which are in the one evolutionary line, Charophyceae, that led to higher plants. Processes related to glycolate metabolism that may have been modified or induced with the appearance of peroxisomes have been examined. The algal dissolved inorganic carbon-concentrating mechanism and alkalization of the medium during photosynthesis were not lost when peroxisomes appeared in the members of the Charophycean line of algae. Therefore, it is unlikely that lowering of the CO2 concentration in the environment was a major factor in the evolutionary appearance of peroxisomes. Multicellular Mougeotia, early members of the Charophycean line of algae, have peroxisomes, but they excrete excess glycolate into the medium. The cytosolic pyruvate reductase for D-lactate synthesis and the glycolate dehydrogenase activity almost disappeared when peroxisomal glycolate oxidase, which also oxidizes L-lactate, appeared. These biochemical changes do not indicate what caused the induction of leaf-type peroxisomes in this evolutionary line of algae. The oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase and glycolate oxidase require about 200 to 400 [mu]M O2 for 0.5 Vmax. These high-O2-requiring steps in glycolate metabolism would have functioned faster with increasing atmospheric O2, which might have been the causative factor in the induction of peroxisomes.  相似文献   

16.
Glycolate dehydrogenase occurs in nine species of the Prasinophyceae. The occurrence of glycolate dehydrogenase in these unicellular flagellated organisms does not correspond to the lines of evolution suggested for the green algae based on glycolate enzymology and the nature of the spindle at telophase of mitosis. It is proposed that the evolutionary divergence of the glycolate enzyme came after the evolutionary divergence of the spindle features in the green algae.  相似文献   

17.
Glycolate pathway in green algae   总被引:4,自引:1,他引:3       下载免费PDF全文
By three criteria, the glycolate pathway of metabolism is present in unicellular green algae. Exogenous glycolate-1-14C was assimilated and metabolized to glycine-1-14C and serine-1-14C. During photosynthetic 14CO2 fixation the distributions of 14C in glycolate and glycine were similar enough to suggest a product-precursor relationship. Five enzymes associated with the glycolate pathway were present in algae grown on air. These were P-glycolate phosphatase, glycolate dehydrogenase (glycolate:dichloroindophenol oxidoreductase), l-glutamate:glyoxylate aminotransferase, serine hydroxymethylase, and glycerate dehydrogenase. Properties of glycerate dehydrogenase and the aminotransferase were similar to those from leaf peroxisomes. The specific activity of glycolate dehydrogenase and serine hydroxymethylase in algae was 1/5 to 1/10 that of the other enzymes, and both these enzymes appear ratelimiting for the glycolate pathway.  相似文献   

18.
Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP(+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall-esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes.  相似文献   

19.
Twenty-seven species of coccoid, zoospore-producing green algae representing 16 genera in the Chlorococcales and Chlorosarcinales were assayed for glycolate oxidase or glycolate dehydrogenase. Only Planophila terrestris Groover & Bold and Fasciculochloris boldii Trainor, contained glycolate oxidase whereas the others contained glycolate dehydrogenase. Representative algae were grown under varying conditions and assayed to determine any effects on these glycolate enzymes. Although specific rates of enzyme activity often varied widely, the form of glycolate enzyme present was not affected.  相似文献   

20.
Lipoic acid-dependent pathways of alpha-keto acid oxidation by mitochondria were investigated in pea (Pisum sativum), rice (Oryza sativa), and Arabidopsis. Proteins containing covalently bound lipoic acid were identified on isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis separations of mitochondrial proteins by the use of antibodies raised to this cofactor. All these proteins were identified by tandem mass spectrometry. Lipoic acid-containing acyltransferases from pyruvate dehydrogenase complex and alpha-ketoglutarate dehydrogenase complex were identified from all three species. In addition, acyltransferases from the branched-chain dehydrogenase complex were identified in both Arabidopsis and rice mitochondria. The substrate-dependent reduction of NAD(+) was analyzed by spectrophotometry using specific alpha-keto acids. Pyruvate- and alpha-ketoglutarate-dependent reactions were measured in all three species. Activity of the branched-chain dehydrogenase complex was only measurable in Arabidopsis mitochondria using substrates that represented the alpha-keto acids derived by deamination of branched-chain amino acids (Val [valine], leucine, and isoleucine). The rate of branched-chain amino acid- and alpha-keto acid-dependent oxygen consumption by intact Arabidopsis mitochondria was highest with Val and the Val-derived alpha-keto acid, alpha-ketoisovaleric acid. Sequencing of peptides derived from trypsination of Arabidopsis mitochondrial proteins revealed the presence of many of the enzymes required for the oxidation of all three branched-chain amino acids. The potential role of branched-chain amino acid catabolism as an oxidative phosphorylation energy source or as a detoxification pathway during plant stress is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号