首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
1. Adipocytes were isolated from the interscapular brown fat and the epididymal white fat of normal, streptozotocin-diabetic and hypothyroid rats. 2. Measurements were made of the maximum rate of triacylglycerol synthesis by monitoring the incorporation of [U-14C]glucose into acylglycerol glycerol in the presence of palmitate (1 mM) and insulin (4 nM) and of the activities of the following triacylglycerol-synthesizing enzymes: fatty acyl-CoA synthetase (FAS), mitochondrial and microsomal forms of glycerolphosphate acyltransferase (GPAT), dihydroxyacetonephosphate acyltransferase (DHAPAT), monoacylglycerol phosphate acyltransferase (MGPAT), Mg2+-dependent phosphatidate phosphohydrolase (PPH) and diacylglycerol acyltransferase (DGAT). 3. FAS activity in brown adipocytes was predominantly localized in the mitochondrial fraction, whereas a microsomal localization of this enzyme predominated in white adipocytes. Subcellular distributions of the other enzyme activities in brown adipocytes were similar to those shown previously with white adipocytes [Saggerson, Carpenter, Cheng & Sooranna (1980) Biochem. J. 190, 183-189]. 4. Relative to cell DNA, brown adipocytes had lower activities of triacylglycerol-synthesizing enzymes and showed lower rates of metabolic flux into acylglycerols than did white adipocytes isolated from the same animals. 5. Diabetes decreased both metabolic flux into acylglycerols and the activities of triacylglycerol-synthesizing enzymes in white adipocytes. By contrast, although diabetes decreased metabolic flux into brown-adipocyte acylglycerols by 80%, there were no decreases in the activities of triacylglycerol-synthesizing enzymes, and the activity of PPH was significantly increased. 6. Hypothyroidism increased metabolic flux into acylglycerols in both cell types, and increased activities of all triacylglycerol-synthesizing enzymes in brown adipocytes. By contrast, in white adipocytes, although hypothyroidism increased the activities of FAS, microsomal GPAT and DGAT, this condition decreased the activities of mitochondrial GPAT and PPH. 7. It was calculated that the maximum capabilities for fatty acid oxidation and esterification are approximately equal in brown adipocytes. In white adipocytes esterification is predominant by approx. 100-fold. 8. Diabetes almost abolished incorporation of [U-14C]glucose into fatty acids in both adipocyte types. Hypothyroidism increased fatty acid synthesis in white and brown adipocytes by 50% and 1000% respectively.  相似文献   

2.
1. Rats were made hypothyroid by feeding them with propylthiouracil together with a low-iodine diet for 4 weeks. 2. [U-14C]Glucose conversion into fatty acids was substantially enhanced in brown adipocytes isolated from hypothyroid rats. Incorporation of 3H2O into fatty acids in vivo was enhanced in hypothyroidism in interscapular brown fat, but not in epididymal white fat or in liver. Hypothyroidism increased the activities of fatty acid synthase and ATP citrate lyase in brown, but not in white, adipocytes. 3. Glycolytic flux in brown adipocytes, quantified by [3-3H]glucose detritiation, was increased by hypothyroidism. This change was accompanied by increased maximum activity of phosphofructokinase. In white adipocytes a large increase in phosphofructokinase maximum activity was observed in hypothyroidism, but this change was accompanied by only small increases in the rate of glucose detritiation by incubated cells. It is suggested that in the brown adipocyte the overall conversion of glucose into fatty acids is enhanced in thyroid deficiency, but that this change is muted in the white adipocyte, possibly because of limitation of glucose transport. 4. Fatty acid synthesis in brown adipocytes from hypothyroid animals was considerably less sensitive to inhibition by exogenous fatty acids than is the process in cells from euthyroid animals. Consequently, the effect of hypothyroidism to enhance lipogenesis is amplified in the presence of physiological concentrations of fatty acid.  相似文献   

3.
1. The incorporation of 5mm-[U-(14)C]glucose into glyceride fatty acids by fat cells from normal rats incubated in the presence of 20munits of insulin/ml was increased by acetate, pyruvate, palmitate, NNN'N'-tetramethyl-p-phenylenediamine, phenazine methosulphate, dinitrophenol, tetrachlorotrifluoromethyl benzimidazole and oligomycin. Lactate did not stimulate glucose incorporation into fatty acids. The effects of these agents were concentration-dependent. 2. In the presence of 5mm-glucose+insulin, [U-(14)C]acetate, [U-(14)C]pyruvate and [U-(14)C]lactate were incorporated into fatty acids in a concentration-dependent manner, thereby further increasing the total rate of fatty acid synthesis. 3. NNN'N'-tetramethyl-p-phenylenediamine decreased the incorporation of [U-(14)C]pyruvate into fatty acids in normal cells and increased the incorporation of [U-(14)C]lactate into fatty acids. 4. In fact cells from 72h-starved rats the stimulatory effects of NNN'N'-tetramethyl-p-phenylenediamine upon glucose and lactate incorporation into fatty acids were totally and partially abolished respectively whereas the stimulatory effects of acetate upon glucose incorporation were retained. 5. Combinations of the optimum concentrations of the substances that stimulate glucose incorporation into fatty acids were tested and compared. The effects of acetate+NNN'N'-tetramethyl-p-phenylenediamine and acetate+palmitate upon normal cells were additive. The effects of NNN'N'-tetramethyl-p-phenylenediamine+palmitate were not additive. It was found that total fatty acid synthesis in the presence of glucose was most effectively increased by raising the concentration of pyruvate in the incubation system. 6. The significance of these results in supporting the proposal that fatty acid synthesis from glucose in adipose tissue is a ;self-limiting process' is discussed.  相似文献   

4.
The influence of feeding rats a high-energy diet for 7 days on fatty acid synthesis in brown adipose tissue, white adipose tissue and liver of the rat was investigated. The incorporation of 3H2O and [U-14C]glucose into fatty acid was measured in vivo. The rats fed the high-energy diets had higher rates of fatty acid synthesis in white adipose tissue than the controls fed on chow, while fatty acid synthesis in brown adipose tissue and liver was either decreased or unchanged relative to that of controls fed on chow. After an oral load of [U-14C]glucose the incorporation of radioactivity into tissue fatty acid was several-fold higher in brown adipose tissue than in white adipose tissue in rats fed on chow. In rats fed the high-energy diets, incorporation of radioactivity into fatty acid in brown adipose tissue was decreased while that into white adipose tissue was either increased (Wistar rats) or unchanged (Lister rats).  相似文献   

5.
(U-14C)Glucose utilization has been studied "in vitro" in brown adipose tissue pieces from virgin, 20-day pregnant and 15-day lactating rats. Brown fat pieces from virgin rats increased their (U-14C)glucose utilization for (14C)CO2 production and for (14C)fatty acid and (14C)glycogen synthesis when insulin was present in the medium. Opposite changes were observed due to the presence of noradrenaline. Brown fat from late pregnant rats does not present any essential alteration in its capacity of metabolizing glucose and showed a pattern of responses to insulin and noradrenaline similar to that from virgins. Brown fat from mid lactating rats showed an intrinsic reduction in (U-14C)glucose utilization for oxidative pathways as well as for fatty acid synthesis, this reduction was present in all hormonal conditions. This data suggests a relationship between the lowered glucose metabolism and the known reduction in brown fat thermogenesis during mid lactation.  相似文献   

6.
1. Dose-dependent effects of adrenaline on PDHa activity were investigated with both incubated rat epidiymal fat-pads and isolated adipocytes. 2. Adrenaline (10nM- 5 micrometer) decreased PDHa activity in fat-pads incubated with 5 mM-[U-14C]glucose + insulin (20 munits/ml). Changes in [U-14C]glucose incorporation into fatty acids in these tissues correlated only loosely with changes in PDHa activity. There was a good inverse relationship between adrenaline-induced changes in PDHa activity and increases in lipolysis (glycerol release). 3. Adrenaline (10nM - 0.5 micrometer) decreased PDHa activity in fat-pads incubated with 5 mM-[U-14C]pyruvate + insulin (20 munits/ml), whereas 1 micrometer- and 5 micrometer-adrenaline slightly increased PDHa activity. All concentrations of adrenaline tested decreased [U-14C]pyruvate incorporation into fatty acids. Between 10nM- and 0.5 micrometer-adrenaline percentage decreases in PDHa activity paralleled decreases in faty acid synthesis. 4. Effects of adrenaline on PDHa activity and fatty acid synthesis in fat-pads incubated with 5mM-[U-14C]pyruvate + insulin (20 munits/ml) could not be mimicked by addition of albumin-bound palmitate. 5. The response of PDHa activity to adrenaline (0.1 nM - 1 micrometer) in isolated adipocytes differed with the carbohydrate substrate used in the incubations. With 5 mM-glucose + insulin (20 munits/ml), PDHa activity was significantly increased by 10 nM-adrenaline, but not by 1 micrometer-adrenaline, the response to adrenaline being biphasic. There was some correlation between PDHa activity and accumulation of non-esterified fatty acids. With 5 mM-glucose alone adrenaline (0.1 nM - 1 micrometer) had no effect on PDHa activity even though lipolysis was increased by adrenaline (0.1 micrometer - 1 micrometer). With 5mM-fructose in the presence and absence of insulin, lipolytic doses of adrenaline decreased PDHa activity. No tested concentrations of adrenaline increased PDHa with this substrate. 6. In the presence of 5 mM-fructose, palmitate was significantly more effective than adrenaline with respect to the maximum decrease in PDHa activity that could be elicited. 4. The relationship of changes in PDHa activity to changes in lipogenesis and the likelihood of adrenaline-induced changes in PDHa activity being secondary to changes in non-esterified fatty acid metabolism are discussed.  相似文献   

7.
In order to study the quantitative relationship between fatty acid synthesis and pentose phosphate-cycle activity under different hormonal and dietary conditions affecting the extent of glucose uptake, cells isolated from rat epididymal adipose tissue were incubated in bicarbonate buffer containing [U-(14)C]-, [1-(14)C]- or [6-(14)C]-glucose. From the amount of glucose taken up, the production of lactate and pyruvate, and the incorporation of (14)C from differently labelled [(14)C]glucose into CO(2), fatty acids and glyceride glycerol, the rates of glucose metabolism via different pathways and the extent of lipogenesis under various experimental conditions were determined. The contribution of the pentose phosphate-cycle to glucose metabolism under normal conditions was calculated to be 8%. Starvation and re-feeding, and the presence of insulin, caused an enhancement of glucose uptake, pentose phosphate-cycle activity and fatty acid synthesis. Plots of both pentose phosphate-cycle activity and fatty acid synthesis versus glucose uptake revealed that the extent of glucose uptake, over a wide range, determines the rates of fatty acid synthesis and glucose metabolism via the pentose phosphate cycle. A balance of formation and production of nicotinamide nucleotides in the cytoplasm was established. The total amount of cytoplasmic NADH and NADPH formed was only in slight excess over the hydrogen equivalents required for the synthesis of fatty acids, glyceride glycerol and lactate. Except in cells from starved animals, the pentose phosphate cycle was found to provide only about 60% of the NADPH required for fatty acid synthesis. The results are discussed with respect to an overall control of the different metabolic and biosynthetic reactions in the fat-cells by the amount of glucose transported into the cell.  相似文献   

8.
1. The effects of fasting on the neutral lipid synthesis to insulin and/or epinephrine in isolated fat cells have been examined using [1-14C]glucose. 2. The ability of adipocytes from starved rats to synthesize fatty acids from both labeled substrates was markedly diminished compared to adipocytes from control rats. 3. The response of lipogenic stimulation to insulin at all concentrations tested was greatly diminished in adipocytes from 24 hr starved rats. 4. [1-14C]glucose utilization rates in the absence or in the presence of insulin were not significantly different in adipocytes from 24 hr starved rats as compared with control adipocytes, although basal and insulin stimulated glyceride-glycerol synthesis were significantly higher in starved adipocytes. 5. Epinephrine acutely inhibited [1-14C]acetate incorporation into fatty acids for insulin-stimulated lipogenesis in control adipocytes, in contrast, this lipolytic agent strongly increased [1-14C]glucose conversion to triacylglycerols. 6. In both cases, the differences in lipid synthesis capacities found in both nutritional states were abolished by epinephrine.  相似文献   

9.
Lipogenesis and fatty acid synthetase (FAS) activity of isolated rat adipocytes that were treated with insulin or epinephrine were studied. Insulin stimulated incorporation of radioactivity from D-[U-14C]glucose into CO2, saponifiable and non-saponifiable fractions, whereas epinephrine promoted lipolysis and oxidation of glucose into CO2. Whereas insulin stimulated fatty acid synthesis, epinephrine had no effect. Changes in FAS specific activity of insulin- or epinephrine-treated adipocytes were insignificant and could not account for insulin-stimulated lipogenesis. Rat adipocyte FAS, unlike hepatic FAS, was not subject to short-term regulation by insulin, although fatty acid synthesis showed such a response.  相似文献   

10.
Octanoate is avidly incorporated into triglycerides by isolated rat adipocytes in the presence of glucose via direct esterification without prior beta-oxidation to acetyl CoA. This was shown by separation of the products formed from (1-14C) octanoate into lipid classes using Florisil columns, and after alkaline hydrolysis of the triglyceride fraction, by cochromatogrpahy with authentic fatty acids on reverse-phase Celite columns. The relative contribution of (U-14C) glucose and (1-14C) octanoate to triglyceride synthesis and CO2 formation were studied under a variety of conditions. Concentrations of octanoate below 0.5 mM have a stimulatory effect on the conversion of (U-14C) glucose to CO2, triglycerides and esterified fatty acids. However, a marked depression of fatty acid synthesis from (U-14C) glucose was observed in the presence of millimolar concentrations of octanoate. Octanoate had no effect on the esterification of palmitate, but palmitate strongly depressed the ability of rat adipocytes to esterify octanoate.  相似文献   

11.
1. Lipogenesis was studied in vivo by giving mice 250mg. meals of [U-(14)C]glucose and measuring the disposition and incorporation of label. About 48% of the (14)C dose was eliminated as (14)CO(2) in the first 2hr. At 60min. after administration, 1.0, 1.9 and 11.9% of the dose was recovered as liver glycogen, liver fatty acid and carcass fatty acid respectively. Of the [(14)C]glucose converted into fat in the epididymal pads about 90% was present as glyceride fatty acid and 10% as glyceride glycerol. 2. Hepatic synthesis of fatty acid was depressed by dietary fat to a much greater extent than was synthesis outside the liver. Both feeding with fat and starvation decreased the proportion of the label taken up by adipose tissue present as fat (triglyceride) and increased the proportion of triglyceride label present as glyceride glycerol. These results are consistent with the hypothesis that the primary action of both these conditions in decreasing fat synthesis is to inhibit synthesis of fatty acids. 3. Turnover of body fat labelled in vivo from [U-(14)C]glucose was estimated from the decline in radioactivity measured over the first 24hr. of the experiment. The half-life of liver and extrahepatic fatty acids (excluding epididymal fat) was 16hr. and 3 days respectively. In contrast, no measurable decrease in radioactivity of the fatty acids of epididymal fat was observed for 7 days after administration of the [U-(14)C]glucose.  相似文献   

12.
To quantify the potential of brown adipose tissue as a target organ for glucose oxidation, O2 consumption and glucose metabolism in isolated rat brown adipocytes were measured in the presence and absence of insulin, by using the beta-agonists isoprenaline or Ro 16-8714 to stimulate thermogenesis. Basal metabolic rate (278 mumol of O2/h per g of lipid) was maximally stimulated with isoprenaline (20 nm) and Ro 16-8714 (20 microM) to 1633 and 1024 mumol of O2/h per g respectively, whereas insulin had no effect on O2 consumption. Total glucose uptake, derived from the sum of [U-14C]glucose incorporation into CO2 and total lipids and lactate release, was enhanced with insulin. Isoprenaline and Ro 16-8714 had no effect on insulin-induced glucose uptake, but promoted glucose oxidation while inhibiting insulin-dependent lipogenesis and lactate production. A maximal value for glucose oxidation was obtained under the combined action of Ro 16-8714 and insulin, which corresponded to an equivalent of 165 mumol of O2/h per g of lipid. This makes it clear that glucose is a minor substrate for isolated brown adipocytes, fuelling thermogenesis by a maximum of 16%.  相似文献   

13.
The effects of the sequential addition of glucose, noradrenaline, propranolol and oleic acid on the rates of O2 consumption and heat production by isolated interscapular brown adipocytes from control and cafeteria-fed rats were compared. Although the chemical agents produced very similar changes in oxidative metabolism, the actual rates of O2 uptake and heat output in adipocytes from the cafeteria-fed rats, when expressed per g dry wt. of cells, were approx. 65% less than those obtained with cells from the control rats. However, when the same results were expressed per 10(8) multiloccular brown adipocytes, rather than gravimetrically, rates of O2 consumption and heat production were equivalent. Further interpretation of these data is complicated, because the average volume of multiloccular brown adipocytes from cafeteria-fed rats was 2.5 times that for multiloccular cells from control animals.  相似文献   

14.
1. The in vitro basal lipid metabolism of rat pancreatic fragments was compared with that in adipose tissue fragments and liver slices. 2. [1-14C]Acetate added to the media was mostly incorporated into palmitic acid and to a lesser extent into oleic acid. In addition, pancreatic tissue exhibited a marked capacity for elongation of polyunsaturated fatty acids by [1-14C]acetate and resulting desaturation when compared to adipose tissue and liver. 3. Data obtained in the presence of [U-14C]glucose, [1-14C]palmitate and 3H20 indicate that acetyl-CoA derived from glucose and from beta-oxidation of fatty acids contributed to de novo lipogenesis. 4. Oxidation of [1-14C]palmitic acid was 9-13 times higher in the pancreas than in adipose tissue or liver when expressed on a wet weight basis. 5. The fatty acid moiety of pancreatic glycerolipids could be derived from de novo synthesis, fatty acids added to the medium, or from fatty acids formed from the hydrolysis of endogenous lipids. The glycerol moiety could be derived either from glucose, or directly from glycerol through participation of glycerol kinase.  相似文献   

15.
The mechanism of the effect of noradrenaline on the transport of 3-O-methyl-D-[14C]glucose ([14C]-MG) was studied in mouse brown adipocytes. When cells were exposed to low concentrations (< 10(-8) M) of insulin, the [14C]-MG uptake by cells was enhanced by noradrenaline additively. The action of noradrenaline was mimicked by isoproterenol, and was completely blocked by propranolol. Exposing cells to noradrenaline induced both an increase in the transport activity of plasma membrane fractions and a decrease in that of microsomal fractions similar to insulin exposure, indicating that noradrenaline also induces the translocation of glucose transporters to the plasma membrane. The ratio of an increase in the transport activity of plasma membrane fraction to a decrease in the activity of microsomal fraction was lower in cells exposed to noradrenaline than in cells exposed to insulin. This quantitative disagreement suggests that there are at least two different modes involved in the regulation of the translocation of glucose transporters in mouse brown adipocytes.  相似文献   

16.
Lactate metabolism in the perfused rat hindlimb.   总被引:2,自引:0,他引:2       下载免费PDF全文
M Shiota  S Golden    J Katz 《The Biochemical journal》1984,222(2):281-292
A preparation of isolated rat hindleg was perfused with a medium consisting of bicarbonate buffer containing Ficoll and fluorocarbon, containing glucose and/or lactate. The leg was electrically prestimulated to deplete partially muscle glycogen. The glucose was labelled uniformly with 14C and with 3H in positions 2, 5 or 6, and lactate uniformly with 14C and with 3H in positions 2 or 3. Glucose carbon was predominantly recovered in glycogen, and to a lesser extent in lactate. The 3H/14C ration in glycogen from [5-3H,U-14C]- and [6-3H,U-14C]-glucose was the same as in glucose. Nearly all the utilized 3H from [2-3H]glucose was recovered as water. Insulin increased glucose uptake and glycogen synthesis 3-fold. When the muscle was perfused with a medium containing 10 mM-glucose and 2 mM-lactate, there was little change in lactate concentration. 14C from lactate was incorporated into glycogen. There was a marked exponential decrease in lactate specific radioactivity, much greater with [3H]- than with [14C]-lactate. The 'apparent turnover' of [U-14C]lactate was 0.28 mumol/min per g of muscle, and those of [2-3H]- and [3-3H]-lactate were both about 0.7 mumol/min per g. With 10 mM-lactate as sole substrate, there was a net uptake of lactate, at a rate of about 0.15 mumol/min per g, and the apparent turnover of [U-14C]lactate was 0.3 mumol/min per g. The apparent turnover of [3H]lactate was 3-5 times greater. When glycogen synthesis was low (no prestimulation, no insulin), the incorporation of lactate carbon into glycogen exceeded that from glucose, but at high rates of glycogen deposition the incorporation of lactate carbon was much less than that of glucose. Lactate incorporation into glycogen was similar in fast-twitch white and fast-twitch red muscle, but was very low in slow-twitch red fibres. We find that (a) pyruvate in muscle is incorporated into glycogen without randomization of carbon, and synthesis is not inhibited by mercaptopicolinate or cycloserine; (b) there is extensive lactate turnover in the absence of net lactate uptake, and there is a large dilution of 14C-labelled lactate from endogenous supply; (c) there is extensive detritiation of [2-3H]- and [3-3H]-lactate in excess of 14C utilization.  相似文献   

17.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

18.
The effect of 2,4-dinitrophenol on adipose-tissue metabolism   总被引:6,自引:6,他引:0       下载免费PDF全文
1. The effect of dinitrophenol on the metabolism of glucose labelled with (14)C and tritium by epididymal fat-pad segments from fed rats was studied. Dinitrophenol at concentrations of 0.1-0.3mm: (a) had little effect on glucose utilization; (b) depressed synthesis of fatty acids and greatly increased that of lactate; (c) increased the T/(14)C ratio in fatty acids synthesized from [U-(14)C,3-T]glucose and decreased that in fatty acids synthesized from [U-(14)C,4-T]glucose; (d) abolished randomization of (14)C from [6-(14)C]glucose in lactate. 2. Dinitrophenol stimulated oxidation of pyruvate and greatly inhibited the oxidation of lactate. It inhibited lipogenesis from pyruvate and lactate. 3. From the isotope data it was calculated that: (a) dinitrophenol stimulates oxidation via the tricarboxylic acid cycle three- to six-fold; (b) dinitrophenol depresses markedly the operation of the pentose cycle; (c) in the presence of dinitrophenol, NADPH formed in the pentose cycle provides all the hydrogen equivalents for fatty acid reduction, whereas, in its absence, NADPH provides 50-70% of the hydrogen equivalents; (d) in the presence of dinitrophenol, there is an excess of ATP produced in the cytoplasm, which flows into the mitochondria. A reverse flow operates in the absence of dinitrophenol. 4. A balance of formation and utilization of reduced nicotinamide nucleotides in the cytoplasm was established. With dinitrophenol there is some excess of NADH. There are indications that this excess may be transferred into mitochondria in the form of malate. 5. Our results are interpreted to indicate the absence from adipose tissue of the alpha-glycerophosphate shuttle for transferring reducing equivalents from the cytoplasm to mitochondria. 6. The effects of dinitrophenol are accounted for in terms of decreased ATP concentrations in the cells, leading to marked decrease in pyruvate carboxylation in the mitochondria and depression of fatty acid synthesis in the cytoplasm.  相似文献   

19.
The rates of glycolysis and lipogenesis in isolated perfused liver of well-fed rats were studied. When liver was allowed to synthesize [14C]glycogen prior to perfusion, no more than 9% of the degraded [14C]glycogen was recovered in lactate and 6% in lipid. Addition of glucose, fructose and sorbitol enhanced concomitantly the formation of lactate and pyruvate and the rate of release of triglyceride and free fatty acid. Glucose was less efficient than fructose or sorbitol. The incorporation of 14C from these 14C-labelled substrates into lactate, pyruvate and lipids confirmed their role as carbon sources. Incorporation of 14C into the glycerol moiety of neutral lipid exceeded that found in the fatty acids, suggesting that these substrates contributed largely to the esterification of fatty acids. The total rate of de novo fatty acid synthesis was correlated with the formation of lactate and pyruvate. It is concluded that increased rates of aerobic glycolysis are related to increased rates of lipogenesis.  相似文献   

20.
Synthesis of fatty acids in the perfused mouse liver   总被引:6,自引:3,他引:3       下载免费PDF全文
1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of (3)H from (3)H(2)O (1-7mumol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-(14)C]lactic acid and [U-(14)C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of (3)H(2)O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12-16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with (3)H(2)O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号