首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose is an important fuel for rat brown adipose tissue in vivo and its utilization is highly sensitive to insulin. In this study, the different glucose metabolic pathways and their regulation by insulin and norepinephrine were examined in isolated rat brown adipocytes, using [6-14C]glucose as a tracer. Glucose utilization was stimulated for insulin concentrations in the range of 40-1000 microU/ml. Furthermore, the addition of adenosine deaminase (200 mU/ml) or adenosine (10 microM) did not alter insulin sensitivity of glucose metabolism. The major effect of insulin (1 mU/ml) was a respective 7-fold and 5-fold stimulation of lipogenesis and lactate synthesis, whereas glucose oxidation remained very low. The 5-fold stimulation of total glucose metabolism by 1 mU/ml of insulin was accompanied by an 8-fold increase in glucose transport. In the presence of norepinephrine (8 microM), total glucose metabolism was increased 2-fold. This was linked to a 7-fold increase of glucose oxidation, whereas lipogenesis was greatly inhibited (by 72%). In addition, norepinephrine alone did not modify glucose transport. The addition of insulin to adipocytes incubated with norepinephrine, induced a potentiation of glucose oxidation, while lipogenesis remained very low. In conclusion, in the presence of insulin and norepinephrine glucose is a oxidative substrate for brown adipose tissue. However the quantitative importance of glucose as oxidative fuel remains to be determined.  相似文献   

2.
Glycolytic flux was estimated in brown adipocytes by [3-3H]-glucose detritiation. Without insulin the process was slightly stimulated by noradrenaline or palmitate. Insulin stimulated glucose detritiation by 4-fold. Noradrenaline stimulated the process in the presence of insulin and synergism between these hormones was observed. Palmitate did not stimulate glucose detritiation in the presence of insulin suggesting that the effect of noradrenaline is not secondary to stimulation of lipolysis. With insulin, cells from streptozotocin-diabetic rats showed lower rates of glucose detritiation. Extracts from these cells also had lower maximum activities of phosphofructokinase.  相似文献   

3.
Adipocytes in intact brown adipose tissue show multivacuolar lipid deposit and mitochondria of 'typical' morphology. Cultured brown adipocytes retain the multivacuolar lipid deposit, while 'typical' mitochondria degenerate and 'atypical' organelles appear instead of the former. Since evidence exists that catecholamines deeply influence brown adipose tissue morphology and function in vivo, we undertook the present ultrastructural investigation to assess whether exposure of cultured brown fat cell to noradrenaline could prevent (or induce regression of) the in vitro morphological modifications of brown adipocytes. Brown adipocytes cultured for 8 h in the presence of noradrenaline (5 X 10(-5) M) had a larger mitochondrial area (i.e. a larger percentage of cytoplasm occupied by non-degenerating mitochondria) in comparison with control cells, as assessed by morphometry; this was due to larger number of mitochondria in noradrenaline-treated cells. Moreover, a number of cells with mitochondria strictly resembling those of the intact tissue were visible in noradrenaline-treated cultured after 8 hr, while 'typical' mitochondria were no longer observed in parallel control cultures. After 5 days of culture without hormone addition, exposure to noradrenaline (5 X 10(-5) M) did not induce quantitative modifications of 'atypical' mitochondria or changes of their ultrastructure up to 12 hr. However, reduction in size of the lipid deposit and activation of both rough endoplasmic reticulum and Golgi apparatus were evident in noradrenaline-treated adipocytes in comparison with non-treated cells.  相似文献   

4.
5.
1. The effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin were investigated in the isolated, incubated soleus muscle of the rat. 2. Hypothyroidism, which was induced by administration of propylthiouracil to the rats, decreased fasting plasma levels of free fatty acids and increased plasma levels of glucose but did not significantly change plasma levels of insulin. 3. The sensitivity of the rates of glycogen synthesis to insulin was increased at physiological, but decreased at supraphysiological, concentrations of insulin. 4. The rates of glycolysis in the hypothyroid muscles were decreased at all insulin concentrations studied and the EC50 for insulin was increased more than 8-fold; the latter indicates decreased sensitivity of this process to insulin. However, at physiological concentrations of insulin, the rates of glucose phosphorylation in the soleus muscles of hypothyroid rats were not different from controls. This suggests that hypothyroidism affects glucose metabolism in muscle not by affecting glucose transport but by decreasing the rate of glucose 6-phosphate conversion to lactate and increasing the rate of conversion of glucose 6-phosphate to glycogen. 5. The rates of glucose oxidation were decreased in the hypothyroid muscles at all insulin concentrations.  相似文献   

6.
An active change in membrane voltage responses to hyperpolarizing pulses has been identified by intracellular recording on an in vitro preparation of white adipose tissue. This change was characterized by a slow return to baseline at the offset of the pulses. Amplitude and duration of the slow return to baseline were dependent on extracellular K+ concentration, and were diminished by external application of Ba2+. Such properties suggest that this electrical response can be mainly due to activation of transient K+ conductances. The effects that noradrenaline and insulin have over the slow return to baseline have been also studied. While external addition of noradrenaline decreased amplitude and duration of this electrical response, insulin produced the opposite effect. These results suggest that noradrenaline and insulin could modulate K+ conductances in white adipocytes.  相似文献   

7.
1. Adipocytes were isolated from epididymal white fat and interscapular brown fat of male rats, and activities of 5'-nucleotidase, adenosine deaminase and adenosine kinase were measured in cell extracts. 2. 5'-Nucleotidase activity in white adipocytes was increased in streptozotocin-diabetes, decreased in hypothyroidism and increased with age. That activity in brown adipocytes was unchanged in diabetes, decreased in hypothyroidism and increased with age. 5'-Nucleotidase activity was higher in white adipocytes from female rats. 3. Adenosine deaminase activity in white adipocytes was increased in diabetes, decreased in hypothyroidism and increased with age. That activity in brown adipocytes was decreased in diabetes and hypothyroidism. 4. Adenosine kinase activity in both cell types was unchanged in diabetes or hypothyroidism, but increased with age.  相似文献   

8.
The effects of pre-incubation with isoprenaline and noradrenaline on insulin binding and insulin stimulation of D-glucose transport in isolated rat adipocytes are reported. (1) Pre-incubation of the cells with isoprenaline (0.1-10 microM) in Krebs-Ringer-Hepes [4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid] buffer (30 min, 37 degrees C) at D-glucose concentrations of 16 mM, in which normal ATP levels were maintained, caused a rightward-shift in sensitivity of D-glucose transport to insulin stimulation by 50% and a decrease in maximal responsiveness by 30% (2) [A14-125I]insulin binding was reduced significantly by 35% at insulin concentrations less than 100 mu-units/ml and Scatchard analysis showed that this consisted mainly of a decrease in high-affinity binding. (3) Pre-incubation with catecholamines under the same conditions but at low glucose concentrations (0-5 mM) caused a fall in intracellular ATP levels of 65 and 45% respectively. (4) The fall in ATP additionally lowered insulin binding by 50% at all insulin concentrations and a parallel shift of the binding curves in the Scatchard plot showed that this was due to a decrease in the number of receptors. (5) At low and high ATP concentrations the insulin stimulation of D-glucose transport was inhibited to a similar extent. (6) Pre-incubation with catecholamines thus inhibited insulin stimulation of D-glucose transport in rat adipocytes mainly by a decrease in high-affinity binding of insulin, which was not mediated by low ATP levels. This mechanism may play a role in the pathogenesis of catecholamine-induced insulin resistance in vivo.  相似文献   

9.
1. Adipocytes isolated from rats 6--9 days after adrenalectomy had significantly increased sensitivity to insulin action against noradrenaline-stimulated lipolysis. In the presence of adenosine deaminase there was no significant difference in insulin sensitivity between cells from adrenalectomized and sham-operated rats. 2. Adipocytes from adrenalectomized rats had decreased lipolytic responses to all concentrations of noradrenaline and glucagon tested and a decreased lipolytic response to low but not high concentrations of corticotropin. There was no difference in lipolytic response to theophylline after adrenalectomy. Adenosine deaminase corrected the differences in response to noradrenaline and glucagon resulting from adrenalectomy. 3. In the presence of adenosine deaminase rates of lipolysis, after stimulation by high concentrations of noradrenaline, glucagon, corticotropin or theophylline, were the same in cells from adrenalectomized or sham-operated rats. 4. These findings and previously reported effects of adenosine and adrenalectomy on adipocyte function are discussed. It is proposed that changes in adipocyte hormone responsiveness after adrenalectomy may result from changes in adenosine metabolism or release.  相似文献   

10.
11.
A simple method to determine the in vitro biological activity of insulin by measuring glucose uptake in the rat adipocytes is presented here. In the presence of insulin, the glucose uptake is 5-6 times more than the basal control. And the uptake of D-[3-3H]-glucose is linear as the logarithm of insulin concentration from 0.2 μg/L to 1.0 μg/L. Glucose and 3-O-methyl-glucose inhibit D-[3-3H]-glucose uptake into adipocytes. By this method, the in vitro biological activity of [B2-Lys]-insulin and [B3-Lys]-insulin was measured to be 61.6% and 154% respectively, relative to that of insulin.  相似文献   

12.
A simple method to determine thein vitro biological activity of insulin by measuring glucose uptake in the rat adipocytes is presented here. In the presence of insulin, the glucose uptake is 5–6 times more than the basal control. And the uptake of D-[3-3H]-glucose is linear as the logarithm of insulin concentration from 0.2 ώg/L to 1.0 ώg/L. Glucose and 3-O-methyl-glucose inhibit D-[3-3H]-glucose uptake into adipocytes. By this method, thein vitro biological activity of [B2-Lys]-insulin and [B3-Lys]-insulin was measured to be 61.6% and 154% respectively, relative to that of insulin.  相似文献   

13.
The notion of an insulin-dependent translocation of the glucose transporter in rat adipocytes was confirmed by immunoblotting and reconstitution of glucose transport activity of subcellular fractions. Quantitatively, however, significantly different results were obtained with these two techniques; when compared with reconstitution, immunoblotting detected translocation of a larger amount of the transporter from a low density microsome fraction to a plasma membrane fraction. The acidtropic agents chloroquine and dibucaine, which have been reported to inhibit the recycling of various receptors, were utilized to study the detailed translocation mechanism of the glucose transporter and the insulin receptor. These acidtropic agents caused accumulation of 125I-insulin in a subcellular fraction probably corresponding to lysosomes. They did not, however, significantly affect either the insulin-induced activation of glucose transport or the recycling of the transporter and the insulin receptor as detected by immunoblotting. About 50% of radioactivity released from adipocytes which were allowed to internalize insulin was due to intact insulin, and chloroquine did not change the release rate of intact insulin, raising the possibility of receptor-mediated exocytosis of insulin. The release of degraded insulin decreased with chloroquine treatment. The results are consistent with the idea that these acidtropic agents mainly act to inhibit degradation of insulin in lysosomes, and their effect on the recycling of the glucose transporter and the insulin receptor is minimal, indicating that the recycling of these membrane proteins proceeds irrespective of organelle acidification. Electron micrographs showed vesicles underneath the plasma membranes, with sizes similar to those of the low density microsome fraction where the internalized glucose transporter and the insulin receptor were located.  相似文献   

14.
1. Insulin increased glucose uptake and inhibited lipolysis in white adipocytes of the rat over the same concentration range of the hormone: the half-maximal effects were observed at approx. 10 microunits of insulin/ml. Thus, contrary to previous reports, no difference in sensitivity of the two processes to insulin could be found, which suggests that both these effects of insulin are important in increasing the rate of glucose utilization after a meal. 2. Adenosine deaminase, which lowers the concentration of adenosine in the incubation medium, decreased the sensitivity of both processes (lipolysis and glucose uptake) to insulin: this suggests that adenosine increases the sensitivity of both processes. Similarly, lactate and 3-hydroxybutyrate increased the sensitivity of both processes (to the same extent) to insulin. It is suggested that this increased sensitivity will improve the response (of adipose tissue) to insulin on refeeding after a prolonged period of starvation (when the hydroxybutyrate concentration is high), and after a short burst of exercise, when the blood lactate concentration is high and when large amounts of glucose are produced from lactate via gluconeogenesis in the liver.  相似文献   

15.
The mechanism of the effect of noradrenaline on the transport of 3-O-methyl-D-[14C]glucose ([14C]-MG) was studied in mouse brown adipocytes. When cells were exposed to low concentrations (< 10(-8) M) of insulin, the [14C]-MG uptake by cells was enhanced by noradrenaline additively. The action of noradrenaline was mimicked by isoproterenol, and was completely blocked by propranolol. Exposing cells to noradrenaline induced both an increase in the transport activity of plasma membrane fractions and a decrease in that of microsomal fractions similar to insulin exposure, indicating that noradrenaline also induces the translocation of glucose transporters to the plasma membrane. The ratio of an increase in the transport activity of plasma membrane fraction to a decrease in the activity of microsomal fraction was lower in cells exposed to noradrenaline than in cells exposed to insulin. This quantitative disagreement suggests that there are at least two different modes involved in the regulation of the translocation of glucose transporters in mouse brown adipocytes.  相似文献   

16.
The effects of different vanadium compounds namely pyridine-2,6-dicarboxylatedioxovanadium(V) (V5-dipic), bis(maltolato) oxovanadium(IV) (BMOV) and amavadine, and oligovanadates namely metavanadate and decavanadate were analysed on basal and insulin stimulated glucose uptake in rat adipocytes. Decavanadate (50 μM), manifest a higher increases (6-fold) on glucose uptake compared with basal, followed by BMOV (1 mM) and metavanadate (1 mM) solutions (3-fold) whereas V5 dipic and amavadine had no effect. Decavanadate (100 μM) also shows the highest insulin like activity when compared with the others compounds studied. In the presence of insulin (10 nM), only decavanadate increases (50%) the glucose uptake when compared with insulin stimulated glucose uptake whereas BMOV and metavanadate, had no effect and V5 dipic and amavadine prevent the stimulation to about half of the basal value. Decavanadate is also able to reduce or eradicate the suppressor effect caused by dexamethasone on glucose uptake at the level of the adipocytes. Altogether, vanadium compounds and oligovanadates with several structures and coordination spheres reveal different effects on glucose uptake in rat primary adipocytes.  相似文献   

17.
Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue(WAT) or brown adipose tissue(BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brownlike adipocytes were discovered in WAT. These brownlike adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expressionpattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation(adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.  相似文献   

18.
Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue (WAT) or brown adipose tissue (BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brown-like adipocytes were discovered in WAT. These brown-like adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expression pattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation (adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.  相似文献   

19.
1. The effects of insulin (2 nM and 4 nM) upon oxygen consumption (VO2), lipolysis rates and indirectly derived rates of fatty acid utilization, by isolated brown adipocytes from warm-acclimated (W cells) and cold-acclimated (C cells) animals, induced by noradrenaline and glucagon separately and conjointly, are reported. 2. Changes in interrelationships (coupling) between the parameters under different treatment regimes were assessed using bivariate regression analyses. 3. Administration of glucagon with noradrenaline increased lipolysis/fatty acid utilization coupling without concomitant increase of VO2 suggesting that glucagon may increase re-esterification through glycogenolytic generation of glycerol 3-phosphate, trapping intracellular fatty acid in excess of the capacity of disposal mechanisms, thus conserving respiratory substrate. 4. W cells were unresponsive to glucagon in terms of lipolysis and VO2, C cells responded to glucagon with parallel increases in lipolysis rate and VO2. Both cell types responded to noradrenaline alone and conjointly with glucagon; C cells were more sensitive to these agonists than W cells. 5. Lipolysis/VO2 coupling was reduced in C cells suggesting that in cold acclimation, noradrenaline-induced lipolysis rates are in excess of the capacity of cellular oxidation/re-esterification mechanisms. 6. Insulin inhibited noradrenaline and glucagon-induced lipolysis, simultaneously increasing VO2, supporting the hypothesis that glucose may be a thermogenic substrate in brown adipase tissue, permitting concurrent thermogenesis and lipogenesis. C cells were more insulin-sensitive than W cells. 7. The data indicate that insulin may mediate its effects (additively with noradrenaline) by activation of pyruvate dehydrogenase, generating glycolytic flux and, in the presence of noradrenaline-inhibited lipogenesis, generate additional oxaloacetate, permitting increased beta-oxidation.  相似文献   

20.
The influence of alterations in phospholipid structure by phospholipase treatment on insulin action and glucose transport in rat adipocytes was studied. It appeared that phospholipase A2 from bee venom caused a breakdown of approximately 50% of phosphotidylcholine without lysis of the cells. Because of this treatment, insulin binding was increased, resulting in an increased sensitivity of glucose transport towards lower insulin concentrations. Moreover, an increased affinity of the transport system for 2-deoxyglucose was observed. Phospholipase C from Clostridium welchii caused complete lysis of adipocytes. Phospholipase A2 from Crotalus adamenteus was without effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号