首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
人分泌粒蛋白III的克隆和表达(英文)   总被引:1,自引:0,他引:1  
研究了一个新的人分泌蛋白基因_分泌粒蛋白III(secretograninIII,SgIII)。SgIII蛋白序列共有 4 6 8个氨基酸残基 ,N端有一段疏水信号肽 ,序列中含有DSTK重复序列和 7对二元碱性氨基酸 (dibasicsites) ,这些结构特点同其他分泌粒蛋白家族成员相类似。人源SgIII蛋白在小鼠、大鼠和爪蟾中各有一个同源蛋白。基因组分析表明 ,SgIII基因位于人 15号染色体上 ,含有 12个外显子 ,分布在 39kb长的基因组DNA上。Western印迹和免疫细胞化学实验证实 ,SgIII蛋白同其他分泌粒蛋白家族成员一样 ,通过分泌途径被分泌到胞外。SgIII在多种组织中都有表达 ,Northern印迹显示SgIII的mRNA主要有 2 .2kb和 1.9kb两种形式 ,但在脑中还有 4 .5kb和 3.3kb大小的两种特异转录本。  相似文献   

2.
Prior to secretion, regulated peptide hormones are selectively sorted to secretory granules (SGs) at the trans‐Golgi network (TGN) in endocrine cells. Secretogranin III (SgIII) appears to facilitate SG sorting process by tethering of protein aggregates containing chromogranin A (CgA) and peptide hormones to the cholesterol‐rich SG membrane (SGM). Here, we evaluated the role of SgIII in SG sorting in AtT‐20 cells transfected with small interfering RNA targeting SgIII. In the SgIII‐knockdown cells, the intracellular retention of CgA was greatly impaired, and only a trace amount of CgA was localized within the vacuoles formed in the TGN, confirming the significance of SgIII in both the tethering of CgA‐containing aggregates and the establishment of the proper SG morphology. Although the intracellular retention of proopiomelanocortin (POMC) was considerably impaired in SgIII‐knockdown cells, residual adrenocorticotropic hormone (ACTH)/POMC was still localized to some few remaining SGs together with another granin protein, secretogranin II (SgII), and was secreted in a regulated manner. Biochemical analyses indicated that SgII bound directly to the SGM in a cholesterol‐dependent manner and was able to retain the aggregated form of POMC, revealing a latent redundancy in the SG sorting and retention mechanisms, that ensures the regulated secretion of bioactive peptides.  相似文献   

3.
Vacuolar H+-ATPases (V-ATPases) are multisubunit enzymes that acidify various intracellular organelles, including secretory pathway compartments. We have examined the effects of the specific V-ATPase inhibitor bafilomycin A1 (Baf) on the intracellular transport, sorting, processing and release of a number of neuroendocrine secretory proteins in primary Xenopus intermediate pituitary cells. Ultrastructural examination of Baf-treated intermediate pituitary cells revealed a reduction in the amount of small dense-core secretory granules and the appearance of vacuolar structures in the trans-Golgi area. Pulse-chase incubations in combination with immunoprecipitation analysis showed that in treated cells, the proteolytic processing of the newly synthesized prohormone proopiomelanocortin, prohormone convertase PC2 and secretogranin III (SgIII) was inhibited, and an intracellular accumulation of intact precursor forms and intermediate cleavage products became apparent. Moreover, we found that treated cells secreted considerable amounts of a PC2 processing intermediate and unprocessed SgIII in a constitutive fashion. Collectively, these data indicate that in the secretory pathway, V-ATPases play an important role in creating the microenvironment that is essential for proper transport, sorting, processing and release of regulated secretory proteins.  相似文献   

4.
Chromogranin A (CgA) is transported restrictedly to secretory granules in neuroendocrine cells. In addition to pH- and Ca(2+)-dependent aggregation, CgA is known to bind to a number of vesicle matrix proteins. Because the binding-prone property of CgA with secretory proteins may be essential for its targeting to secretory granules, we screened its binding partner proteins using a yeast two-hybrid system. We found that CgA bound to secretogranin III (SgIII) by specific interaction both in vitro and in endocrine cells. Localization analysis showed that CgA and SgIII were coexpressed in pituitary and pancreatic endocrine cell lines, whereas SgIII was not expressed in the adrenal glands and PC12 cells. Immunoelectron microscopy demonstrated that CgA and SgIII were specifically colocalized in large secretory granules in male rat gonadotropes, which possess large-type and small-type granules. An immunocytochemical analysis revealed that deletion of the binding domain (CgA 48-111) for SgIII missorted CgA to the constitutive pathway, whereas deletion of the binding domain (SgIII 214-373) for CgA did not affect the sorting of SgIII to the secretory granules in AtT-20 cells. These findings suggest that CgA localizes with SgIII by specific binding in secretory granules in SgIII-expressing pituitary and pancreatic endocrine cells, whereas other mechanisms are likely to be responsible for CgA localization in secretory granules of SgIII-lacking adrenal chromaffin cells and PC12 cells.  相似文献   

5.
INTRODUCTION: Chromogranin (Cg) and secretogranin (Sg) are members of the granin family of proteins, which are expressed in neuroendocrine and nervous tissue. In recent publications we have presented generation of region-specific antibodies against CgA and CgB and also development of several region-specific radioimmunoassays for measurements of specific parts of the Cgs. In this study we describe generation of antibodies against SgII, SgIII, SgV and the proconvertases PC1/3 and PC2 and development of radioimmunoassays for measurements of these proteins. MATERIALS AND METHODS: Peptides homologous to defined parts of the secretogranin and proconvertase molecules were selected and synthesised. Antibodies were raised, radioimmunoassays were developed and circulating levels of the proteins in plasma samples from 22 patients with neuroendocrine tumours were measured in the assays. RESULTS: Increased plasma concentrations were recorded in 11, 4 and 3 of the patients with the SgII 154-165 (N-terminal secretoneurin), the SgII 172-186 (C-terminal Secretoneurin) and the SgII 225-242 assays respectively. The SgIII, SgV, PC1/3 and PC2 assays failed to detect increased concentrations in any of the patients. CONCLUSION: Increased concentrations of SgII, especially the N-terminal part of secretoneurin could be measured in plasma from patients with endocrine pancreatic tumours and in this case this assay was quite comparable to measurements of CgA and CgB. Even though secretoneurin was not as frequently increased as CgA and CgB in patients with carcinoid tumours or pheochromocytoma it may be a useful marker for endocrine pancreatic tumours.  相似文献   

6.
Regulated secretory proteins are thought to be sorted in the trans-Golgi network (TGN) via selective aggregation. The factors responsible for this aggregation are unknown. We show here that two widespread regulated secretory proteins, chromogranin B and secretogranin II (granins), remain in an aggregated state when TGN vesicles from neuroendocrine cells (PC12) are permeabilized at pH 6.4 in 1-10 mM calcium, conditions believed to exist in this compartment. Permeabilization of immature secretory granules under these conditions allowed the recovery of electron dense cores. The granin aggregates in the TGN largely excluded glycosaminoglycan chains which served as constitutively secreted bulk flow markers. The low pH, high calcium milieu was sufficient to induce granin aggregation in the RER. In the TGN of pituitary GH4C1 cells, the proportion of granins conserved as aggregates was higher upon hormonal treatment known to increase secretory granule formation. Our data suggest that a decrease in pH and an increase in calcium are sufficient to trigger the selective aggregation of the granins in the TGN, segregating them from constitutive secretory proteins.  相似文献   

7.
Secretogranin II (previously also called chromogranin C) is a tyrosine-sulfated secretory protein found in secretory granules in a wide variety of endocrine cells and neurons. Here, we have determined the primary structure of human secretogranin II from a full length cDNA clone and have investigated its properties, predicted from the sequence, by studying the behavior of purified secretogranin II under conditions characteristic of the milieu of secretory granules. Analysis of a 2.35-kilobase cDNA clone isolated from a human pituitary library and identified as secretogranin II by various criteria showed that human presecretogranin II is a 617-residue polypeptide containing an NH2-terminal located signal peptide. Secretogranin II lacks the disulfide-bonded loop structure near the NH2 terminus which is conserved in chromogranin A and chromogranin B (secretogranin I), two other widespread constituents of neuroendocrine secretory granules, but like the latter two proteins contains (i) an -E-N/S-L-X-A/D-X-D/E-X-E-L- motif and (ii) multiple potential dibasic cleavage sites for the generation of smaller, perhaps biologically active peptides. Another structural feature that secretogranin II shares with chromogranin A and chromogranin B (secretogranin I) is the abundance of acidic residues all along the polypeptide chain whose negative charge must somehow be neutralized to allow condensation and packaging of the protein into secretory granules. Experiments with purified secretogranin II showed that in the presence of 10 mM calcium at pH 5.2, conditions characteristic of the milieu of neuroendocrine secretory granules, this protein formed aggregates. Immunoglobulin G, a secretory protein that in vivo is not packaged into secretory granules, did not form aggregates under these in vitro conditions and was excluded from the secretogranin II aggregates. Very little aggregation of secretogranin II was observed in the absence of calcium at pH 5.2 or in the presence of calcium at neutral pH. In vivo, ammonium chloride, which is known to neutralize the pH of acidic intracellular compartments, inhibited the packaging of newly synthesized secretogranin II into secretory granules. Our results suggest that the low pH- and calcium-induced aggregation of secretogranin II may be important for the organization of the secretory granule matrix and raise the possibility that aggregation of secretogranin II may be involved in its sorting to secretory granules.  相似文献   

8.
Granin-family proteins, including chromogranin A (CgA) and secretogranin III (SgIII), are transported to secretory granules (SGs) in neuroendocrine cells. We previously showed that SgIII binds strongly to CgA in an intragranular milieu and targets CgA to SGs in pituitary and pancreatic endocrine cells. In this study, we demonstrated that with a sucrose density gradient of rat insulinoma-derived INS-1 cell homogenates, SgIII was localized to the SG fraction and was fractionated to the SG membrane (SGM) despite lacking the transmembrane region. With depletion of cholesterol from the SGM using methyl-beta-cyclodextrin, SgIII was impaired to bind to the SGM. Both SgIII and CgA were solubilized from the SGM by Triton X-100 in contrast to the Triton X-100 insolubility of carboxypeptidase E. SgIII and carboxypeptidase E strongly bound to the SGM-type liposome in intragranular conditions, but CgA did not. Instead, CgA bound to the SGM-type liposome only in the presence of SgIII. Immunocytochemical and pulse-chase experiments revealed that SgIII deleting the N-terminal lipid-binding region missorted to the constitutive pathway in mouse corticotroph-derived AtT-20 cells. Thus, we suggest that SgIII directly binds to cholesterol components of the SGM and targets CgA to SGs in pituitary and pancreatic endocrine cells.  相似文献   

9.
Secretogranin III (SgIII) is one of the acidic secretory proteins, designated as granins, which are specifically expressed in neuronal and endocrine cells. To clarify its precise distribution in the anterior lobe of the rat pituitary gland, we raised a polyclonal antiserum against rat SgIII for immunocytochemical analyses. By immunohistochemistry using semithin sections, positive signals for SgIII were detected intensely in mammotropes and thyrotropes, moderately in gonadotropes and corticotropes, but not in somatotropes. The distribution pattern of SgIII in the pituitary gland was similar to that of chromogranin B (CgB), also of the granin protein family, suggesting that the expressions of these two granins are regulated by common mechanisms. The localization of SgIII in endocrine cells was confirmed by immunoelectron microscopy. In particular, secretory granules of mammotropes and thyrotropes were densely and preferentially co-labeled for SgIII and CgB in their periphery. Moreover, positive signals for SgIII were occasionally found in cells containing both prolactin and TSH in secretory granules. These lines of evidence suggest that SgIII and CgB are closely associated with the secretory granule membrane and that this membrane association might contribute to gathering and anchoring of other soluble constituents to the secretory granule membrane.  相似文献   

10.
In order to obtain further insights into the expression of the known markers of secretory neuroendocrine dense core organelles, secretogranin II (SgII), chromogranin A (CgA), and chromogranin B (CgB) during neuronal differentiation, the immunolocalization of these proteins was studied by means of double immunofluorescence in both undifferentiated and retinoic acid-differentiated SH-SY5Y human neuroblastoma cells. The majority of undifferentiated cells was not immunolabeled for all three proteins. In the majority of differentiated cells, a clearly punctate SgII immunolabeling indicative of the presence of secretory organelles was present in the Golgi region, at the cell periphery, along the neurites and in growth cones. Only relatively few of the SgII-immunolabeled cells were also immunolabeled for CgA and CgB, and in a single cell the three proteins were not always present in the same organelles. These results, obtained in a cultured cell line, confirm the not necessarily parallel distribution of SgII, CgA, and CgB observed in different neuroendocrine tissues and suggest that SgII may be the best marker of human neuroblastoma cell differentiation.  相似文献   

11.
Prohormone convertases PC1 and PC2 are endoproteases involved in prohormone cleavage at pairs of basic amino acids. There is a report that prohormone convertase exists in the rat anterior pituitary gonadotrophs, where it had previously been considered that proprotein processing does not take place. In addition to luteinizing hormone and follicle-stimulating hormone, rat pituitary gonadotrophs contain chromogranin A (CgA) and secretogranin II (SgII), two members of the family of granin proteins, which have proteolytic sites in their molecules. In the present study we examined whether there is a close correlation between subcellular localization of prohormone convertases and granin proteins. Ultrathin sections of rat anterior pituitary were immunolabeled with anti-PC1 or -PC2 antisera and then stained with immunogold. Immunogold particles for PC1 were exclusively found in large, lucent secretory granules, whereas those for PC2 were seen in both large, lucent and small, dense granules. The double-immunolabeling also demonstrated colocalization of PC2 and SgII in small, dense granules and of PC1, PC2, and CgA in large, lucent granules. These immunocytochemical results suggest that PC2 may be involved in the proteolytic processing of SgII and that both PC1 and PC2 may be necessary to process CgA.  相似文献   

12.
Secretogranin II (SgII) is one of the three major proteins, the other two being chromogranins A (CGA) and B (CGB), of secretory granules of neuroendocrine cells. The Ca(2+) storage proteins CGA and CGB not only are coupled to the IP(3) receptor (IP(3)R)/Ca(2+) channels that exist on the secretory granule membrane but also are known to play key roles in secretory granule biogenesis. Unlike the better studied CGA and CGB, secretogranin II has never been completely purified in the native state and studied. We have therefore purified SgII in native form from bovine adrenal medulla and subjected it to biochemical characterization. Secretogranin II consisted of largely beta-sheet and random coil structures with a low level of alpha-helicity. Like CGA and CGB, it also underwent pH-dependent conformational changes, showing 9.5% alpha-helicity at pH 7.5 and 17.0% alpha-helicity at pH 5.5. Secretogranin II also underwent acidic pH- and Ca(2+)-dependent aggregation, and it was approximately 8-fold more sensitive than CGA to Ca(2+) in its pH-dependent aggregation but was 8-fold less sensitive than CGB. Further, similar to CGA and CGB that had interacted with the secretory granule membrane at the intragranular pH 5.5, SgII also interacted with the secretory granule membrane at pH 5.5 and dissociated from it at near-physiological pH 7.5, implying similar roles of SgII in the cell as those of CGA and CGB. Secretogranin II hence appeared to actively participate in secretory granule biogenesis as has been proposed for CGA and CGB.  相似文献   

13.
In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells. To identify which segment of CgA (chromogranin A) is important to induce the formation of such granule-like structures, a series of deletion constructs fused to either GFP (green fluorescent protein) or a short epitope tag was expressed in COS-1 fibroblast cells and analysed by fluorescence and electron microscopy and pulse-chase labelling. Full-length CgA as well as deletion constructs containing the N-terminal 77 residues generated granule-like structures in the cell periphery that co-localized with co-expressed SgII (secretogranin II). These are essentially the same segments of the protein that were previously shown to be required for granule sorting in wild-type PC12 (pheochromocytoma cells) cells and for rescuing a regulated secretory pathway in A35C cells, a variant PC12 line deficient in granule formation. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.  相似文献   

14.
The expression of secretogranin III (SgIII) in chicken endocrine cells has not been investigated. There is limited data available for the immunohistochemical localization of SgIII in the brain, pituitary, and pancreatic islets of humans and rodents. In the present study, we used immunoblotting to reveal the similarities between the expression patterns of SgIII in the common endocrine glands of chickens and rats. The protein–protein interactions between SgIII and chromogranin A (CgA) mediate the sorting of CgA/prohormone core aggregates to the secretory granule membrane. We examined these interactions using co-immunoprecipitation in chicken endocrine tissues. Using immunohistochemistry, we also examined the expression of SgIII in a wide range of chicken endocrine glands and gastrointestinal endocrine cells (GECs). SgIII was expressed in the pituitary, pineal, adrenal (medullary parts), parathyroid, and ultimobranchial glands, but not in the thyroid gland. It was also expressed in GECs of the stomach (proventriculus and gizzard), small and large intestines, and pancreatic islet cells. These SgIII-expressing cells co-expressed serotonin, somatostatin, gastric inhibitory polypeptide, glucagon-like peptide-1, glucagon, or insulin. These results suggest that SgIII is expressed in the endocrine cells that secrete peptide hormones, which mature via the intragranular enzymatic processing of prohormones and physiologically active amines in chickens.  相似文献   

15.
Granin-family proteins, including chromogranin A and secretogranin III, are sorted to the secretory granules in neuroendocrine cells. We previously demonstrated that secretogranin III binds chromogranin A and targets it to the secretory granules in pituitary corticotrope-derived AtT-20 cells. However, secretogranin III has not been identified in adrenal chromaffin and PC12 cells, where chromogranin A is correctly sorted to the secretory granules. In this study, low levels of a large and noncleaved secretogranin III have been identified in PC12 cells and rat adrenal glands. Although the secretogranin III expression was limited in PC12 cells, when the FLAG-tagged secretogranin III lacking the secretory granule membrane-binding domain was expressed excessively, hemagglutinin-tagged chromogranin A was unable to target to the secretory granules at the tips and shifted to the constitutive secretory pathway. Secretogranin III was able to bind the aggregated form of chromogranin A, suggesting that a small quantity of secretogranin III is enough to carry a large quantity of chromogranin A. Furthermore, secretogranin III bound adrenomedullin, a major peptide hormone in chromaffin cells. Indeed, small interfering RNA-directed secretogranin III depletion impaired intracellular retention of chromogranin A and adrenomedullin, suggesting that they are constitutively released to the medium. We suggest that the sorting function of secretogranin III for chromogranin A is common in PC12 and chromaffin cells as well as in other endocrine cells, and a small amount of secretogranin III is able to sort chromogranin A aggregates together with adrenomedullin to secretory granules.  相似文献   

16.
Vacuolar H+-ATPases (V-ATPases) mediate the acidification of multiple intracellular compartments, including secretory granules in which an acidic milieu is necessary for prohormone processing. A search for genes coordinately expressed with the prohormone proopiomelanocortin (POMC) in the melanotrope cells of Xenopus intermediate pituitary led to the isolation of a cDNA encoding the complete amino-acid sequence of the type I transmembrane V-ATPase accessory subunit Ac45 (predicted size 48 kDa). Comparison of Xenopus and mammalian Ac45 sequences revealed conserved regions in the protein that may be of functional importance. Western blot analysis showed that immunoreactive Ac45 represents a approximately 40-kDa product that is expressed predominantly in neuroendocrine tissues; deglycosylation resulted in a approximately 27-kDa immunoreactive Ac45 product which is smaller than predicted for the intact protein. Biosynthetic studies revealed that newly synthesized Xenopus Ac45 is an N-glycosylated protein of approximately 60 kDa; the nonglycosylated, newly synthesized form is approximately 46 kDa which is similar to the predicted size. Immunocytochemical analysis showed that in Xenopus pituitary, Ac45 is highly expressed in the biosynthetically active melanotrope cells. We conclude that the regionally conserved Xenopus Ac45 protein is synthesized as an N-glycosylated approximately 60-kDa precursor that is intracellularly cleaved to an approximately 40-kDa product and speculate that it may assist in the V-ATPase-mediated acidification of neuroendocrine secretory granules.  相似文献   

17.
The complete structure of the novel polypeptide 7B2 recently deduced from cDNA clones has been reported to be highly conserved in a variety of species. The deduced amino acid sequence of the mature protein is predicted to be 185 or 186 amino acids long. While its biological role is still unknown, its occurrence in neuroendocrine secretory granules has been largely documented. This report shows: (i) that the protein, isolated from a large quantity of porcine pituitary glands, does not correspond to the full predicted cDNA structure but, on the contrary, to a truncated form; (ii) that the latter could arise from proteolytic cleavage at position 150 following pairs of basic residues; (iii) that it contains an extra residue at position 100 which is absent in the cDNA sequence; and, finally, (iv) that it displays a higher than expected molecular weight on SDS-polyacrylamide gel electrophoresis. In addition, a copurifying peptide was identified as an NH2-terminal related fragment of the secretogranin II molecule. Protein sequencing of the latter demonstrates (i) that the correct amino terminus of mature porcine secretogranin II is an Ala residue and not the previously proposed Gln residue and (ii) that this fragment could also arise from proteolytic cleavage at a pair of basic residues located within the secretogranin II sequence.  相似文献   

18.
The distribution of three proteins discharged by regulated exocytosis--growth hormone (GH), prolactin (PRL), and secretogranin II (SgII)--was investigated by double immunolabeling of ultrathin frozen sections in the acidophilic cells of the bovine pituitary. In mammotrophs, heavy PRL labeling was observed over secretory granule matrices (including the immature matrices at the trans Golgi surface) and also over Golgi cisternae. In contrast, in somatotrophs heavy GH labeling was restricted to the granule matrices; vesicles and tubules at the trans Golgi region showed some and the Golgi cisternae only sparse labeling. All somatotrophs and mammotrophs were heavily positive for GH and PRL, respectively, and were found to contain small amounts of the other hormone as well, which, however, was almost completely absent from granules, and was more concentrated in the Golgi complex, admixed with the predominant hormone. Mixed somatomammotrophs (approximately 26% of the acidophilic cells) were heavily positive for both GH and PRL. Although admixed within Golgi cisternae, the two hormones were stored separately within distinct granule types. A third type of granule was found to contain SgII. Spillage of small amounts of each of the three secretory proteins into granules containing predominantly another protein was common, but true intermixing (i.e., coexistence within single granules of comparable amounts of two proteins) was very rare. It is concluded that in the regulated pathway of acidophilic pituitary, cell mechanisms exist that cause sorting of the three secretory proteins investigated. Such mechanisms operate beyond the Golgi cisternae, possibly at the sites where condensation of secretion products into granule matrices takes place.  相似文献   

19.
Secretogranin II is a very acidic, tyrosine-sulfated protein found in secretory granules of cells belonging to the diffuse neuroendocrine system. It gained more general importance recently as a universal immunohistochemical marker for endocrine neoplasms. Sequence information was obtained from secretogranin II isolated from bovine anterior pituitaries, allowing the isolation of cDNA clones and deduction of its primary structure. Bovine secretogranin II is a 586-amino acid protein of 67,455 Da which is preceded by a signal peptide of 27 residues and contains 9 pairs of basic amino acids in its sequence which are used as potential cleavage sites for generation of physiologically active peptides. Moderately abundant mRNA levels were found in adrenal medulla, pituitary, hippocampus, and caudate. Secretogranin II message was absent from parathyroid gland, adrenal cortex, kidney, liver, and spleen. Depolarization of isolated chromaffin cells by various secretagogues significantly up-regulated secretogranin II mRNA levels by mechanisms distinct from those established for chromogranins and neuropeptides, components maintained along with secretogranin II in neuroendocrine storage vesicles.  相似文献   

20.
Characterization of secretogranin II (SgII) mRNA in various vertebrates has revealed selective conservation of the amino acid sequences of two regions of the protein, i.e., the bioactive peptide secretoneurin and a flanking novel peptide that we named EM66. To help elucidate the possible role of EM66, we examined the occurrence as well as the cellular and subcellular distribution of EM66 in rat pituitary and adrenal glands by using a polyclonal antibody raised against the recombinant human EM66 peptide. High-performance liquid chromatography (HPLC) analysis of rat pituitary and adrenal extracts combined with a radioimmunoassay resolved EM66-immunoreactive material exhibiting the same retention time as recombinant EM66. In the rat pituitary, double-labeling immunohistochemical (IHC) studies showed that EM66 immunoreactivity (IR) was present in gonadotrophs, lactotrophs, thyrotrophs, and melanotrophs, whereas corticotrophs were devoid of labeling. EM66-IR was also observed in nerve endings in the neural lobe. Immunocytochemical staining at the electron microscopic level revealed that EM66-IR is sequestered in the secretory granules within gonadotrophs and lactotrophs. In the adrenal medulla, double IHC labeling showed that EM66-IR occurs exclusively in epinephrine-synthesizing cells. At the ultrastructural level, EM66-IR was seen in chromaffin vesicles of adrenomedullary cells. These results demonstrate that post-translational processing of SgII generates a novel peptide that exhibits a cell-specific distribution in the rat pituitary and adrenal glands where it is stored in secretory granules, supporting the notion that EM66 may play a role in the endocrine system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号