首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have described the synthesis of (+)-(2R,3S,4R)-2,3,4-trihydroxycyclohexanone by the reduction of a keto-conduritol derivative, the latter being prepared in five steps from (-)-(2S,3R,4S,5S)-2,3,4-tribenzyloxy-5-hydroxycyclohexanone, which is in turn readily synthesized from D-glucose.  相似文献   

2.
In order to develop potent skin whitening agents, we have synthesized 17 hydroxyphenyl benzyl ether compounds and tested their melanin synthesis inhibitory activity, DPPH free radical scavenging activity and tyrosinase inhibitory activity. Compounds 32, 35 and 36 possessing 4-hydroxyphenyl benzyl ether structure showed excellent inhibitory capacity with almost 50-fold than arbutin used as a reference in the inhibition test of α-MSH stimulated melanin synthesis in B-16 cells. 4-Hydroxyphenyl benzyl ether compounds also showed good antioxidant activity in the DPPH free radical scavenging test. The tyrosinase function was effectively inhibited by 3,5-dihydroxyphenyl benzyl ether analogues, especially compounds 18, 22, and 24.  相似文献   

3.
In this study, benzyl benzoate was successfully synthesized via enzymatic acylation using three immobilized enzymes as biocatalysts. Different acyl donors (benzoic acid and benzoic anhydride), operation regimes (batch, fed-batch), mixing modes (conventional mechanical stirring and ultrasound), process parameters (temperature, substrate molar ratio of acyl donor to acyl acceptor), presence or absence of solvents, enzyme amount and type were evaluated. Benzoic acid is a solid that is difficult to solubilize and, thus, was not efficient as acyl donor for the synthesis of benzyl benzoate. On the other hand, benzoic anhydride was very effective for the acylation of benzyl benzoate, and the presence of an excess of benzyl alcohol was essential to ensure the solute-solvent intermolecular attractions and good substrate solubilization, allowing the ester synthesis to be performed in the absence of organic solvents. The ultrasound was effective in increasing increase the initial reaction rate and the final conversion (88 %). However, the Lipozyme TL-IM and RM-IM supports were damaged, and the reuse was unfeasible. The batch and fed-batch approaches in conventional stirring ensured high conversions of 92 and 90 %, respectively, for batch (anhydride: alcohol 1:6) and fed-batch (1:3) using the Lipozyme TL-IM as biocatalyst. The controlled addition of the anhydride (fed-batch) allowed the reduction of alcohol molar ratio but decreased the reaction rates, and the maximum conversions were reached only after 24 h, while the batch approach had 92 % of conversion after 6 h. The yield of benzyl benzoate was high at 6 wt.% of enzyme, low temperature (50 °C), and simple reactor operation (batch). Results show the feasibility of the synthesis of benzyl benzoate via acylation using a green process that may be an alternative route to the chemical synthesis.  相似文献   

4.
The model synthesis of a C12-aldose was initiated from the easily available dimethyl(benzyl 2,3,4-tri-O-benzyl-alpha-D-manno-heptopyranos-6-ulos-7-yl)phosphonate and 2,3:4,5-di-O-isopropylidene-D-arabinose.  相似文献   

5.
Allyl (methyl 2,3,4-tri-O-acetyl-beta-D-glucopyranosyl uronate)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-phthalimido-beta-D-glucopyranoside (4) and benzyl (methyl 2,3,4-tri-O-acetyl-beta-D-glucopyranosyl uronate)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-phthalimido-beta-D-glucopyranoside (5) have been efficiently synthesized by coupling allyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-beta-D-glucopyranoside (2) or benzyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-beta-D-glucopyranoside (3) with methyl (2,3,4-tri-O-acetyl-1-O-trichloroacetimidoyl)-alpha-D-glucopyranuronate (1), respectively, using trimethylsilyl triflate as promoter.  相似文献   

6.
Condensation of 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide with benzyl 2-acetamido-3,6-di-O-benzyl-alpha-D-glucopyranoside in dichloromethane-N,N-dimethylformamide, in the presence of tetraethylammonium bromide, diisopropylethylamine, and molecular sieve (halide ion-catalyzed reaction), gave benzyl 2-acetamido-3,6-di-O-benzyl-2 deoxy-4-O-(2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl)-alpha-D-glucopyranoside in crystalline form in 82% yield. Hydrogenolysis of the benzyl groups gave the title disaccharide, in crystalline form in 90% yield, which was characterized by a crystalline peracetylated alpha-D derivative.  相似文献   

7.
Lam SN  Gervay-Hague J 《Carbohydrate research》2002,337(21-23):1953-1965
Glycosyl iodide donors have been used in both solid- and solution-phase syntheses yielding alpha-(1 --> 6)-linked glucosyl oligomers in highly efficient protocols. While the solid-phase strategy offers advantages in terms of ease of purification, it requires a total of 7.5 equiv of donor and approximately 12 h to complete the incorporation of one monosaccharide unit. In contrast, solution-phase methods require only 2.5 equiv of donor and 2-3 h reaction time per glycosylation. Moreover, since the reactions are virtually quantitative (> 90%) column chromatography of the material is facile. The overall advantages of solution-phase oligosaccharide synthesis were further illustrated in the convergent synthesis of a hexamer (methoxycarbonylmethyl 6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl-(1 --> 6)-tetrakis-(2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl-(1 --> 6))-2,3,4-tri-O-benzyl-1-thio-alpha-D-glucopyranoside) that was constructed from dimer donor iodides in a two-plus-two and a two-plus-four fashion.  相似文献   

8.
Summary Primary rat hepatocyte suspension cultures (∼2×106 cells) exposed to solubilized 2,3,4-trimethylpentane at concentrations ranging from 7.9 to 31.5 mM under two different culture conditions resulted in a linear dose response, as determined by lactate dehydrogenase leakage and viability data. A significant increase in the 2,3,4-trimethylpentane effective concentration 50 for primary hepatocytes occurred when exposures were implemented in medium containing 0.05% albumin. The effective concentration 50 for hepatocytes exposed to 2,3,4-trimethylpentane in medium lacking and containing albumin were 17.1 and 20.7 mM, respectively. Metabolite analysis by gas chromatography-mass spectrometry of supernatant (lacking or containing albumin) and cell extracts from hepatocyte cultures exposed to 2,3,4-trimethylpentane for 4 h indicated the presence of three metabolites: 2,3,4-trimethyl-1-pentanol, 2,3,4-trimethyl-2-pentanol, and 2,3,4-trimethyl-1-pentanoic acid. Electron microscopic examination of 2,3,4-trimethylpentane-exposed primary hepatocytes indicated ultrastructural changes which included abnormal condensed chromatin association with the nuclear membrane, swollen mitochondria, increased amounts of cytoplasmic lipid, significant los of microvilli from the cell surface, increased vacuolation, and increased numbers of peroxisomes. Although these changes were observed under both culture conditions, they were more severe in cultures lacking albumin. This study indicates that primary hepatocyte suspension cultures provide a useful system for rapidly identifying liver metabolites of selected test compounds of interest. Animals used in this study were handled in accordance with the principles stated in the Guide for the Care and Use of Laboratory Animals, prepared by the Committee on Care and Usage of Laboratory Animals of the Institute of Laboratory Animals Resources, National Research Council, DHHS, National Institute of Health publication 85–23, 1985, and the Animal Welfare Act of 1966, as amended. This material has been funded wholly or in part by the United States Air Force under contract F33615-85-C-0532 to NSI Technology Services Corporation. It has been subject to review by the United States Air Force and it has been approved for publication as a customer document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   

9.
Hua Y  Gu G  Du Y 《Carbohydrate research》2004,339(4):867-872
An efficient method for the regioselective 3-O-silylation of beta-thiofucopyranoside was disclosed. Based on this discovery, we described a high-yielding strategy for the synthesis of the natural core structure of L-fucan and its fully sulfated derivative. The bioassay suggested that octyl 2,3,4-tri-O-sulfo-alpha-L-fucopyranosyl-(1-->3)-2,4-di-O-sulfo-alpha-L-fucopyranosyl-(1-->3)-2,4-di-O-sulfo-alpha-L-fucopyranosyl-(1-->3)-2,4-di-O-sulfo-beta-L-fucopyranoside presented better antitumor activities than that of the free tetramer based on Sarcoma 180 cells and Lewis lung carcinoma model studies.  相似文献   

10.
Elhalabi J  Rice KG 《Carbohydrate research》2002,337(21-23):1935-1940
The synthesis of a novel analog of uridine diphosphate galactose (UDP-Gal) is described. A sulfur atom was inserted into the 6-position of galactose to give uridine 5'-(2,3,4-tri-O-acetyl-6-S-acetyl-6-thio-alpha-D-galactopyranosyl diphosphate). This peracetylated thiol analogue of UDP-Gal has been synthesized in nine steps starting from methyl alpha-D-galactopyranoside in an overall yield of 3%.  相似文献   

11.
Shinohara T  Kondo K  Ogawa H  Mori T  Nozaki K  Hiyama T 《Chirality》2000,12(5-6):425-430
Highly enantioselective asymmetric hydrogenation of readily accessible olefins, (E)- and (Z)-[1-(toluene-4-sulfonyl)-1,2,3, 4-tetrahydro-1H-benzo[b]azepin-5-ylidene]acetic acid (4a and 4b, respectively) and [1-(toluene-4-sulfonyl)-2, 3-dihydro-1H-benzo[b]azepin-5-yl]acetic acid (4c), is presented as an efficient and straightforward route to (R)-[1-(toluene-4-sulfonyl)-2,3,4, 5-tetrahydro-1H-benzo[b]azepin-5-yl]acetic acid [(R)-1] which is a key intermediate for the synthesis of non-peptide AVP V2-agonist. Hydrogenation of carboxylic acid 4c gave (R)-1 in quantitative yield and 85% ee using Ru(OAc)2[(S)-H8-BINAP], a Ru(II) complex of a partially hydrogenated BINAP (H8-BINAP), as a catalyst. When (R)-1 of 76% ee was transformed into the corresponding isopropylamide 6, pure enantiomer (R)-6 was obtained in 75% yield by recrystallization from MeOH.  相似文献   

12.
Summary A simple method for the synthesis of several amino acid benzyl esterp-toluenesulfonate salts from the corresponding amino acid and benzyl alcohol in presence ofp-toluenesulfonic acid accelerated with microwave irradiation is described. Under similar condition, the amino acid benzyl ester hydrochloride salts have also been obtained by using thionyl chloride instead ofp-toluenesulfonic acid in good yield and purity.  相似文献   

13.
14.
The DPPH radical-scavenging abilities of the naturally occurring phenolic acid, 2,3,4-trihydroxybenzoic acid, and its methyl ester were evaluated. Both compounds in acetonitrile scavenged as many as four radicals compared to three or fewer radical consumption in acetone or ethanol. Only the ester showed relatively high ability in methanol. Oxidation with o-chloranil in acetonitrile resulted in methyl 2,3,4-trihydroxybenzoate giving a novel benzocoumarin-type dimer, its chemical structure being confirmed by spectroscopic evidence. The formation of this dimer might partly account for the higher radical-scavenging efficiency of the ester in acetonitrile or methanol.  相似文献   

15.
The level of anhydrotetracycline oxygenase (an enzyme catalyzing the penultimate reaction in the biosynthesis of tetracycline) inStreptomyces aureofaciens was substantially influenced by the amount of inorganic phosphate and by the presence of benzyl thiocyanate in the cultivation medium. Phosphate decreased the specific activity of the enzyme, particularly when added to a growing culture. On the other hand, benzyl thiocyanate increased the specific activity of the enzyme. Its effect was most conspicuous in the growth phase. The effect of benzyl thiocyanate was more pronounced in the low-production strain than in the producing variant. Inorganic phosphate and benzyl thiocyanate did not influence the enzyme activityin vitro. Phosphate added to the growing cultures was readily absorbed by the cells. During this time the enzyme synthesis was repressed, derepression occurred only after exhaustion of phosphate from the medium. The stimulatory efect of benzyl thiocyanate on the enzyme synthesis was not reversed by the inorganic phosphate added.  相似文献   

16.
The X-ray diffraction analysis of N-p-nitrophenyl-alpha-D-ribopyranosylamine (1) and N-p-nitrophenyl-alpha-D-xylopyranosylamine (2) was performed. It was found that an independent part of the unit cell of compound 1 is formed by three molecules of sugar whereas the crystals of compound 2 have one molecule in the independent part of the crystal unit cell. Additionally, 1 crystallizes with one molecule of water. The solvent molecule forms an extensive hydrogen bond network with the hydroxyl groups of the sugar, and this efficiently stabilizes the crystal lattice. Contrary to 2, the sugar moieties of 1 adopt the 1C4 conformation. In the spectra of 2, N-p-nitrophenyl-2,3,4-tri-O-acetyl-beta-D-lyxopyranosylamine and N-p-nitrophenyl-2,3,4-tri-O-acetyl-alpha-L-arabinopyranosylamine the number of resonances does not exceed the number of carbon atoms in the molecules, thus indicating no polymorphism. In the spectrum of (1) the signals are split, confirming the presence of three independent molecules in the crystal unit cell.  相似文献   

17.
C‐terminal amidation is one of the most common modification of peptides and frequently found in bioactive peptides. However, the C‐terminal modification must be creative, because current chemical synthetic techniques of peptides are dominated by the use of C‐terminal protecting supports. Therefore, it must be carried out after the removal of such supports, complicating reaction work‐up and product isolation. In this context, hydrophobic benzyl amines were successfully added to the growing toolbox of soluble tag‐assisted liquid‐phase peptide synthesis as supports, leading to the total synthesis of ABT‐510 ( 2 ). Although an ethyl amide‐forming type was used in the present work, different types of hydrophobic benzyl amines could also be simply designed and prepared through versatile reductive aminations in one step. The standard acidic treatment used in the final deprotection step for peptide synthesis gave the desired C‐terminal secondary amidated peptide with no epimerization. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
The 2,3,4- (9) and 2,4,6-tribenzyl (19) ethers of 1-thio-β-d-galactopyranose were prepared from the corresponding O-benzylated normal (1-hydroxyl) sugars 4 and 15 via the sequence: normal sugar → diacetate → O-acetylglycosyl bromide → O-acetyl-glycosyl ethylxanthate → 1-thio sugar. 2,3,4-Tri-O-benzyl-α-d-galactopyranose (4) is most advantageously made from allyl 6-O-allyl-α-d-galactopyranoside (2) by a published synthesis. An improved synthesis of 2,4,6-tri-O-benzyl-d-galactopyranose (15) was devised; it involves the selective 3-O-benzoylation of allyl 2,6-di-O-benzyl-α-d-galactopyranoside (10).  相似文献   

19.
1-O-Tosyl-d-glucopyranose derivatives having a nonparticipating benzyl group at O-2 have been shown to react rapidly in various solvents with low concentrations of alcohols, either methanol or methyl 2,3,4-tri-O-benzyl-α-d-glucopyranoside. The stereospecificity of the glucoside-forming reaction could be varied from 80% of β to 100% of α anomer by changing the solvent or modifying the substituents on the 1-O-tosyl-d-glucopyranose derivative. 2,3,4-Tri-O-benzyl-6-O-(N-phenylcarbamoyl)-1-O-tosyl-α-d-glucopyranose in diethyl ether gave a high yield of α-d-glucoside. Kinetic measurements of reaction with various alcohols (methanol, 2-propanol, and cyclohexanol) show a high rate even at low concentrations of alcohol, and give some insight into the reaction mechanism. The high rate and stereoselectivity of their reaction suggest that the 1-O-tosyl-d-glucopyranose derivatives may be used as reagents for oligosaccharide synthesis.  相似文献   

20.
Methyl (alpha-D-galactopyranosyluronic acid)-(1-->4)-D-galactopyranuronate and methyl alpha-D-galactopyranosyl-uronate-(1-->4)-D-galactopyranuronic acid have been synthesized by coupling methyl (benzyl 2,3-di-O-benzyl-beta-D-galactopyranosid)uronate (3) or benzyl (benzyl 2,3-di-O-benzyl-beta-D-galactopyranosid)uronate (4) with benzyl (phenyl 2,3,4-tri-O-benzyl-1-thio-beta-D-galactopyranosid)uronate and methyl (phenyl 2,3,4-tri-O-benzyl-1-thio-beta-D-galactopyranosid)uronate, respectively, using N-iodosuccinimide and trifluoromethanesulphonic acid as promoters, followed by removal of the benzyl groups. The 4'-OH unprotected dimers benzyl (methyl 2,3-di-O-benzyl-alpha-D-galactopyranosyluronate)-(1-->4)-(benzyl 2,3-di-O-benzyl-beta-D-galactopyranosid)uronate and methyl (benzyl 2,3-di-O-benzyl-alpha-D-galactopyranosyluronate)-(1-->4)-(benzyl 2,3-di-O-benzyl-beta-D-galactopyranosid)uronate were prepared from methyl (phenyl 2,3-di-O-benzyl-1-thio-4-O-trimethylsilyl-beta-D-galactopyranosid) uronate and benzyl (phenyl 2,3-di-O-benzyl-1-thio-4-O-trimethylsilyl-beta-D-galactopyranosid) uronate and acceptors 4 or 3, respectively. These compounds have been designed to serve as precursors for the preparation of higher-membered D-galacturonic acid oligomers methyl esterified in definite positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号