首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermophilic (50 degrees C) anaerobic biodegradation of pentachlorophenol (PCP) was investigated by using different inocula from natural ecosystems and anaerobic digesters. The inocula tested were three freshwater sediments, four anaerobic sewage sludge samples from digesters treating sludge from wastewater plants with various industrial inputs, and digested manure from an anaerobic reactor. Only one digested-sludge sample and the manure sample were from thermophilic environments. The initial PCP concentration was 7.5 or 37.5 microM. After 8 months, PCP had disappeared from the sediment samples and various, less chlorinated intermediates were present. Additions of extra PCP were degraded within 4 weeks, and a maximal observed dechlorination rate of 1.61 mumol/liter/day in the vials with addition of 7.5 microM PCP and 7.50 mumol/liter/day in the vials with addition of 37.5 microM PCP were measured for a freshwater sediment. In contrast, only 2.8 to 17.5% of the initial PCP added had disappeared from the sludge samples after 8 months of incubation. The complex pattern of intermediates formed indicated that the dechlorination of PCP proceeded via different pathways, involving at least two different populations in the dechlorination processes.  相似文献   

2.
Anaerobic fungi in ruminal fluid from cows eating Bermuda grass hay plus a grain and minerals supplement were evaluated for diversity in sporangial morphotypes and colony growth patterns and for the degradation of various lignocelluloses. In selective cultures containing streptomycin and penicillin, an active population of ruminal fungi colonized leaf blades and degraded fiber at rates and extents almost equal to that of the total ruminal population. Three major sporangial morphotypes were consistently observed on leaf blades: oval, globose, and fusiform. Fungal colonies representing three distinct growth types consistently developed in anaerobic roll tubes inoculated with strained ruminal fluid. Sporangial morphotypes could not be matched to colony types due to multiple sporangial forms within a colony. Under identical growth conditions, one type exhibited a monocentric growth pattern, while two types exhibited polycentric growth patterns previously unreported in ruminal fungi. Mixed ruminal fungi in selective cultures or in digesta taken directly from the rumen produced a massive clearing of the sclerenchyma. Quantitation of tissue areas in cross sections by light microscopic techniques showed that fungal incubations resulted in significant (P = 0.05) increases in sclerenchyma degradation compared to whole ruminal fluid incubations. The mestome cell wall was at times penetrated and partially degraded by fungi; the colonization was less frequent and to a lesser degree than with the sclerenchyma. Conversely, ruminal bacteria were not observed to degrade the mestome sheath. Phenolic monomers at 1 mM concentrations did not stimulate to a significant (P = 0.05) extent the dry weight loss or fungal colonization of leaf blades; at 10 mM concentrations cinnamic and benzoic acids were toxic to ruminal fungi.  相似文献   

3.
Thermophilic (50 degrees C) anaerobic biodegradation of pentachlorophenol (PCP) was investigated by using different inocula from natural ecosystems and anaerobic digesters. The inocula tested were three freshwater sediments, four anaerobic sewage sludge samples from digesters treating sludge from wastewater plants with various industrial inputs, and digested manure from an anaerobic reactor. Only one digested-sludge sample and the manure sample were from thermophilic environments. The initial PCP concentration was 7.5 or 37.5 microM. After 8 months, PCP had disappeared from the sediment samples and various, less chlorinated intermediates were present. Additions of extra PCP were degraded within 4 weeks, and a maximal observed dechlorination rate of 1.61 mumol/liter/day in the vials with addition of 7.5 microM PCP and 7.50 mumol/liter/day in the vials with addition of 37.5 microM PCP were measured for a freshwater sediment. In contrast, only 2.8 to 17.5% of the initial PCP added had disappeared from the sludge samples after 8 months of incubation. The complex pattern of intermediates formed indicated that the dechlorination of PCP proceeded via different pathways, involving at least two different populations in the dechlorination processes.  相似文献   

4.
Anaerobic fungi in ruminal fluid from cows eating Bermuda grass hay plus a grain and minerals supplement were evaluated for diversity in sporangial morphotypes and colony growth patterns and for the degradation of various lignocelluloses. In selective cultures containing streptomycin and penicillin, an active population of ruminal fungi colonized leaf blades and degraded fiber at rates and extents almost equal to that of the total ruminal population. Three major sporangial morphotypes were consistently observed on leaf blades: oval, globose, and fusiform. Fungal colonies representing three distinct growth types consistently developed in anaerobic roll tubes inoculated with strained ruminal fluid. Sporangial morphotypes could not be matched to colony types due to multiple sporangial forms within a colony. Under identical growth conditions, one type exhibited a monocentric growth pattern, while two types exhibited polycentric growth patterns previously unreported in ruminal fungi. Mixed ruminal fungi in selective cultures or in digesta taken directly from the rumen produced a massive clearing of the sclerenchyma. Quantitation of tissue areas in cross sections by light microscopic techniques showed that fungal incubations resulted in significant (P = 0.05) increases in sclerenchyma degradation compared to whole ruminal fluid incubations. The mestome cell wall was at times penetrated and partially degraded by fungi; the colonization was less frequent and to a lesser degree than with the sclerenchyma. Conversely, ruminal bacteria were not observed to degrade the mestome sheath. Phenolic monomers at 1 mM concentrations did not stimulate to a significant (P = 0.05) extent the dry weight loss or fungal colonization of leaf blades; at 10 mM concentrations cinnamic and benzoic acids were toxic to ruminal fungi.  相似文献   

5.
The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%.  相似文献   

6.
Adsorption of DNA to sand and variable degradation rates of adsorbed DNA   总被引:11,自引:0,他引:11  
Adsorption and desorption of DNA and degradation of adsorbed DNA by DNase I were studied by using a flowthrough system of sand-filled glass columns. Maximum adsorption at 23 degrees C occurred within 2 h. The amounts of DNA which adsorbed to sand increased with the salt concentration (0.1 to 4 M NaCl and 1 mM to 0.2 M MgCl2), salt valency (Na+ less than Mg2+ and Ca2+), and pH (5 to 9). Maximum desorption of DNA from sand (43 to 59%) was achieved when columns were eluted with NaPO4 and NaCl for 6 h or with EDTA for 1 h. DNA did not desorb in the presence of detergents. It is concluded that adsorption proceeded by physical and chemical (Mg2+ bridging) interaction between the DNA and sand surfaces. Degradability by DNase I decreased upon adsorption of transforming DNA. When DNA adsorbed in the presence of 50 mM MgCl2, the degradation rate was higher than when it adsorbed in the presence of 20 mM MgCl2. The sensitivity to degradation of DNA adsorbed to sand at 50 mM MgCl2 decreased when the columns were eluted with 0.1 mM MgCl2 or 100 mM EDTA before application of DNase I. This indicates that at least two types of DNA-sand complexes with different accessibilities of adsorbed DNA to DNase I existed. The degradability of DNA adsorbed to minor mineral fractions (feldspar and heavy minerals) of the sand differed from that of quartz-adsorbed DNA.  相似文献   

7.
Adsorption and desorption of DNA and degradation of adsorbed DNA by DNase I were studied by using a flowthrough system of sand-filled glass columns. Maximum adsorption at 23 degrees C occurred within 2 h. The amounts of DNA which adsorbed to sand increased with the salt concentration (0.1 to 4 M NaCl and 1 mM to 0.2 M MgCl2), salt valency (Na+ less than Mg2+ and Ca2+), and pH (5 to 9). Maximum desorption of DNA from sand (43 to 59%) was achieved when columns were eluted with NaPO4 and NaCl for 6 h or with EDTA for 1 h. DNA did not desorb in the presence of detergents. It is concluded that adsorption proceeded by physical and chemical (Mg2+ bridging) interaction between the DNA and sand surfaces. Degradability by DNase I decreased upon adsorption of transforming DNA. When DNA adsorbed in the presence of 50 mM MgCl2, the degradation rate was higher than when it adsorbed in the presence of 20 mM MgCl2. The sensitivity to degradation of DNA adsorbed to sand at 50 mM MgCl2 decreased when the columns were eluted with 0.1 mM MgCl2 or 100 mM EDTA before application of DNase I. This indicates that at least two types of DNA-sand complexes with different accessibilities of adsorbed DNA to DNase I existed. The degradability of DNA adsorbed to minor mineral fractions (feldspar and heavy minerals) of the sand differed from that of quartz-adsorbed DNA.  相似文献   

8.
Toxicity effects produced by kraft mill effluents are due to the productive process. New bleaching processes have been proposed (e.g. total chlorine free, TCF) to reduce the production of toxic chlorine compounds. In the TCF processes large amounts of chelating compounds like the ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DPTA) are used. The aim of this work is to research the feasibility of the degradation of low-strength synthetic TCF effluents in a anaerobic filter reactor (AF) and the biomass adhesion. The effects on the operation of the AF at different EDTA loading rates were tested in the range from 0.07 to 0.51 g EDTA l(-1) days(-1). The maximum EDTA removal percentage achieved was of 27%. Acute toxicity (measured as 24 h-LC(50)) with Daphnia magna was reduced from 14.23 to 54.53% before and after anaerobic treatment, respectively. Observations of biomass samples from the AF under the scanning microscope verified the attached biomass.  相似文献   

9.
Challenge of psychrophilic anaerobic wastewater treatment   总被引:45,自引:0,他引:45  
Psychrophilic anaerobic treatment is an attractive option for wastewaters that are discharged at moderate to low temperature. The expanded granular sludge bed (EGSB) reactor has been shown to be a feasible system for anaerobic treatment of mainly soluble and pre-acidified wastewater at temperatures of 5--10 degrees C. An organic loading rate (OLR) of 10--12 kg chemical oxygen demand (COD) per cubic meter reactor per day can be achieved at 10--12 degrees C with a removal efficiency of 90%. Further improvement might be obtained by a two-module system in series. Stabile methanogenesis was observed at temperatures as low as 4--5 degrees C. The specific activity of the mesophilic granular sludge was improved under psychrophilic conditions, which indicates that there was growth and enrichment of methanogens and acetogens in the anaerobic system. Anaerobic sewage treatment is a real challenge in moderate climates because sewage belongs to the 'complex' wastewater category and contains a high fraction of particulate COD. A two-step system consisting of either an anaerobic up-flow sludge bed (UASB) reactor combined with an EGSB reactor or an anaerobic filter (AF) combined with an anaerobic hybrid reactor (AH) is successful for anaerobic treatment of sewage at 13 degrees C with a total COD removal efficiency of 50% and 70%, respectively.  相似文献   

10.
Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72 degrees C was investigated. Anaerobic sediment slurries prepared from local freshwater pond sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. Reductive 2,4-DCP dechlorination occurred only in the temperature range between 5 and 50 degrees C, although methane was formed up to 60 degrees C. In sediment samples from two sites and at all tested temperatures from 5 to 50 degrees C, 2,4-DCP was transformed to 4-chlorophenol (4-CP). The 4-CP intermediate was subsequently degraded after an extended lag period in the temperature range from 15 to 40 degrees C. Adaptation periods for 2,4-DCP transformation decreased between 5 and 25 degrees C, were essentially constant between 25 and 35 degrees C, and increased in the tubes incubated at temperatures between 35 and 40 degrees C. The degradation rates increased exponentially between 15 and 30 degrees C, had a second peak at 35 degrees C, and decreased to about 5% of the peak activity by 40 degrees C. In tubes from one sediment sample, incubated at temperatures above 40 degrees C, an increase in the degradation rate was observed following the minimum at 40 degrees C. This suggests that at least two different organisms were involved in the transformation of 2,4-DCP to 4-CP. Storage of the original sediment slurries for 2 months at 12 degrees C resulted in increased adaptation times, but did not affect the degradation rates.  相似文献   

11.
Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72 degrees C was investigated. Anaerobic sediment slurries prepared from local freshwater pond sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. Reductive 2,4-DCP dechlorination occurred only in the temperature range between 5 and 50 degrees C, although methane was formed up to 60 degrees C. In sediment samples from two sites and at all tested temperatures from 5 to 50 degrees C, 2,4-DCP was transformed to 4-chlorophenol (4-CP). The 4-CP intermediate was subsequently degraded after an extended lag period in the temperature range from 15 to 40 degrees C. Adaptation periods for 2,4-DCP transformation decreased between 5 and 25 degrees C, were essentially constant between 25 and 35 degrees C, and increased in the tubes incubated at temperatures between 35 and 40 degrees C. The degradation rates increased exponentially between 15 and 30 degrees C, had a second peak at 35 degrees C, and decreased to about 5% of the peak activity by 40 degrees C. In tubes from one sediment sample, incubated at temperatures above 40 degrees C, an increase in the degradation rate was observed following the minimum at 40 degrees C. This suggests that at least two different organisms were involved in the transformation of 2,4-DCP to 4-CP. Storage of the original sediment slurries for 2 months at 12 degrees C resulted in increased adaptation times, but did not affect the degradation rates.  相似文献   

12.
An express method for measuring the level of in vitro DNA methylation in homogenates and nuclei from animal tissues as well as during initial steps of DNA methylase isolation and purification when methylase activity is low and hardly testable by other methods has been suggested. The method is based on the measuring the radioactivity incorporated in filter adsorbed DNA (acid-insoluble material) 3H-label from S-adenosile-L-methionine as a result of in vitro DNA methylation. The advantage of the method consists in the replacement of a long-duration repeated deproteinization procedure traditionally used by a relatively simple procedure (15 min incubation of the mixture at 80 degrees C with 10 volumes of the 8M urea, 5 mM EDTA, 5% n-butanol, 2% sodium dodecilsulfate, 1 M sodium chloride solution) and the absence of any loss of DNA. The method is fit for the fast serial assay of DNA methylase activity taking into consideration that about one third of the total acid-insoluble radioactivity is due to the radioactivity in 5-methylcytosine residues in DNA.  相似文献   

13.
A Piekarowicz  R Yuan  D C Stein 《Gene》1988,74(1):93-97
A DNA methyltransferase, M.NgoAI, was purified to homogeneity from Neisseria gonorrhoeae strain WR220 by successive column chromatography. Its Mr is 25,000, as determined by both gel filtration and denaturing polyacrylamide gel electrophoresis. Maximal enzymatic activity was obtained in 50 mM Tris.HCl (pH 7.4), 10 mM EDTA, with incubation at 37 degrees C. An apparent Km value for S-adenosylmethionine and 5' -GGCC sites was determined to be 1.25 microM and 89.6 nM, respectively.  相似文献   

14.
We demonstrated that mouse spermatozoa cleave their DNA into approximately 50 kb loop-sized fragments with topoisomerase IIB when treated with MnCl(2) and CaCl(2) in a process we term sperm chromatin fragmentation (SCF). SCF can be reversed by EDTA. A nuclease then further degrades the DNA in a process we term sperm DNA degradation (SDD). MnCl(2) alone could elicit this activity, but CaCl(2) had no effect. Here, we demonstrate the existence of a nuclease in the vas deferens that can be activated by ethylene glycol tetraacetic acid (EGTA) to digest the sperm DNA by SDD. Spermatozoa were extracted with salt and dithiothreitol to remove protamines and then incubated with EGTA. Next, the EGTA was removed and divalent cations were added. We found that Mn(2+), Ca(2+), or Zn(2+) could each activate SDD in spermatozoa but Mg(2+) could not. When the reaction was slowed by incubation on ice, EGTA pretreatment followed by incubation in Ca(2+) elicited the reversible fragmentation of sperm DNA evident in SCF. When the reactions were then incubated at 37 degrees C they progressed to the more complete degradation of DNA by SDD. EDTA could also be used to activate the nuclease, but required a higher concentration than EGTA. This EGTA-activatable nuclease activity was found in each fraction of the vas deferens plasma: in the spermatozoa, in the surrounding fluid, and in the insoluble components in the fluid. These results suggest that this sperm nuclease is regulated by a mechanism that is sensitive to EGTA, possibly by removing inhibition of a calcium binding protein.  相似文献   

15.
An assay to measure the rate of enzymatic formation of 3-methylindole (3MI) from indoleacetic acid (IAA) in Lactobacillus sp. strain 11201 was developed. The reaction mixture contained 50 micrograms of microbial protein per ml (range, 25 to 100 mg/ml), essential low-molecular-weight reaction ingredients, and radiolabeled IAA as substrate (range, 0 to 2 mM IAA). The reaction was anaerobic for 25 min at 39 degrees C. The apparent Michaelis-Menten constants were: Km, 0.14 mM IAA; and Vmax, 64 nmol 3MI.mg-1.min-1. The inhibitors avidin, aminopterin, and EDTA had no effect on the 3MI-forming enzyme. Dithionite stimulated the 3MI-forming enzyme. The product of the reaction, 3MI, acted as a noncompetitive inhibitor of the enzyme. Enzyme activity was associated with the cell wall fraction after sonication; treatment with the French press; or treatment with detergents, proteolytic enzymes, and EDTA.  相似文献   

16.
An assay to measure the rate of enzymatic formation of 3-methylindole (3MI) from indoleacetic acid (IAA) in Lactobacillus sp. strain 11201 was developed. The reaction mixture contained 50 micrograms of microbial protein per ml (range, 25 to 100 mg/ml), essential low-molecular-weight reaction ingredients, and radiolabeled IAA as substrate (range, 0 to 2 mM IAA). The reaction was anaerobic for 25 min at 39 degrees C. The apparent Michaelis-Menten constants were: Km, 0.14 mM IAA; and Vmax, 64 nmol 3MI.mg-1.min-1. The inhibitors avidin, aminopterin, and EDTA had no effect on the 3MI-forming enzyme. Dithionite stimulated the 3MI-forming enzyme. The product of the reaction, 3MI, acted as a noncompetitive inhibitor of the enzyme. Enzyme activity was associated with the cell wall fraction after sonication; treatment with the French press; or treatment with detergents, proteolytic enzymes, and EDTA.  相似文献   

17.
Bermudagrass (Cynodon dactylon) leaf blades and whole cordgrass (Spartina alterniflora) fiber were evaluated for degradation of cell walls by microbial groups in ruminal fluid. The groups were selected by the addition of antibiotics to the inoculum as follows: (i) whole ruminal fluid (WRF), no antibiotics; (ii) cycloheximide (C) to inhibit fungi, thus showing potential bacterial activity; (iii) streptomycin and penicillin (S,P) to inhibit fiber-degrading bacteria, showing potential fungal activity; (iv) streptomycin, penicillin, and chloramphenicol (S,P,CAM) to inhibit all bacteria including methanogens; (v) streptomycin, penicillin, and cycloheximide (S,P,C) to inhibit all microbial activity as a control; and (vi) autoclaved ruminal fluid (ARF) to inhibit all biological activity as a second control. Scanning electron microscopy of tissue degradation indicated that tissues not giving a positive histological reaction for lignin were more readily degraded. Cordgrass was more highly lignified, with more tissues resisting degradation than in bermudagrass. Patterns of degradation due to treatment resulted in three distinct groups of data based on the extent of fiber or component losses: WRF and C greater than S,P and S,P,CAM greater than S,P,C and ARF. Therefore, bacterial activity was responsible for most of the fiber loss. Fiber degradation by anaerobic fungi was significantly less (P = 0.05). Cupric oxide oxidation of undigested and digested bermudagrass fiber indicated that phenolic constituents differed in their order of resistance to removal or solubilization. Vanillyl and syringyl components of lignin were the most resistant to decomposition, whereas ferulic acid was readily solubilized from fiber in the absence of microbial activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Degradation of polysaccharides and lignin by ruminal bacteria and fungi   总被引:1,自引:0,他引:1  
Bermudagrass (Cynodon dactylon) leaf blades and whole cordgrass (Spartina alterniflora) fiber were evaluated for degradation of cell walls by microbial groups in ruminal fluid. The groups were selected by the addition of antibiotics to the inoculum as follows: (i) whole ruminal fluid (WRF), no antibiotics; (ii) cycloheximide (C) to inhibit fungi, thus showing potential bacterial activity; (iii) streptomycin and penicillin (S,P) to inhibit fiber-degrading bacteria, showing potential fungal activity; (iv) streptomycin, penicillin, and chloramphenicol (S,P,CAM) to inhibit all bacteria including methanogens; (v) streptomycin, penicillin, and cycloheximide (S,P,C) to inhibit all microbial activity as a control; and (vi) autoclaved ruminal fluid (ARF) to inhibit all biological activity as a second control. Scanning electron microscopy of tissue degradation indicated that tissues not giving a positive histological reaction for lignin were more readily degraded. Cordgrass was more highly lignified, with more tissues resisting degradation than in bermudagrass. Patterns of degradation due to treatment resulted in three distinct groups of data based on the extent of fiber or component losses: WRF and C greater than S,P and S,P,CAM greater than S,P,C and ARF. Therefore, bacterial activity was responsible for most of the fiber loss. Fiber degradation by anaerobic fungi was significantly less (P = 0.05). Cupric oxide oxidation of undigested and digested bermudagrass fiber indicated that phenolic constituents differed in their order of resistance to removal or solubilization. Vanillyl and syringyl components of lignin were the most resistant to decomposition, whereas ferulic acid was readily solubilized from fiber in the absence of microbial activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Leduc A  Grenier D  Mayrand D 《Anaerobe》1995,1(2):129-134
Extracellular outer membrane vesicles which are produced by Gram-negative bacteria may enclose deoxyribonucleic acid (DNA). While characterizing vesicles of Porphyromonas gingivalis, it was found that they do not contain detectable amount of DNA. It was also shown that the presence of deoxyribonuclease activity on whole cells and vesicles can degrade plasmidic and linear DNA. Deoxyribonuclease activity was also demonstrated in several other Gram-negative oral bacterial species. The nuclease activity of P. gingivalis was further characterized. When deoxyribonuclease activity was analyzed by zymography, only one active band was detected under the conditions tested. This nuclease enzyme showed a molecular weight of approximately 50 kDa. The activity was inhibited by 5 mM ZnCl2 or 100 mM EDTA whereas Mg2+ or Ca2+ ions were not required for activity. Activity was totally destroyed by treatment at 70 degrees C for 15 min. Although the enzyme may participate in virulence or provide nucleic acid precursors for bacterial growth, its exact role is still unknown.  相似文献   

20.
The DNA methyltransferase M-BsuE that recognizes the sequence 5'-CGCG-3' has been isolated from Bacillus subtilis strain ISE15. A 1600-fold purification of M-BsuE was achieved by column chromatography on phosphocellulose, heparin-Sepharose, and DEAE-Sepharose. DNA methyltransferase activity was monitored in the column eluants radiochemically by the transfer of tritiated methyl groups from radiolabeled S-adenosylmethionine to poly(dGdC)-poly(dGdC) DNA, a sensitive and specific substrate for M-BsuE activity. The DNA sequence specificity of this methyltransferase activity was confirmed enzymatically by demonstrating that M-BsuE-methylated DNA was selectively protected from cleavage by the restriction enzyme isoschizomers, ThaI and FnuDII. Purified M-BsuE has an apparent molecular size of 41,000-43,000 as determined by gel filtration and migrates as a 41-kDa protein in a sodium dodecyl sulfate-polyacrylamide gel. DNA methylation by M-BsuE is dependent upon the presence of S-adenosylmethionine and 2-mercaptoethanol. M-BsuE methyltransferase activity is optimal at 37 degrees C in the presence of 50 mM Tris-HCl, pH 7.8, 25 mM KCl, 6 microM S-adenosylmethionine, 5 mM 2-mercaptoethanol, and 10 mM EDTA. M-BsuE methylates the external cytidine in its recognition sequence in both linear and supercoiled DNA. A unique property of M-BsuE is its ability to methylate 5'-CGCG-3' in Z-DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号