首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We investigate the effect of the addition of a trivalent cation, spermidine, to dilute solutions of nucleosome core particles (NCP). In the presence of spermidine, part of the NCP segregates from the initial homogeneous solution, forming dense aggregates. We follow this precipitation process over a wide range of spermidine and NaCl concentrations and determine the conditions of aggregation of the particles. The structure of the dense phases is analyzed by means of polarizing light microscopy and cryo-electron microscopy. We report the existence of multiple supramolecular organizations. According to the relative concentrations of spermidine, monovalent salt and NCP, the particles may aggregate into amorphous phases, stack into randomly oriented columns, or form liquid crystalline phases. Two discotic liquid crystalline phases are identified and analyzed: a columnar nematic corresponding to columns of NCP simply aligned in parallel, and a columnar hexagonal phase in which the columns order into a transversal 2D hexagonal array. We discuss the nature and origin of the interactions possibly involved in the formation and maintenance of these different types of order.  相似文献   

3.
An analysis of the paramagnetic resonance spectra of spin labels in the lipidic region of lecithin-water lamellar phases as a function of phase water content has been carried out. The observed variation of the local organization and mobility of the lipids is consonant with previous results obtained from solute diffusion measurements. The previously observed sudden changes of solute diffusion for hydration of 9 and 18 molecules water per lecithin molecule are compared with the concomitant sudden changes as seen by ESR spectroscopy. The results also indicate that there is a gradient of fluidity across the lipid leaflets which are therefore not homogeneous to diffusing molecules.  相似文献   

4.
The dielectric constant of lamellar Aerosol OT (sodium di-2-ethylhexyl sulphosuccinate)/water mixtures was measured at 2.9 GHz. We show that the experimentally observed concentration dependence of the dielectric constant can be explained by the local anisotropy of macroscopically homogeneous lamellar phases. Some implications of this fact are pointed out.  相似文献   

5.
Liquid crystalline phases of hydrated phosphatidylethanolamine   总被引:1,自引:0,他引:1  
  相似文献   

6.
By the use of frequency domain cross-correlation fluorometry, the fluorescence lifetime of the water soluble probe 8,1-anilinonapthalene sulfonic acid (ANS) in aqueous dispersions of dioleoylphosphatidylethanolamine (DOPE) and phosphatidylethanolamine transphosphatidylated from egg phosphatidylcholine (TPE) was measured. The orientational order parameter and rotational diffusion constant of the lipophilic probe 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) were also determined in TPE dispersions. In agreement with a previous study on DOPE (Cheng (1989) Biophys. J. 55, 1025-1031), abrupt changes in both the order packing and rotational diffusion constant were found at the lamellar liquid crystalline (L alpha) to inverted hexagonal (HII) phase transition of TPE. Owing to the subnanosecond resolution capability of this frequency domain fluorometric technique, the heterogeneous fluorescence decay of ANS was resolved into three distinct components with different decay lifetimes (tau's). They were 0 less than tau less than 0.5 ns, 2 less than tau less than 9 ns and tau greater than 15 ns. These lifetime regions were attributed to the partitioning of ANS into the bulk aqueous medium, the lipid/water interface and the lipid hydrocarbon region, respectively. These classifications of lifetime regions were further supported by the sensitivity of those lifetime components with the solvent isotopic shift of D2O. Similar to the changes of orientational order and rotational diffusion of lipophilic probe, the lifetime and intensity fraction of ANS associated with the lipid/water interfacial region declined abruptly at the L alpha-HII transition of both DOPE and TPE. This observation suggested that a dehydration of the lipid headgroup surface occurs at the L alpha-HII transition. This study provided evidence that both the lipid headgroup surface hydration and the lipid dynamics change drastically as a result of the macroscopic rearrangement of lipids at the L alpha-HII transition.  相似文献   

7.
The excess water bilayer thickness, d(l,0), and molecular area, A(0), of lipid amphiphiles in the fluid lamellar phases of dioleoylphosphatidylcholine (DOPC) and dipalmitoleoylphosphatidylcholine (DPolPC) have been estimated between 15 and 50 degrees C and for dimyristoylphosphatidylcholine (DMPC) between 25 and 50 degrees C. These determinations have been made from X-ray measurements on samples of known water composition. With respect to temperature, T, d(l,0) and A(0) are well fitted to a linear equation. We find d(l,0) (A)=(35.68+/-0.02)-(0.0333+/-0.0006)T (degrees C) and A(0) (A(2))=(70.97+/-0.05)+(0.136+/-0.001)T (degrees C) for DOPC, d(l,0) (A)=(35.2+/-0.1)-(0.068+/-0.003)T (degrees C) and A(0) (A(2))=(59.7+/-0.2)+(0.210+/-0.006)T (degrees C) for DMPC, and d(l,0) (A)=(34.54+/-0.03)-(0.0531+/-0.0009)T (degrees C) and A(0) (A(2))=(67.12+/-0.09)+(0.173+/-0.003)T (degrees C) for DPolPC. The accuracy of these estimates depends largely on how accurately the excess water point is determined. Ideally, reliable X-ray and compositional data will be available around the excess water and it may be found by simple inspection, but this is the exception rather than the rule, since samples close to water excess normally sequester sizeable amounts of water in defects, which lead to an underestimate of d(l,0). and overestimate of A(0). In this paper, we report a methodology for identifying and removing such data points and fitting the remaining data in order to determine the excess water point.  相似文献   

8.
Unprecedented insights into the structure of the ribosome have been gained recently: X-ray crystallographic studies have yielded 5-9 A resolution structures and cryo-electron microscopy has elucidated the structure of the Escherichia coli ribosome in different functional states. A 7.5 A cryo-electron microscopy structure of the large subunit indicates that this technique is still in the race to determine the ribosome structure.  相似文献   

9.
Members of the tetraspanin superfamily function as transmembrane scaffold proteins that mediate the assembly of membrane proteins into specific signaling complexes. Tetraspanins also interact with each other and concentrate membrane proteins into tetraspanin-enriched microdomains (TEMs). Here we report that lens-specific tetraspanin MP20 can form multiple types of higher-order assemblies and we present crystalline arrays of MP20. When isolated in the absence of divalent cations, MP20 is solubilized predominantly in tetrameric form, whereas the presence of divalent cations during solubilization promotes the association of MP20 tetramers into higher-order species. This effect only occurs when divalent cations are present during solubilization but not when divalent cations are added to solubilized tetrameric MP20, suggesting that other factors may also be involved. When purified MP20 tetramers are reconstituted with native lens lipids in the presence of magnesium, MP20 forms two-dimensional (2D) crystals. A projection map at 18 Å resolution calculated from negatively stained 2D crystals showed that the building block of the crystal is an octamer consisting of two tetramers related to each other by 2-fold symmetry. In addition to 2D crystals, reconstitution of MP20 with native lipids also produced a variety of large protein-lipid complexes, and we present three-dimensional (3D) reconstructions of the four most abundant of these complexes in negative stain. The various complexes formed by MP20 most likely reflect the many ways in which tetraspanins can interact with each other to allow formation of TEMs.  相似文献   

10.
The crystal structure and texture of the monodisperse periodic polypeptide [(AG)3EG(GA)3EG]10 (poly(±AG)3EG; A=alanine, G=glycine, E=glutamic acid) were analyzed by X-ray diffraction, Fourier transform infrared spectroscopy, and electron microscopy. Structure determination was aided by comparison with the recently described structure for the related periodic polypeptide [(AG)3EG]36 by Krejchi et al. (Macromolecules 1997;30:5012). Texture-oriented samples of poly(±AG)3EG were obtained by crystallization of the polymer from aqueous formic acid solution. The evidence supports an antiparallel (ap) β-sheet protein structure and the X-ray diffraction signals index on an orthorhombic unit cell with parameters: a=0.950 nm (hydrogen-bond direction), b=1.052 nm (apβ-sheet stacking direction), c=6.95 nm (chain direction). The absence of the (010) diffraction signal, a prominent signal in the poly(AG)3EG diffraction pattern, implies that the apβ-sheets are ‘apolar', i.e. both surfaces are equally populated with alanyl methyl groups. Selective line broadening of wide-angle diffraction signals with ℓ≠0 gives an estimated crystal size of 4 nm in the chain direction. This observation, coupled with the appearance of low-angle particle interference peaks, indicates a crystal thickness considerably less than the chain length and suggests an adjacent-re-entry chain-folded lamellar structure incorporating the apβ-sheet architecture. The polypeptide folds through γ-turns, in-phase with the pseudo-octapeptide repeat; the glutamic acid residues occur on the lamellar surfaces. These results and those from the crystalline lamellae of poly(AG)3EG suggest that β-turns are not compatible with these repetitively stacked apβ-sheet structures. This implies that intersheet interactions of alanyl methyl groups and glycyl -protons are not sufficiently strong to dictate the folding geometry in these structures.  相似文献   

11.
The transitions lamellar → cubic → hexagonal in the aqueous system of sunflower oil monoglycerides are analysed. X-Ray diffraction data show linear relationships between the lattices of the three phases, which are discussed on the basis of structures formed by lipid bilayer units. The cubic structure is related to ‘Schwarz's primitive cubic minimal surface’ and consists of a three-dimensional continuous bilayer system separating two separate water channel systems.It is also pointed out that the three-dimensional membrane system in plant plastids, the prolamellar body, which is involved in the formation of thylakoid membranes of chloroplasts, has a structure which is closely related to or identical with that of the cubic phase of monoglyceride-water systems.  相似文献   

12.
R N Lewis  R N McElhaney 《Biochemistry》1990,29(34):7946-7953
The subgel phases of a homologous series of saturated straight-chain diacylphosphatidylcholines with hydrocarbon chains consisting of 10-18 carbon atoms were studied by Fourier-transform infrared spectroscopy. All of these lipids initially form a subgel phase which is spectroscopically similar to that obtained when fully hydrated multilamellar dispersions of dipalmitoylphosphatidylcholine are incubated at 0-4 degrees C for 2-4 days. However, further low-temperature incubation of those phosphatidylcholines with acyl chains of 16 or fewer carbon atoms results in the sequential formation of 1 or more additional, spectroscopically distinct subgel phases, with the number of such phases increasing as hydrocarbon chain length decreases. Our data indicate that the formation of all of these subgel phases involves both reorientation of the acyl chains and major changes in hydration and/or hydrogen-bonding interactions at the polar/apolar interfacial region of the lipid bilayer. We suggest that the driving force behind the formation of these Lc phases is the formation of an extended hydrogen-bonding network in the interfacial region of the bilayer and that the optimization of this network probably requires some distortion of the optimal packing of the acyl chains. As a result, an increase in acyl chain length makes the formation of these Lc phases less favorable and eventually prevents optimization of the hydrogen-bonding network at the bilayer polar/apolar interface.  相似文献   

13.
Based on curvature energy considerations, nonbilayer phase-forming phospholipids in excess water should form stable bicontinuous inverted cubic (QII) phases at temperatures between the lamellar (Lα) and inverted hexagonal (HII) phase regions. However, the phosphatidylethanolamines (PEs), which are a common class of biomembrane phospholipids, typically display direct Lα/HII phase transitions and may form intermediate QII phases only after the temperature is cycled repeatedly across the Lα/HII phase transition temperature, TH, or when the HII phases are cooled from T > TH. This raises the question of whether models of inverted phase stability, which are based on curvature energy alone, accurately predict the relative free energy of these phases. Here we demonstrate the important role of a noncurvature energy contribution, the unbinding energy of the Lα phase bilayers, gu, that serves to stabilize the Lα phase relative to the nonlamellar phases. The planar Lα phase bilayers must separate for a QII phase to form and it turns out that the work of their unbinding can be larger than the curvature energy reduction on formation of QII phase from Lα at temperatures near the Lα/QII transition temperature (TQ). Using gu and elastic constant values typical of unsaturated PEs, we show that gu is sufficient to make TQ > TH for the latter lipids. Such systems would display direct Lα → HII transitions, and a QII phase might only form as a metastable phase upon cooling of the HII phase. The gu values for methylated PEs and PE/phosphatidylcholine mixtures are significantly smaller than those for PEs and increase TQ by only a few degrees, consistent with observations of these systems. This influence of gu also rationalizes the effect of some aqueous solutes to increase the rate of QII formation during temperature cycling of lipid dispersions. Finally, the results are relevant to protocols for determining the Gaussian curvature modulus, which substantially affects the energy of intermediates in membrane fusion and fission. Recently, two such methods were proposed based on measuring TQ and on measuring QII phase unit cell dimensions, respectively. In view of the effect of gu on TQ that we describe here, the latter method, which does not depend on the value of gu, is preferable.  相似文献   

14.
Liquid crystalline phases of sonicated type I collagen   总被引:1,自引:0,他引:1  
The assembly properties of concentrated solutions of type I collagen molecules are compared before and after a 5-min sonication, breaking the 300-nm triple helices into short segments of about 20 nm, with a strong polydispersity. The collagen concentration of these solutions, sonicated or not, was increased up to 100 mg/ml by slow evaporation of the solvent. Whereas the non-sonicated solutions remain isotropic, the sonicated solutions transform after a few hours into a twisted liquid crystalline phase, well recognizable in polarizing microscopy. The evidence of a twisted assembly of collagen triple helices in vitro is new and relevant in a biological context since it was reported in various collagen matrices.  相似文献   

15.
Analysis of final products of radiation-induced transformations of galactocerebrosides (GalCer) in aqueous dispersions has been performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and its combination of thin-layer chromatography (TLC). Ceramides were found to be the main products of GalCer gamma-radiolysis. From experimental results obtained in this study, as well as from the data available in the literature, an inference is made that the formation of ceramides occurs owing to fragmentation of radicals with an unpaired electron of the C2 atom of the carbohydrate moiety, formed from the starting compounds.  相似文献   

16.
17.
It is shown by 31P-NMR and freeze-fracture electron microscopy that in aqueous dispersions of mixtures of gramicidin and palmitoyllysophosphatidylcholine lamellar structures are formed which contain four lysophosphatidylcholine molecules per gramicidin monomer.  相似文献   

18.
The specific volumes of seven 1,2-diacyl-sn-glycero-3-phosphocholines with symmetric, unbranched acyl chains containing one, four, or six cis double bonds per chain, or with a saturated sn-1 chain and one, four, or six cis double bonds in the sn-2 chain were determined by the neutral buoyancy method. Experiments were conducted in the liquid crystalline lamellar phase over the temperature range from 5 to 35 degrees C. It is demonstrated that the molecular volume of phosphatidylcholines can be well approximated as the sum of a constant volume of the polar lipid head region and the temperature-dependent volumes of hydrocarbon chain CH2, CH, and terminal CH3 groups. A linear dependence of chain segment volumes on temperature was observed. A self-consistent set of partially temperature-dependent volumes is obtained that allows prediction of phosphatidylcholine molecular volumes within very tight error margins.  相似文献   

19.
The specific volumes of seven 1,2-diacyl-sn-glycero-3-phosphocholines with symmetric, unbranched acyl chains containing one, four, or six cis double bonds per chain, or with a saturated sn-1 chain and one, four, or six cis double bonds in the sn-2 chain were determined by the neutral buoyancy method. Experiments were conducted in the liquid crystalline lamellar phase over the temperature range from 5 to 35 °C. It is demonstrated that the molecular volume of phosphatidylcholines can be well approximated as the sum of a constant volume of the polar lipid head region and the temperature-dependent volumes of hydrocarbon chain CH2, CH, and terminal CH3 groups. A linear dependence of chain segment volumes on temperature was observed. A self-consistent set of partially temperature-dependent volumes is obtained that allows prediction of phosphatidylcholine molecular volumes within very tight error margins.  相似文献   

20.
Interresidue pair contacts were analyzed in detail for four pairs of protein structures solved using X-ray analysis (X-ray) and nuclear magnetic resonance (NMR). In the four NMR structures, at distances of ≤4.0 Å, the total number of pair contacts was 4–9% lower and, in general, the pair contacts were 0.02–0.16 Å shorter compared to the X-ray structures. Each of the four structural pairs contained 83–94% common pair contacts (CPCs), which were formed by identical residues in both structures; the other 6–17% were longer intrinsic pair contacts (IPCs) formed by different residues in NMR and X-ray structures, while the latter contained more IPC. Every NMR structure contained three types of CPC that were shorter, longer, or equal to the identical contact pairs in the X-ray structure of this protein. Methodologically different short CPCs prevailed at a known distance dependence of the interresidue contact density in 60–61 pairs of NMR/X-ray structures. Among the analyzed four structural pairs, contact shortening appeared upon the energy minimization of the crambin NMR structure and upon solving the ubiquitin, hen lysozyme, and monomeric hemoglobin NMR structures using X-PLOR software with decreased van der Waals atomic radii. The degree of contact shortening in the NMR structures diminished with an increase in the NMR data used to solve these structures. Among the 60 pairs of NMR/X-ray structures, the major difference between α-helical and β-structural proteins in the dependences on interresidue distances of average contact density appeared due to strong α/β differences in the backbone local geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号