首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When photoheterotrophic Euglena gracilis Z Pringsheim was subjected to nitrogen (N)-deprivation, the abundant photosynthetic enzyme ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) was rapidly and selectively degraded. The breakdown began after a 4-h lag period and continued for a further 8 h at a steady rate. After 12 h of starvation, when the amount of Rubisco was reduced to 40%, the proteolysis of this enzyme slowed down while degradation of other proteins started at a similar pace. This resulted in a decline of culture growth, chloroplast disassembly — as witnessed by chlorophyll (Chl) loss — and cell bleaching. Experiments with spectinomycin, an inhibitor of chloroplastic translation, indicated that there was an absolute increase in the rate of Rubisco degradation in the N-deprived culture as compared with control conditions, where no significant carboxylase breakdown was detected. Oxidative aggregation of Rubisco (as detected by non-reductive electrophoresis) and association of the enzyme to membranes increased with time of N-starvation. Fluorescent labeling of oxidized cysteine (Cys) residues with monobromobimane indicated a progressive oxidation of Cys throughout the first hours of N-deprivation. It is concluded that Rubisco acts as an N store in Euglena, being first oxidized, and then degraded, during N-starvation. The mobilization of Rubisco allows sustained cell growth and division, at almost the same rate as the control (non-starved) culture, during 12 h of N-deprivation. Afterwards, breakdown is extended to other photosynthetic structures and the whole chloroplast is dismantled while cell growth is greatly reduced.Abbreviations Chl chlorophyll - Cys cysteine - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate We thank Drs. Pablo Vera and Ismael Rodrigo (Univ. Politécnica, Valencia, Spain) for advice and facilities in raising and collecting the anti-Rubisco serum. This work was supported by grants PB87-0353 and PB92-0821 of DGICYT and by a fellowship of the Spanish Ministerio de Educación y Ciencia (awarded to C.G.-F.).  相似文献   

2.
Trypsin digestion reduces the sizes of both the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) from the green alga Chlamydomonas reinhardtii. Incubation of either CO2/Mg2+ -activated or nonactivated enzyme with the transition-state analogue carboxyarabinitol bisphosphate protects a trypsin-sensitive site of the large subunit, but not of the small subunit. Incubation of the nonactivated enzyme with ribulosebisphosphate (RuBP) provided the same degree of protection. Thus, the very tight binding that is a characteristic of the transitionstate analogue is apparently not required for the protection of the trypsin-sensitive site of the large subunit. Mutant enzymes that have reduced CO2/O2 specificities failed to bind carboxyarabinitol bisphosphate tightly. However, their large-subunit trypsin-sensitive sites could still be protected. The K m values for RuBP were not significantly changed for the mutant enzymes, but the V max values for carboxylation were reduced substantially. These results indicate that the failure of the mutant enzymes to bind the transition-state analogue tightly is primarily the consequence of an impairment in the second irreversible binding step. Thus, in all of the mutant enzymes, defects appear to exist in stabilizing the transition state of the carboxylation step, which is precisely the step proposed to influence the CO2/O2 specificity of Rubisco.Abbreviations and Symbols CABP 2-carboxyarabinitol 1,5-bisphosphate - enol-RuBP 2,3-enediolate of ribulose 1,5-bisphosphate - K c K m for CO2 - K o K m for O2 - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - V c V max for carboxylation - V o V max for oxygenation Paper No. 9313, Journal Series, Nebraska Agricultural Research DivisionThis work was supported by National Science Foundation grant DMB-8703820. We thank Drs. Archie Portis and Raymond Chollet for their helpful comments, and also thank Dr. Chollet for graciously providing CABP and [14C]CABP.  相似文献   

3.
Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase   总被引:13,自引:0,他引:13  
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis, but O2 competes with CO2 for substrate ribulose 1,5-bisphosphate, leading to the loss of fixed carbon. Interest in genetically engineering improvements in carboxylation catalytic efficiency and CO2/O2 specificity has focused on the chloroplast-encoded large subunit because it contains the active site. However, there is another type of subunit in the holoenzyme of plants, which, like the large subunit, is present in eight copies. The role of these nuclear-encoded small subunits in Rubisco structure and function is poorly understood. Small subunits may have originated during evolution to concentrate large-subunit active sites, but the extensive divergence of structures among prokaryotes, algae, and land plants seems to indicate that small subunits have more-specialized functions. Furthermore, plants and green algae contain families of differentially expressed small subunits, raising the possibility that these subunits may regulate the structure or function of Rubisco. Studies of interspecific hybrid enzymes have indicated that small subunits are required for maximal catalysis and, in several cases, contribute to CO2/O2 specificity. Although small-subunit genetic engineering remains difficult in land plants, directed mutagenesis of cyanobacterial and green-algal genes has identified specific structural regions that influence catalytic efficiency and CO2/O2 specificity. It is thus apparent that small subunits will need to be taken into account as strategies are developed for creating better Rubisco enzymes.  相似文献   

4.
5.
M. C. Lett  J. Fleck  C. Fritsch  A. Durr  L. Hirth 《Planta》1980,148(3):211-216
The products synthesized in vitro by messenger RNA (mRNA) extracted from Nicotiana sylvestris were analyzed by electrophoresis on polyacrylamide slab gels. Only three of the major polypeptides synthesized are considered here: P55, P32, and P20. P55 and P32 were translated from chloroplast mRNA. P55 corresponds to the large subunit of ribulose-1,5-bisphosphate (RuP2) carboxylase; P32 is probably a chloroplast membrane protein. P20, the polypeptide synthesized from cytoplasmic poly(A)+ RNA, is the precursor of the small subunit of RuP2 carboxylase. The balance between P20 and P32, in which their relative proportions varied inversely, was regulated by the age of the leaves and the time of illumination; we took advantage of this phenomenon to isolate the mRNA from the small subunit in relatively large amounts. This mRNA has a molecular weight of 350,000.Abbreviations RuP2 ribulose-1,5-bisphosphate - mRNA messenger RNA - SDS sodium dodecyl sulfate  相似文献   

6.
Klaus J. Lendzian 《Planta》1978,143(3):291-296
In a preparation of soluble components from isolated spinach (Spinecia oleracea L.) chloroplasts, the activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) is strongly increased by 6-phosphogluconate or by NADPH at pH 8.0. When the thylakoid system is added to these soluble components (reconstituted chloroplast system) plus ferredoxin, the carboxylase is even more strongly activated in the light. This light activation appears to be due to reduction of endogenous NADP+ by electrons from the light reactions transferred via ferredoxin, since NADPH alone can activate the purified enzyme in the dark while reduced ferredoxin does not. The regulatory properties of the enzyme in the reconstituted chloroplast system are compared with those of the isolated enzyme, and their possible physiologic significance is discussed.Abbreviations Fd ferredoxin - PPC pentose phosphate cycle - 6-PGluA 6-phosphogluconate - Rib-5-P ribose-5-phosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

7.
B. Ranty  G. Cavalie 《Planta》1982,155(5):388-391
Extracts from sunflower leaves possess a high ribulose-1,5-bisphosphate (RuBP) carboxylase capacity but this enzyme activity is not stable. A purification procedure, developed with preservation of carboxylase activity by MgSO4, yielded purified RuBP carboxylase with high specific activity (40 nkat mg-1 protein). Measurement of kinetic parameters showed high Km values (RuBP, HCO 3 - ) and high Vmax of the reaction catalyzed by this sunflower enzyme; the results are compared with those obtained for soybean carboxylase. Enzyme characteristics are discussed in relation to stabilization and activation procedures and to the high photosynthesis rates of this C3 species.  相似文献   

8.
J. R. Evans  R. B. Austin 《Planta》1986,167(3):344-350
The specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) in crude extracts of leaves from euploid, amphiploid and alloplasmic lines of wheat fell into high or low categories (3.75 or 2.70 mol·mg–1·min–1, 30°C). For the alloplasmic lines, where the same hexaploid nuclear genome was substituted into different cytoplasms, the specific activity of RuBPCase was consistent with the type of cytoplasm (high for the B and S cytoplasms and low for the A and D cytoplasms). There was no evidence from the euploid and amphiploid lines that small subunits encoded in different nuclear genomes influenced the specific activity. High specific activity was conferred by possession of the chloroplast genome of the B-type cytoplasm which encodes the large subunit of RuBPCase. All lines with a cytoplasm derived from the Sitopsis section of wheat, with the exception of Aegilops longissima and A. speltoides 18940, had RuBPCase with high specific activity. In contrast with the euploid lines of A. longissima, the alloplasmic line containing A. longissima cytoplasm from a different source had RuBPCase with high specific activity. The difference in specific activity found here in-vitro was not apparent in-vivo when leaf gas exchange was measured.Abbreviation RuBP(Case) ribulose-1,5-bisphosphate (carboxylase)  相似文献   

9.
In crude extracts from the primary leaf of wheat seedlings, Triticum aestivum L., cv. Olympic, maximum proteinase activity, as determined by measuring the rate of release of amino nitrogen from ribulose-bisphosphate carboxylase (RuBPCase), was found to be obtained only when EDTA and L-cysteine were included in the extraction buffer. Highest proteinase activity was obtained by grinding at pH 6.8, although the level of activity was similar in the pH range 5.6 to 8.0; this range also coincided with maximum extractability of protein. The lower amount of RuBPCase degrading proteinase extracted at low pH was not due to an effect of pH on enzyme stability. The optimum temperature of reaction was 50° C and reaction rates were linear for at least 120 min at this temperature. In the absence of substrate the proteinase was found to be very sensitive to temperatures above 30° C, with even short exposures causing rapid loss of activity. The relation between assay pH and RuBPCase degradation indicated that degradation was restricted to the acid proteinase group of enzymes, with a pH optimum of 4.8, and no detectable activity at a pH greater than 6.4. The levels of extractable RuBPCase proteinase exhibited a distinct diurnal variation, with activity increasing during the latter part of the light period and then declining once the lights were turned off. The effect of leaf age on the level of RuBPCase, RuBPCase proteinase and total soluble protein was investigated. Maximum RuBPCase activity occurred 9 days after sowing as did soluble protein. After the maximum level was obtained, the pattern of total soluble protein was shown to be characterised by three distinct periods of protein loss: I (day 9–13) 125 ng leaf-1 day-1; II (day 15–27) 11 ng leaf-1 day-1; III (day 29–49) 22 ng leaf-1 day-1. Comparison of the pattern of RuBPCase activity and total protein suggest that the loss of RuBPCase may be largely responsible for the high rate of protein loss during period I. Proteinase activity increased sharply during the period of most rapid loss of RuBPCase activity, and because the specific activity of RuBPCase also declined, we concluded that RuBPCase was being degraded more rapidly than the other proteins. Once the majority of the RuBPCase was lost, there did not appear to be a direct relation between RuBPCase proteinase activity and rate of total soluble protein loss, since the proteinase exhibited maximum activity during the slowest period of protein loss (II), and was declining in activity while the rate of protein loss remained stable during the third and final period of total protein loss.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - TCA trichloroacetic acid Supported by the Wheat Industry Research Council of Australia and the Australian Research Grants Committee D2 74/15052  相似文献   

10.
J. Brangeon  A. Nato  A. Forchioni 《Planta》1989,177(2):151-159
In-situ-localization techniques have been adapted to the ultrastructural detection of the holoenzyme ribulose-1,5-bisphosphate carboxylase (RuBPCase) and its composite large- and smallsubunit mRNAs in wild-type and mutant RuBPCase deficient plantlets of Nicotiana tabacum L. Immuno-gold techniques which show the distribution of target proteins have confirmed visually the presence of the holoenzyme in the wild-type plastids and its total absence in the enzyme-less mutant. Using in-situ hybridization coupled with electron microscopy and biotinylated probes for the two subunits, we have directly visualized specific small-subunit mRNAs located in the cytoplasm and large-subunit mRNAs confined to plastids in the enzyme-deficient mutant, and with apparent distributions comparable to those visualized in the wild-type counterpart. These results show that (i) gene products can be visualized in situ by electronmicroscopy techniques under conditions where the respective cellular compartments are readily recognizable and (ii) that an accumulation of mRNAs corresponding to the composite subunits can occur without translation and-or assembly of the protein.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase - SSU RuBPCase small subunit - LSU RubBPCase large subunit  相似文献   

11.
12.
In contrast to other plants the plastid genome of Acetabularia is larger in size and shows a high degree of variability. This study on the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase demonstrates that strongly conserved areas also exist in the plastid genome of the Dasycladaceae. Searching for differences in the amino acid sequence of the large subunit from Acetabularia mediterranea and Acicularia schenckii, proteolytic peptides which differ in their elution behaviour in reverse-phase high-performance liquid chromatography were sequenced. Only six amino acids were found to be exchanged in the large subunit from these two species. Since these two species diverged approx. 150 million years ago, these results imply that 0.84 amino-acid exchanges per 100 amino acids have occurred in 108 years, underlining the strong conservatism of the large subunit.Abbreviations A Acetabularia mediterranea - Ac. Acicularia schenckii - HPLC high-performance liquid chromatography - LSU large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase - PAGE polyacrylamide gel electrophoresis - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate  相似文献   

13.
R. Krauspe  A. Scheer  S. Schaper  P. Bohley 《Planta》1986,167(4):482-490
Endoproteolytic activities (EC 3.4.22. and 23.) of cell-free extracts of Euglena gracilis, measured by autolysis and azocaseinolysis, vary considerably during the culture growth cycle. They are high in the lag phase, drop sharply up to the mid-logarithmic phase, and then rise again reaching the initial high levels in the stationary phase. This pattern has been observed for both the soluble and the particulate proteolytic activities of four cell types differing with regard to the developmental state of the chloroplast: dark-grown, light-induced, and light-grown wild-type cells, as well as light-grown apoplastic W3BUL mutant cells, all on a glucose-based medium. Therefore, the activity of the main intracellular proteinases is neither directly nor indirectly light-regulated, but seems to be controlled by the availability of nutrients. Endogenous inhibitors of proteinases could not be detected. Cysteine proteinase activity has been found in the soluble and the particulate fractions, but aspartic proteinase activity in the latter ones only. Different cysteine proteinases may be present in the two fractions, during the different growth phases, and in the four cell types studied.Abbreviations CBB Coomassie Brilliant Blue G-250 - DFP diisopropyl fluorophosphate - EDTA disodium ethylendiaminetetraacetic acid - E-64 l-transepoxysuccinyl-leucyl-amido(4-guanidino)butane - Iog phase logarithmic growth phase - MET 2-mercaptoethanol - PMSF phenylmethylsulfonyl fluoride - Z benzyloxycarbonyl Paper I of this series is Krauspe and Scheer (1986). A preliminary publication appeared (Krauspe et al. 1982)  相似文献   

14.
Mutagenesis in vitro of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) from Anacystis nidulans was used to generate novel enzymes. Two conserved residues, threonine 4 and lysine 11 in the N-terminus were changed. The substitution of threonine 4 with serine or valine had little effect on the kinetic parameters. The substitution of lysine 11 with leucine, which is non-polar, increased the K m for ribulose-1,5-bisphosphate from 82 to 190 M but its replacement with glutamine, which has polar properties, had no appreciable effect.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - LSU large sub-unit of Rubisco - SSU small subunit of Rubisco We thank Dr. S. Gutteridge (DuPont, Wilmington, USA) for structural information and for his comments on the results described. The technical assistance of Mr. A. Cowland and Mr. I. Major was invaluable.  相似文献   

15.
Functional chloroplasts from photoheterotrophic Euglena gracilis can be isolated in isoosmotic gradients of 10–80% Percoll. The chloroplasts display rates of CO2 dependent O2 evolution and CO2 fixation of 30–50 mol mg-1 chlorophyll h-1 or 25–35% of the net O2 evolution by the whole cells and appear to be strikingly different from spinach chloroplasts in several respects: 1. tolerance to high concentration of orthophosphate in the assay medium; 2. inability to support oxaloacetate-dependent O2 evolution; 3. ability to support only low to moderate rates of 3-phosphoglycerate-dependent O2 evolution; 4. an apparent absence of a phosphate translocator in the terms described by Heldt and Rapley ([1970] FEBS Lett. 10, 143–148).University of California, Dept. of Plant and Soil Biology, 108 Hilgard Hall, Berkeley, CA 94720 USA  相似文献   

16.
The fronds of Lemna minor L. respond to a number of stresses, and in particular to an osmotic stress, by producing an enzyme system which catalyzes the oxidation of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) to an acidic and catalytically inactive form. During the first 24 h of osmotic stress the induced oxidase system does not seem to exert a significant in-vivo effect on RuBPCase, presumably because of compartmentation. Subsequently, the oxidase system gains access to the enzyme and converts it to the acid and catalytically inactive form and eventually the oxidase system declines in activity.A number of partially acidified forms of RuBPCase are formed during oxidation, and this process appears to be correlated with the disappearance of varying numbers of SH residues. The number of-SH residues in RuBPCase from Lemna has been estimated at 89. However, RuBPCase isolated from 24-h osmotically stressed fronds showed a reduction in the number of-SH residues per molecule from 89 to 54. It seems likely that the oxidation of-SH groups is causally related to the acidification of RuBPCase which occurs during osmotic stress.Abbreviations DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - FPLC fast protein liquid chromatography - PMSF phenylmethylsulphonyl fluoride - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulfate  相似文献   

17.
Ribulose-1,5-bisphosphate carboxylase (RuBPCase) has been quantified by immunological methods in Thiobacillus neapolitanus cultivated under various growth conditions in the chemostat at a fixed dilution rate of 0.07 h-1. RuBPCase was a major protein in T. neapolitanus accounting for a maximum of 17% of the total protein during CO2 limitation and for a minimum of 4% during either ammonium- or thiosulfate limitation in the presence of 5% CO2 (v/v) in the gasphase. The soluble RuBPCase (i.e. in the cytosol) and the particulate RuBPCase (i.e. in the carboxysomes) were shown to be immunologically identical. The intracellular distribution of RuBPCase protein between carboxysomes and cytosol was quantified by rocket immunoelectrophoresis. The particulate RuBPCase content, which correlated with the volume density of carboxysomes, was minimal during ammonium limitation (1.3% of the total protein) and maximal during CO2 limitation (6.8% of the total protein). A protein storage function of carboxysomes is doubtful since nitrogen starvation did not result in degradation of particulate RuBPCase within 24 h. Proteolysis of RuBPCase was not detected. Carboxysomes, on the other hand, were degraded rapidly (50% within 1 h) after change-over from CO2 limitation to thiosulfate limitation with excess CO2. Particulate RuBPCase protein became soluble during this degradation of carboxysomes, but this did not result in an increase in soluble RuBPCase activity. Modification of RuBPCase resulting in a lower true specific activity was suggested to explain this phenomenon. The true specific activity was very similar for soluble and particulate RuBPCase during various steady state growth conditions (about 700 nmol/min·mg RuBPCase protein), with the exception of CO2-limited growth when the true specific activity of the soluble RuBPCase was extremely low (260 nmol/min ·mg protein). When chemostat cultures of T. neapolitanus were exposed to different oxygen tensions, neither the intracellular distribution of RuBPCase nor the content of RuBPCase were affected. Short-term labelling experiments showed that during CO2 limitation, when carboxysomes were most abundant, CO2 is fixed via the Calvin cycle. The data are assessed in terms of possible functions of carboxysomes.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase - PEP phosphoenolpyruvate - RIE rocket immunoelectrophoresis - CIE crossed immunoelectrophoresis  相似文献   

18.
Mutagenesis in vitro of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) from Anacystis nidulans Synechococcus PCC 6301) was used to generate novel enzymes in Escherichia coli. Residues in C-terminal loop 6 of the / barrel structure of the large subunit were changed. Replacement of valine 331 with alanine caused a 90% reduction in V max but did not alter the enzyme's relative specificity towards either of its gaseous substrates, CO2 and O2. However replacement of alanine 340 with glutamate decreased the enzyme's specificity for CO2 but had no significant effect on either the K m for ribulose-1,5-bisphosphate or CO2 or on V max. In contrast replacing a small cassette of residues 338-341 produced a small increase in the specificity factor.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - CABP 2-carbox-yarabinitol-1,5-bisphosphate We thank Karen Moore for the statistical analysis of the specificity factors. We acknowledge helpful discussions with Jim Pitts and Richard Pickersgill. This work was aided by the invaluable technical assistance of Iain Major.  相似文献   

19.
A. Scheer  B. Parthier 《Planta》1982,156(3):274-281
Transfer of light-grown autotrophic Euglena gracilis cells to darkness and carbon (glucose) containing heterotrophic media causes structural and functional decomposition of the photosynthetic apparatus. The process can be ascribed to a strict diluting-out mechanism of stroma constituents among the progeny, as shown for ribulose-1,5-bisphosphate carboxylase (RuBPCase, EC 4.1.1.39), and aminoacyl-tRNA synthetases (Aa-RS; especially Leu-RS, EC 6.1.1.4) activities. The diluting-out effect of thylakoid membranes and chlorophyll seems to be superimposed by additional degradations, beginning soon after the transfer of cells to darkness. Cultivation of cells in darkness in 0.03 M KCl or without utilizable organic carbon (resting media) preserves chloroplast structure and function over a long period, indicating negligible turnover in these cells. Thus, under both growing and resting conditions, darkness induces the arrest of synthesis of plastid constituents. Experiments with the inhibitors cycloheximide, chloramphenicol, and nalidixic acid demonstrate that chloroplast dedifferentiation does not require organelle gene expression, but it is more strictly dependent on biosynthetic events in the nucleo-cytoplasmic compartment than the reverse process, light-induced chloroplast formation. Since cycloheximide at low concentrations in growth medium causes a marked suppression of precursor uptake or re-utilization similar to that in cells of resting media, intracellular precursor deficiency is suggested to control the observed blockade in cytoplasmic synthesis of plastid proteins. On the other hand, darkness might signalize the stop of gene expression in the organelles.Abbreviations Aa aminoacid - CH cycloheximide - CM chloramphenicol - Leu-RS leucyl-tRNA synthetase - RuBP ribulose-1,5-bisphosphate - TCA trichloroacetic acid  相似文献   

20.
Summary The amino acid sequence of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) small subunit (SSU) from Euglena has been established by alignment of the sequence of peptides obtained by cleavage with chymotrypsin, trypsin, Staphylococcus aureus protease or formic acid. The Euglena SSU has 138 amino acids and thus represents longest SSU sequence described so far. Homology is only 41% with cyanobacteria SSU and about 51% with higher plant SSU, whereas it is around 75% between higher plants. The largest homologous portion between all the known SSU sequences is localized in the second half and covers about 20 amino acids. The phylogenetic tree based on known SSU sequences has been established and the rate of amino acid substitution for SSU is estimated to be about 1.35×10-9 per year and per site. Despite heterogeneity in amino acid sequence, we found that the overall secondary structure is fairly well conserved.Abbreviations DABITC Dimethyl amino azobenzene isothiocyanate - HPLC high pressure liquid chromatography - Kd Kilo daltons - LSU large subunit - PITC phenyl isothiocyanate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate - SSU small subunit - TFA trifluoric acetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号